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Abstract – Particle conservation is one of the main properties to examine when considering any transport 

discretization. In the past, particle conservation, i.e., particle balance, has been examined for the ‘Flat 

Source’ (FS) approximation used in the Method of Characteristics (MOC) for isotropic and anisotropic 

sources. The work presented here extends one of the necessary constraints for particle conservation to the 

recent ‘Linear Source’ (LS) MOC. As a results, direction-dependent track renormalization and centroids are 

examined, and a new LS MOC set of equations is derived for problems involving anisotropic scattering. 

Numerical results are presented which verify that the FS and LS MOC satisfy particle conservation for 

problems involving isotropic and anisotropic sources by presenting a simple pin cell verification exercise. 

Finally, results from a set of full-core eigenvalue calculations (updated B&W-1484 Core I & II critical 

experiments and a hypothetical quarter-core 17x17 PWR model), which make use of the anisotropic source 

option, are presented and compared in order to evaluate the impact of using either direction dependent or 

direction independent track renormalization (and centroids.)

 

I. INTRODUCTION 

 

The Method of Characteristics (MOC) is a trajectory-

based transport discretization that has become the method of 

choice for solving the neutron transport equation in two-

dimensional geometry when performing lattice physics 

calculations for downstream nodal diffusion reactor analysis 

and design [1,2]. More recently, the desire to develop 

explicit, three-dimensional transport methods for full-core 

calculations has resulted in a renewed interest in the MOC 

scheme [3-5]. Although conceptually straightforward to 

generalize to three-dimensions, non-trivial considerations 

arise when attempting to develop a practical MOC scheme 

for full-core reactor analysis. One example is the use of the 

Flat Source (FS) approximation, which may require a 

significant number of source regions in order to obtain a flux 

solution that is adequately converged in space. The required 

number of source regions directly impacts the generation and 

storage of tracking data, which may grow dramatically when 

considering an explicit full-core calculation. Relaxing the FS 

approximation in favor of a Linear Source (LS) [6] can 

reduce the number of source regions necessary to achieve an 

acceptable level of accuracy. 

Recently, the LS approximation for the MOC scheme 

was implemented into CASMO5 [6] to solve two-

dimensional single- and multi-assembly problems in 

conjunction with the Coarse-Mesh Finite Difference (CMFD) 

acceleration [7]. Results from numerical tests indicated a 

significant advantage over the FS approximation for both 

isotropic [8] and anisotropic sources [9]. In the case of the 

latter, a reduction in storage was achieved by only 

considering the zeroth angular moment as spatially linear [6], 

while treating the high-order angular moments as flat. 

The purpose of this work is to fill a perceived gap in the 

development of the LS MOC scheme as it pertains to particle 

conservation (also referred to as particle balance) for both 

isotropic and anisotropic sources. Necessary constraints are 

introduced in this work for particle conservation in the 

context of the FS MOC for isotropic and anisotropic sources 

[10]. These constraints are subsequently generalized for the 

LS MOC scheme and specific requirements derived 

involving track renormalization and trajectory-based 

numerical centroids. Numerical tests are presented which 

show that the LS MOC does indeed satisfy the particle 

balance when considering isotropic and anisotropic sources. 

Practical applications are also presented in order to evaluate 

the importance of satisfying such constraints, particularly in 

cases involving anisotropic sources. 

 

II. THEORY 

 

The LS MOC scheme is briefly introduced in this 

section. A derivation of the LS MOC for anisotropic sources 

is presented which only considers the zeroth angular 

moments of the flux as spatially linear. Following the 

derivation, a constraint is introduced which is used 

throughout the rest of the work to establish the necessary 

requirements to satisfy particle balance. This constraint is 

first applied to the FS MOC under the assumption of isotropic 

sources. The isotropic-source assumption is relaxed in favor 

of anisotropic sources and necessary requirements are again 

obtained from the constraint. An analogous procedure is 

applied to the LS MOC scheme. The derivation results in 

requirements that are necessary, but not sufficient, for the LS 

MOC scheme to satisfy the particle balance. 

