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Abstract - In this paper a 2D/3D coupling method is developed, in which, the 3D SN solver is 

employed to get the axial leakage for the 2D radial calculation, while the 2D MOC solver calculates the 

homogeneous cross section and the correction factor for the 3D SN calculation. Iterations between 2D and 

3D calculations are needed to get the converged results. The detailed theory of this 2D/3D coupling 

method is firstly introduced, including the derivation of the radial equation, the definition of the correction 

factor, and the expression of the averaged angular flux with the correction factor, then the impact of axial 

leakage to the MOC calculation results is simply analyzed. Finally the results for the 3D C5G7 problems 

are given to demonstrate the performance of the 2D/1D coupling method. 

 

I. INTRODUCTION 

 

Nowadays the 2D/1D fusion method (2D/1D method) is 

becoming a standard transport method for whole-core 

calculations, and a lot of 2D/1D codes have been developed, 

such as CRX-3D[1,2], DeCART[3,4], nTRACER[5], 

CHAPLET-3D[6], AGENT[7], TOMMOC[8], Tiger-3D[9], 

MPACT[10,11], etc. The 2D/1D fusion method is coupled by 

the leakage term, and converged through the leakage 

iteration between the 2D MOC calculation and 1D 

calculation. Mitchell T.H. Young[12] coupled the 2D MOC 

to the 3D Sn solver, in which the 2D MOC provide the 

radial correction factors for the 3D calculations. But 3D 

calculation isn’t coupled to the 2D MOC, which means no 

axial leakage is considered for the 2D MOC calculations. 

According to our previous analysis [13], if the proper axial 

leakage is provided, the 2D MOC calculations with axial 

leakage will get reasonable results including keff and flux. 

Therefore, in this paper a 2D/3D coupling method is 

introduced, which is iteratively converged through the 

leakage term. The 3D SN solver calculates the axial leakage 

for the 2D MOC solver, while the 2D MOC solver provides 

the cross sections and the correction factor for the 3D SN 

solver. 

 

II. DESCRIPTION OF THE ACTUAL WORK  

 

In this paper a 2D/3D coupling method is developed, in 

which, the 3D SN solver is employed to get the axial leakage 

for the 2D radial calculation, while the 2D MOC solver 

calculates the homogeneous cross section and the correction 

facto1r for the 3D SN calculation. Iterations between 2D and 

3D calculations are needed to get the converged results. 

In this paper, the detailed theory of this 2D/3D coupling 

method is firstly introduced, including the derivation of the 

radial equation, the definition of the correction factor, and 

the expression of the averaged angular flux with the 
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correction factor, then the impact of axial leakage to the 

MOC calculation results is simply analyzed. Finally the 

results for the 3D C5G7 problems are given to demonstrate 

the performance of the 2D/1D coupling method. 

 

1. Theory of the 2D/3D coupling method 

 

Firstly, we start here with the original 3D multi-group 

transport equation written as Eq.(1): 
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The radial 2D equation is obtained by integrating Eq.(1) 

over z-direction intervals: 
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It can be rewritten: 
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The MOC method is used to solve the radial 2D equation. 

The right hand side of Eq.(2) is different from the original 

MOC equation because of the leakage term, which is 

determined by the 3D SN calculation. Since the general SN 
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method is mostly applied to the structured geometries, and 

each pin is square in PWR and BWR, it is reasonable to get 

the 3D equation by integrating Eq.(1) over each pin: 
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Rewriting the equation, the 3D SN equation based on the pin 

mesh is 
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Here, the finite difference method is applied to solve the 3D 

SN equation: 
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Assuming the averaged angular flux is equal to the average 

of the incoming flux and the outgoing flux: 
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The expression of the average angular flux is obtained by: 
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The correction factor is introduced to maintain the 

relationship of the incoming and outgoing fluxes same with 

that of the MOC solver. 
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So the average angular flux is expressed in Eq.(8): 
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The correction factor is to preserve the 3D SN results to the 

2D MOC solver. 
,
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The homogeneous cross sections and the correction factor 

are iteratively updated by previous 2D calculations. And the 

iteration between the 2D MOC and the 3D SN calculations is 

performed until the eigenvalue and scalar flux are 

converged. The calculation flow is show as Fig. 1. 