 

1. Angular Flux Moments along Tracks 

 

The differential form of the neutron transport equation 

along a distance ms  in the azimuthal direction a  and polar 

direction p , denoted by  ,m a p , of a track k  within 

source region i  is given by 
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where , ,

g

m k i   , ,

g

m k i mq s , and ,Σg

tr i  correspond to the 

angular flux, total source, and transport-corrected total cross 

section for energy group g , respectively. The linear source 

along the track length variable ms   is assumed to have the 

following form 

   , , , , , , ,
ˆg g g c

m k i m a k i m i m m k iq s q q s s   . (2) 

The entire track length is denoted by , ,m k is , such that 

, ,0 m m k is s , , , , , / 2c

m k i m k is s , and the expansion 

coefficients , ,

g

a k iq   and  ,
ˆ g

m iq  are defined later on. The 

integration of Eq. (1) along the track length in cell i   yields 

the characteristics equation 
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where  ,

g

tr i m

g

m s    is a variable optical thickness and 

, ,0 g g

m m k i  . Functions  1

g

mF   and  2

g

mF   are 

defined in [6]. The outgoing angular flux along the track 

length is obtained by evaluating Eq. (3) at  , ,m m k is s . The 

balance equation is obtained by integrating Eq. (1) over the 

track length , ,m k is  

   , , , , , ,

, , , , ,
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0
Σ

g g

m k i m k i m k i g g g
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 
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where , ,

g

m k i  is the track-averaged angular flux. An explicit 

expression for the first-order spatial moment of the angular 

flux along each track is obtained by taking the first-order 

spatial moment of Eq. (3)  

   
 

 
 

1 , ,, ,

, , , , , , , ,

, ,

,

, , 2 , ,2

,

0 0
Σ Σ

2 Σ

ˆ

ˆ

gg
m k ig g c a k i g

m k i m k i m k i m k ig g

tr i tr i

g

m i g

m k i m k i
g

tr i

Gq
s

q
s G


  



 
    

 



      (5) 

where  1 , ,

g

m k iG   and  2 , ,

g

m k iG   are defined in [6]. Before 

leaving this section it is worthwhile to note that the proposed 

scheme conserves the particle balance along each track 

segment, since no ad hoc approximation for the first-order 

spatial moments is introduced in this derivation. The first-

order moment of the angular flux is directly obtained from 

the exact solution of Eq. (1), which is given by Eq. (3), under 

the linear source expansion in Eq. (2). 

 

2. Track-based Integration 
 

The numerical integration of if  and ig  over region i  

using track data is given by the following expressions

   
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,

, , , ,
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      (6) 

,
, 4 ,mi m i

m

f g f g     (7) 

where aA   is the width of the characteristic ray, m  is the 

quadrature weight associated with the product quadrature in 

the m  direction, sin p  is the sine with respect to polar 

angle p  and iV  is the region i  volume. Instead of , ,m k is , 

the scaled track length , , , , ,m k i a i m k it s  is used in order 

highlight the fact that a renormalization procedure is 

performed, where ,a i  will be defined shortly. The 

renormalized track length , ,m k it  is used in placed of , ,m k is  in 

the evaluation of Eqs. (3) through (5). Finally, the 

renormalization is performed by direction and results in the 

conservation of volume for each region i . 

 

3. Local Coordinate System 
 

A local coordinate system is defined for each mesh cell, 

centered on  , ,,c

i

c

a iaX Y  such that ,

c

a ix X X   and 

,

c

a iy Y Y  , where  ,X Y  are the global coordinates. 

The centroids  , ,,c

i

c

a iaX Y  are defined as follows 

, ,
1,c

a i a i
X X    (8a) 

, ,
1,c

a i a i
Y Y .   (8b) 

The spatial coordinates  ,X Y  are related to mt  via the 

following equations 

  , , ,/x in

m m m a i a k iX t a t X    (9a) 

  , , ,/y in

m m m a i a k iY t a t Y    (9b) 
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where cos sin p

x

m aa   ,  sin sin p

y

m aa   , and ,a i   

is the scaling factor discussed above used to renormalize 

track lengths in order to conserve volume. Although not 

unique, the parametrization given by Eqs. (9) results in 

conservation as long as it is used consistently. Substituting 

Eqs. (9) into 
,

1,
m i

  and noting that / sinm a pt t   results 

in Eqs. (8), in which the angular dependence is reduced to the 

azimuthal plane. Unlike previous derivations of the LS MOC, 

the scaling factor ,a i  is clearly dependent on the angular 

direction and defined as follows 

, ,

,

a a k i

k

i
a i

A s

V






.  (10) 

Therefore, the renormalization defined by Eq. (10) results in 

,
1,1 1

m i
 , where the 

,
1,

m i
  is defined by Eq. (6). 

 

4. Cell-Averaged Scalar Flux and Isotropic Linear Source 

 

Consider the two-dimensional isotropic linear source 

approximation 

   , ,

1
,

4

g g g g

i i i x i yq x y q q x q y


   . (11) 

The coefficients for the source along a track in Eq. (2) are 

determined by 
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1
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where  , , , ,,c c

a k i a k ix y  are the track midpoint coordinates in 

the local coordinates system. Operating on Eq. (11) with 

1,
i

 , ,
i

x  , and ,
i

y  , results in a 2 2  linear system 

of equations with coefficients ,i xxM , ,i yyM , and ,i xyM [6]. 

The source moments , ,, ,g g g g

i i i x i y

T

Q q Q Q    are obtained 
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to the flux moments , ,,Φ ,Φg g g g

i i i x y

T

i     , where 

,Σg g

s i

 
 is the scattering cross section matrix, ,Σg

f i  is the 

nu-fission cross section,
g

i  is the fission spectrum, and k  

is the eigenvalue. The spatial moments of the scalar flux are 

obtained by substituting  , ,

g

m k i mt  into 1,
i

 , ,
i

x  , and 

,
i

y  , which results in the following set of equations  

, ,

, ,

4
Δ

Σ Σ

g
g gi

i a p m k ig g
a p ktr i tr i i

q

V


        (15) 

   

,,

, , ,

, , ,

, , , , , , , , , ,

4
Φ

Σ Σ Σ

cos 0 Δ

gg

i yg i x g g

i x i x i xy a pg g g
a ptr i tr i tr i i

g g in g

a a k i m k i m k i a k i m k i

k

qq
C C

V

s H x


 

  

  

 
 

 


      (16) 

   

, ,

, , ,

, , ,

, , , , , , , , , ,

4
Φ

Σ Σ Σ

sin 0 Δ

g g

i yg g i x g

i y i y i xy a pg g g
a ptr i tr i tr i i

g g in g

a a k i m k i m k i a k i m k i

k

q q
C C

V

s H y


 

  

  

 
 

 


      (17) 

where sin pp p   , a a aA   ,  

   , , , , , , , ,Δ 0g g g

m k i m k i m k i m k it   
  , and  , ,

g

m k iH  , 

,

g

i xC , ,

g

i yC , and ,

g

i xyC  are defined in [6]. 

  

5. Cell-Averaged Scalar Flux and Anisotropic Linear 

Source 

 

Consider the anisotropic source in region i , which is 

analogous to the isotopic case defined by Eq. (11), 

   , , , ,

1
,

4

g g g g

m i m i i x i yq x y q q x q y


   . (18) 

The coefficients of the track source , ,

g

m k iq  and ,
ˆ g

m iq  are 

analogous to those given by Eqs. (12) and (13), except for the 

fact that ,

g g

i m iq q . Operating on Eq. (18) with 1,
i

 , 

,
i

x  , and ,
i

y  , results in a 2 2  linear system of 

equations with coefficients ,i xxM , ,i yyM , and ,i xyM [6]. 