 

 
Fig.1 calculation flow chart of the coupling method 

 

2. Analysis of the axial leakage 

 

For the plane k the 2D equation is: 

   
   

     

, , , ,

, , , ,

, , , 1/2 , , 1/2

, ,
, ,

, , ,

g m k g m k

k m m t g k g m k

k g k m g m k g m k

x y x y
z x y x y

x y

z Q x y x y x y

 
  

   

  
   

  

     

(10) 

 
From the Eq.(10), it can be found that the error of integral 

flux for the 2D calculation depends on the leakage term 
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which is determined by the difference between the top and 

bottom surface angular flux. The same conclusion can also 

be drawn for plane k+1: 
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Assuming that the total cross section of plane k to be equal 

to that of plane k+1, then summing up Eq.(11) and Eq.(12), 

the surface angular flux of the k+1/2 surface on the right 

hand side will be eliminated as shown in Eq.(13). 
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Where: 

 , , 3/2 ,g m k x y   is the top surface angular flux 

 , , 1/2 ,g m k x y   is the bottom surface angular flux 

   , , 1 , , 1, ,k g m k k g m kz x y z x y    is the 

integrated angular flux of plane k and plane k+1.

  
If the top surface angular flux and bottom surface angular 

flux are known, the integrated angular flux of plane k and 

plane k+1 (solutions of Eq.(11). Eq.(12)) can be obtained by 

integrating Eq.错误!未找到引用源。 over the plane k and 

plane k+1. 
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where, , ,( , 1)g m k k  is the average angular flux of plane k and 

plane k+1. 

Comparing Eq.(13) with Eq.(14), it can be found that if the 

axial surface angular fluxes  
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known, the solution of Eq.(13) is equal to the solution of 
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It is indicated that there is no need to solve the 2D 

MOC twice for plane k and plane k+1, when the distribution 

of the axial leakage for every plane is known, the accurate 

integral flux can be obtained no matter how large the axial 

plane for the 2D calculation is. 

 

In the 2D/3D coupling method, the 3D SN solver is to 

calculate the axial leakage for 2D MOC solver, while the 2D 

MOC calculations is supplying the cross section and the 

correction factor for the 3D SN solver. The new 2D/3D 

coupling method is implemented in the reactor physics code 

NECP-X. 

 

3. Numerical results 

The C5G7 benchmark is designed to test the ability of 

modern deterministic transport methods and codes to treat 

reactor problems The extension of the 3-D calculations was 

proposed in May 2003 to provide a more challenging test of 

present day three-dimensional methods’ ability to handle 

spatial homogeneities. The reactor core size was decreased 

to allow the calculations to be carried out within the 

limitations of present-day computers. Control rods were 

introduced to increase the heterogeneity of the problems. 

The arrangement of the benchmark is shown in Fig.2 – Fig. 

7. 

The calculation parameter is as below:  

1) The core is divided into 4 layers to process 2D MOC 

calculation 
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2) The mesh size of xy direction of 3D Sn calculation is 

1.26 cm, same as the size of each pin. The mesh size of z 

direction is 1.0 cm which is finer than the size of MOC 

calculation layer. 

3) The ray spacing in 2D MOC is 0.03 cm. 

4) There are 4 polar angles  and 6 azimuthal anles in one 

octan. 

5) The cretiraion of the keff and flux is 1.0E-6 and 1.0E-5. 

 
Fig.2  The radial geometry of the C5G7 benchmark 

 

 
Fig.3 The axial geometry of the C5G7 benchmark 

 

 
Fig 4 The pin arrangement of the C5G7 benchmark 

 
Fig. 5 Three-dimensional geometry for the Unrodded 

configuration 

 

 
Fig. 6 Three-dimensional geometry for the Rodded A 

configuration 

 

 
Fig. 7 Three-dimensional geometry for the Rodded B 

configuration 

The numerical results of the benchmark are shown in Table 

1 – Table 3. The keff of each case is close to the reference 

while the relative error is less than 50 pcm. The overall pin 

power agrees very well, including the maximum pin power 

and the lattice power.  

For the unrodded case, the relative error of the maximum 

pin power of slice 3 is less than 1.5% while the relative 

error of each lattice power of slice 3 is less than 1.2%, the 

distribution of the relative error of pin power is shown in 

Fig. 8, which suggest that this coupling method can get a 

accurate eigenvalue and pin power distribution. 

 

Table 1 The result of unrodded case 
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Unrodded 
Reference 

MCNP 

NECP-

X_2D3D 

Relative 

error(%) 

Keff 1.14308 1.1432 -0.01 

Max rod power 2.481 2.477 0.16 

Inner U02lattice 491.2 490.4 0.16 

MOX lattice 212.7 213 -0.14 

Outer U02 lattice 139.4 139.6 -0.14 

slice 1 
   

Max rod power 1.108 1.113 -0.45 

Inner U02lattice 219 220.1 -0.5 

MOX lattice 94.5 95.7 -1.27 

Outer U02 lattice 62.1 62.8 -1.13 

slice 2 
   

Max rod power 0.882 0.879 0.34 

Inner U02lattice 174.2 175.4 -0.69 

MOX lattice 75.2 74.8 0.53 

Outer U02 lattice 49.5 49.2 0.61 

slice 3 
   

Max rod power 0.491 0.484 1.43 

Inner U02lattice 97.9 96.8 1.12 

MOX lattice 42.9 42.5 0.93 

Outer U02 lattice 27.8 27.5 1.08 

 

For the rodded A case, the relative error of the maximum 

pin power of slice 3 is less than 2.0% while the relative 

error of each lattice power of slice 3 is less than 2.4%. The 

distribution of the relative error of pin power is shown in 

Fig. 9. 