The linear expansion coefficients in Eq. (18) presuppose 

analogous expansion coefficients for the flux, e.g., ,

g

i x  and 

,

g

i y . Therefore, the source moments  , ,,g g

i x i yQ Q  can be 

obtained by applying Eq. (14) to  , ,Φ ,Φg g

i x i y , which follow 

the development of the linear source in the isotropic case. 

However, the evaluation of the constant (or average) angular 

source requires the use of the moment-to-discrete operator 
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where L  is the anisotropic scattering expansion order,  

cosp p  ,  ,l r   is a double index, and 

 ,a pR    is the real spherical harmonics function. 

Higher-order scattering matrices 
,

,Σg g l

s i

 
 are necessary in 

order to evaluate Eq. (19) for 0L  . In the so-called LS+P0 

approach [6] the angular moments of the angular flux are 

accumulated during the transport sweep by substituting 
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g
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i

x  , and ,
i

y  , 

which results in the following set of equations 
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where the angular dependence of the centroids results in the 

, , , , 0c

a a k i a i

k

ktA x   and , , , , 0c

a a k i a i

k

ktA y  . Eqs. 

(20) through (22) reduce to Eqs. (15) through (17) by only 

considering the isotropic case ,

g g

m i iq q  and the zeroth 

angular moments of the angular flux. Eqs. (43)-(45) from [6] 

become (20)-(22) if Eqs. (18) and (10) are applied. 

6. Particle Conservation and the Flat Source MOC 

 

Particle conservation and anisotropy for trajectory-based 

methods has been previously examined by other authors [10]. 

In that particular work, the authors examine quadrature-

related constraints that are necessary to ensure particle 

conservation. In addition, a constraint is introduced using the 

trajectory-based spatial moments such that the trajectory 

sources integrate exactly to the angular moments of the 

source over a region. In the case of the FS, the constraint can 

be re-stated as follows 

  ,

,

1
1, ,

4

g g

a p m i i

i

R q q 
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

  (23) 

where 
,g

iq 
is the angular moment of the anisotropic source 

in region i . In the case of an isotropic source, only the zeroth-

order angular moment is of interest and Eq. (23) reduces to 

the following expression 

1
1,

4

g g

i i

i

q q


 .  (24) 

As noted in [10], Eq. (24) is satisfied by either direction-

dependent or independent renormalization of the tracks. In 

the latter case, Eq. (10) becomes 

, ,a a a k i

a k

i
i

A

V

s 
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 
.  (25) 

The renormalization given by Eq. (25) is applied in the 

majority of FS MOC implementations when considering an 

isotropic source. However, in the case of anisotropic sources, 

Eq. (23) can be further developed by first expanding the 

directional source using the spherical harmonics as a basis 

  ,

,

0

,
L l

g g

m i a p i

l r l

q R q 

  
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 .  (26) 

Substituting Eq. (26) into (23) yields the following two 

constraints  

   , ,m a p a

m

pR R         (27) 

and 

, ,a a k i i

k

A t V  .  (28) 

The first constraint, given by Eq. (27), requires the 

orthogonality of the real spherical harmonics function as a 

constraint on the angular quadrature used in the MOC 

calculation. This first constraint has already been discussed 

in detail by other authors [10]. The second constraint, given 

by Eq. (28), places a constraint on the renormalization of the 

tracks such that the region volume is conserved. In other 

words, the directional-dependent renormalization is a 

necessary, though not sufficient, requirement for particle 

conservation. In practice, typical MOC calculations by 

default use a very fine angular discretization, which result in 
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these constraints being satisfied to within a small criterion, 

e.g., , ,i a a k i

k

V A t   . 

 

7. Particle Conservation and the Linear Source MOC 

 

A generalization of the constraint given by Eq. (23) is 

introduced for the case of the LS MOC. Instead of 

considering the anisotropic source case from the start, the 

isotropic case will first be examined. The constraint requires 

the track-based linear sources to integrate exactly to the 

region-averaged isotropic source, 

 , ,1, g g

m k i m ii
q s q   (29) 

where  , ,

g

m k i mq s  is given by Eq. (2). Setting m ms t  and 

, , , ,m k i m k is t  in Eq. (2) and substituting into Eq. (29), along 

with Eq. (11), yields the following constraints 

, ,a aa k i i

ka

A t V       (30a) 

, , , , 0c

a a k a i

k

a

a

i kA x t      (30b) 

, , , , 0c

a a k a i

k

a

a

i kA y t    .  (30c) 

Since the LS MOC is based on the idea that high-order spatial 

moments of the source may be obtained by imposing a 

generalization of the particle balance, analogous constraints 

to that given by Eq. (29) are introduced in which the track-

based linear source should exactly integrate to the region-

wise spatial moments, which are given by Eq. (14) 

 , , ,, g g

m k i m i xi
x q s Q   (31a) 

 , , ,, g g

m k i m i yi
y q s Q .  (31b) 

Setting m ms t  and , , , ,m k i m k is t  in Eq. (2) and 

substituting into Eqs. (31), along with Eq. (11), yields the 

following constraints 

, , , , ,

g g g

i x i xx i y i xy i xq M q M Q   (32a) 

, , , , ,

g g g

i x i xy i y i yy i yq M q M Q   (32b) 

where coefficients ,i xxM , ,i yyM , and ,i xyM [6] have 

already been introduced in the context of the LS MOC. 

The entire LS MOC scheme is predicated on the set of 

constraints specified by Eqs. (30) and (32). In particular, 

directional-dependent (or independent) track renormalization 

results in satisfying the constraint given by Eq. (30a). The 

computation of the directional-dependent centroids given by 

Eqs. (8) automatically satisfies Eq. (30b) and (30c). 

Alternatively, direction-independent centroids, defined as 
c

iX  and 
c

iY  [6], will also satisfy the constraints given by 

Eqs. (30b) and (30c). Finally, the constraints given by Eqs. 

(32) are identical to the 2 2  linear system of equations 

used to solve for the expansion coefficients in Eq. (11) [6, see 

Eq. (22)]. 

In summary, the isotropic-source LS MOC scheme with 

direction-independent track renormalization and centroids 

satisfies the zeroth- and first-order particle balance 

equations, and therefore respects particle balance. 

Now consider the case of an anisotropic source. The 

constraint requires the track-based linear sources to integrate 

exactly to the region-averaged angular moment of the 

anisotropic source, 

    ,

, ,1, , g g

a p m k i m i
i

R q s q 
     (33) 

where  , ,

g

m k i mq s  is given by Eq. (2). Setting m ms t  and 

, , , ,m k i m k is t  in Eq. (2) and substituting into Eq. (33), along 

with Eq. (18), yields the following constraints 

, ,a a k i i

k

A t V    (34a) 

, , , , 0c

a a k i a k i

k

A x t    (34b) 

, , , , 0c

a a k i a k i

k

A y t    (34c) 

where the angular moments of the region-averaged 

anisotropic source are defined as follows 

  ,

,, g g

m a p i m i

m

R q q 

    .  (35) 

Analogous constraints to Eq. (33) exist in which the track-

based linear source should exactly integrate to the spatial 

moments of each angular moment of the anisotropic source. 

However, since the LS MOC for anisotropic sources only 

considers the zeroth-order angular moment (or scalar) flux as 

possessing spatially-linear expansion coefficients, Eqs. (32) 

are again evaluated and the resulting constraint is identical to 

the 2 2  linear system of equations used to solve for the 

expansion coefficients in Eq. (18). Unlike the cases involving 

isotropic sources, the anisotropic case requires direction-

dependent track renormalization and centroids, as seen from 

Eqs. (34). In practice, the MOC calculations by default use a 

very fine angular discretization, which result in these 

constraints being satisfied to within a small criterion, e.g., 

, ,i a a k i

k

V A t   , just as in the case of anisotropic 

scattering and the FS MOC. 