 

Table 2 The result of rodded A case 

rodded A Reference 

MCNP 

NECP-

X_2D3D 
Relative 

error(%) 

Keff 1.128 1.1285 -0.04 

Max rod power 2.253 2.252 0.04 

Inner U02lattice 461.2 460.9 0.07 

MOX lattice 221.7 221.8 -0.05 

Outer U02 lattice 151.4 151.6 -0.13 

slice 1    

Max rod power 1.197 1.203 -0.5 

Inner U02lattice 237.4 239 -0.67 

MOX lattice 104.5 105.8 -1.24 

Outer U02 lattice 69.8 70.7 -1.29 

slice 2    

Max rod power 0.832 0.83 0.24 

Inner U02lattice 167.5 166.8 0.42 

MOX lattice 78 77.3 0.9 

Outer U02 lattice 53.4 53 0.75 

slice 3    

Max rod power 0.304 0.299 1.64 

Inner U02lattice 56.3 55 2.31 

MOX lattice 39.2 38.6 1.53 

Outer U02 lattice 28.2 27.9 1.06 

 

For the rodded B case, the relative error of the maximum 

pin power of slice 3 is less than 3.5% while the relative 

error of each lattice power of slice 3 is less than 3.0%. The 

distribution of the relative error of pin power is shown in 

Fig. 10. The result of the rodded B case calculated by the 

2D/1D code with the same calculation parameter is shown 

in Table 4. According to Table 4, it is obvious that the 

2D/3D method is more precise than 2D/1D method with 

coarser MOC layer. 

 

Table 3 The result of rodded B case 

Rodded B ref NECP-

X_2D3D 

err/% 

Keff 1.0777 1.07829 -0.05 

max rod power 1.835 1.835 0.01 

U02_inside 395.4 395.3 0.03 

MOX 236.6 236.7 -0.04 

U02_outside 187.3 187.5 -0.11 

slice 1    

max rod power 1.2 1.211 -0.92 

U02_inside 247.7 250.1 -0.97 

MOX 125.8 127.5 -1.35 

U02_outside 91.6 92.8 -1.31 

slice 2    

max rod power 0.554 0.548 1.08 

U02_inside 106.6 105.1 1.41 

MOX 81.4 80.4 1.23 

U02_outside 65 64.5 0.77 

slice 3    

max rod power 0.217 0.21 3.23 

U02_inside 41.1 40 2.68 

MOX 29.4 28.8 2.04 

U02_outside 30.7 30.2 1.63 

 

Table 4 The result of rodded B case calculated by 2D1D 

method 

Rodded B ref NECP-

X_2D1D 

err/% 

Keff 1.0777 1.08191 -0.39 

max rod power 1.835 1.851 -0.87 

U02_inside 395.4 398.3 -0.73 

MOX 236.6 235.9 0.3 
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U02_outside 187.3 185.8 0.8 

slice 1    

max rod power 1.2 1.24 -3.33 

U02_inside 247.7 253.9 -2.5 

MOX 125.8 125.4 0.32 

U02_outside 91.6 90.6 1.09 

slice 2    

max rod power 0.554 0.558 -0.72 

U02_inside 106.6 106.2 0.38 

MOX 81.4 81.5 -0.12 

U02_outside 65 64.7 0.46 

slice 3    

max rod power 0.217 0.198 8.76 

U02_inside 41.1 38.2 7.06 

MOX 29.4 29.1 1.02 

U02_outside 30.7 30.5 0.65 

 

 

Considering all the numerical result of each case, the keff and 

the overall pin power agree well with the reference result 

from Monte Carlo code.  

 
Fig 8 The distribution of the relative error of pin power of 

unrodded case 

 

4. CONCLUSION  

In this study, an iteration version of the 2D/3D 

coupling method is introduced and the numerical result of 

C5G7 3D extension is demonstrated. The numerical result 

indicates that this coupling method can obtain accurate 

eigenvalue and pin power distribution.  Compared with the 

result of 2D/1D method, the keff and the pin power 

distribution are both better with coarser MOC layer. 

Currently, this method still has some stability issue. When 

the size of the MOC layer is smaller, the converged result 

can`t be obtained. The undergoing work is to improve the 

stability of this method. 

 

 
Fig 9 The distribution of the relative error of pin power of 

rodA case 

 

 
Fig 10 The distribution of the relative error of pin power of 

rodB case 
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