In summary, the anisotropic-source LS MOC scheme 

with direction-dependent track renormalization and 

centroids satisfies the zeroth- and first-order particle balance 

equations, along with the angular moments of the source, and 

therefore respects particle balance. The use of direction-

dependent track renormalization and centroids are necessary, 

though not sufficient, conditions for particle conservation. 

Before leaving this section it is worthwhile to note that 

particle conservation could still be achieved, but at the cost 

of losing the orthogonality property of the spherical harmonic 
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function for anisotropic sources. This may result in requiring 

the inversion of a local matrix, which may be ill-conditioned 

[11], in order to obtain expansion coefficients from the 

angular moments. 

 

III. NUMERICAL TESTS 

 

The LS MOC scheme presented above possesses several 

properties which result in particle conservation. In this 

section a numerical verification of the properties is first 

performed by considering a simple pin cell problem. 

Following the verification, a set of realistic test problems are 

considered in order to evaluate the relative merits of the 

direction-dependent and independent normalizations for the 

FS and LS MOC. A test version of the CASMO5 lattice 

physics code is used in this section [2]. 

 

1. Pin Cell Verification Exercise 

 

Consider a 4% U-235 enriched UO2 pin cell problem 

consisting of a fuel pin with a 0.41 cm radius surrounded by 

moderator in a 1.26 cm pin pitch at room temperature. A 

spatial mesh consisting of 12 source regions is overlaid on 

the pin cell geometry. A set of angular directions consisting 

of 8 azimuthal angles and 1 polar direction is used to solve 

the problem. The final azimuthal angles and spacing are 

internally resolved by the code given a coarse ray spacing 

guess of 0.5 cm which will respect reflective boundary 

conditions. A schematic of the resulting tracking layout is 

depicted in Figure 1 below. 

 

 
 

Fig. 1. Two-region pin cell problem using coarse angular 

quadrature. 

 

In order to further simplify the problem and maintain 

some of the basic physics, group condensation is set to 

collapse the multi-group cross sections from the library group 

structure into an eight energy-group set. A total of four MOC 

options for solving the 2D transport equation are used in this 

exercise: isotropic source FS, isotropic source LS, 

anisotropic source FS, and anisotropic source LS. For 

simplicity, a Power Iteration (PI) scheme is used for the 

solution of the eigenvalue problem. The relative convergence 

criteria of the group-wise region-averaged scalar flux is set to 

< 10-5. 

The selection of a coarse angular quadrature is based on 

the observation that using few directions and coarse ray 

spacing should satisfy the constraints given by Eqs. (23), 

(24), (29), and (33) provided that track renormalization (and 

centroids) are computed consistently. 

The results for the isotropic-source case are summarized 

in Table I. The first column refers to the MOC source 

representation (either FS or LS) and the second column refers 

to the renormalization of the tracks and centroids as either 

direction-independent (ISO) or by direction (AZI). All four 

cases converge in the same of number outer iterations, and 

the maximum absolute and relative differences between the 

region-averaged isotropic source and the integrated track 

source, following Eqs. (24) and (29), are below single 

precision. As described above, the necessary conditions for 

particle conservation in the case of an isotropic source given 

by Eqs. (30) are equally satisfied by either track 

renormalization and centroid options (ISO or AZI). 

 

Table I. Numerical results of pin cell problem for 

isotropic sources. 

 

MOC Norm Itrs. Abs. diff. Rel. diff. 

FS ISO 21 5.8E-09 3.2E-08 

 AZI 21 4.0E-09 1.1E-08 

LS ISO 21 5.8E-09 3.3E-08 

 AZI 21 4.8E-09 1.7E-08 

 

In the case of anisotropic sources, an additional 

constraint is required for particle conservation, which 

involves the orthogonality of the spherical harmonics 

function, given by Eq. (27). This condition was numerically 

verified by considering an anisotropic source case in which 

1L   for the anisotropic scattering order. It is trivial to 

verify that the evaluation of the spherical harmonics 

orthogonality property is satisfied for the set of angles used 

in this exercise. In a similar fashion to the isotropic source, 

the anisotropic source results are tabulated in Table II. All 

four cases converge in the same number of outer iterations, 

and the absolute and relative differences between the region-

averaged anisotropic source and the integrated track source 

angular moments, following Eqs. (23) and (33), were 

calculated. In this instance, the table lists the maximum 

absolute and relative differences, not only over all groups and 

regions, but also over all three angular moments of the 

source. 
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Table II. Numerical results of pin cell problem for 

anisotropic sources and 1L  . 

 

MOC Norm Itrs. Abs. diff. Rel. diff. 

FS ISO 25 8.9E-04 7.3E-02 

 AZI 25 1.2E-07 2.1E-05 

LS ISO 25 9.2E-04 7.3E-02 

 AZI 25 1.3E-07 8.8E-05 

 

The numerical results shown in Table II indicate that 

errors (up to 7%) may be encountered in the evaluation of the 

angular moments of the source if direction-independent 

renormalization is used for problems involving anisotropic 

sources. 

Refining the ray spacing results in an improved 

estimation of the angular moments of the source for the 

direction-independent renormalization. In an analogous 

fashion, refining the number of angles in the azimuthal plane 

further reduces the differences, thereby preserving all three 

source angular moments to within single precision in the limit 

of many directions. A summary of the numerical results from 

such an angular refinement study is shown below in Table III. 

As the number of azimuthal angles is increased, the ray 

spacing must also be decreased in order to obtain rays 

crossing the boundary of the problem for ‘small’ angular 

directions. 

 

Table III. Numerical results of pin cell problem for 

anisotropic sources and 1L   with angular refinement. 

 

MOC Norm Itrs. a  
aA  Abs. diff. 

Rel. 

diff. 

FS ISO 24 16 0.25 1.4E-04 1.6E-02 

  23 32 0.1 1.0E-04 8.1E-03 

  23 64 0.05 2.7E-05 2.3E-03 

  23 128 0.01 3.9E-06 1.8E-04 

FS AZI 24 16 0.25 1.4E-07 6.3E-05 

  23 32 0.1 1.5E-07 6.9E-05 

  23 64 0.05 1.7E-07 4.0E-05 

  23 128 0.01 1.9E-07 3.8E-05 

LS ISO 24 16 0.25 1.6E-04 1.6E-02 

  24 32 0.1 1.3E-04 8.1E-03 

  24 64 0.05 3.3E-05 1.9E-03 

  24 128 0.01 3.9E-06 1.6E-04 

LS AZI 24 16 0.25 1.1E-07 9.8E-05 

  24 32 0.1 1.4E-07 2.2E-05 

  24 64 0.05 1.4E-07 1.1E-04 

  24 128 0.01 1.2E-07 4.0E-05 

 

Finally, setting the anisotropy order to 5L  , refining 

the angular quadrature to 128 azimuthal angles and 5 polar 

angles (Gauss-Legendre quadrature), and setting a target 0.01 

cm ray spacing allows for the comparison of the several 

options over the entire set of twenty-one angular moments. 

The refined angular quadrature is necessary in order to satisfy 

the orthogonality property of the spherical harmonics in the 

numerical evaluation. A summary of the results is shown in 

Table IV below. 

 

Table IV. Numerical results of pin cell problem for 

anisotropic sources and 5L  . 

 

MOC Norm Itrs. Abs. diff. Rel. diff. 

FS ISO 24 4.8E-04 1.4E+01 

 AZI 24 2.3E-07 2.5E-03 

LS ISO 24 4.7E-04 1.6E+01 

 AZI 24 2.1E-07 2.7E-03 

 

The absolute differences for the ISO cases indicate an 

acceptable level of precision, although clearly the AZI option 

achieves consistency to within single precision. The large 

relative differences in the ISO cases correspond to higher 

angular moments, which are rather small in terms of their 

absolute value. Therefore, they are expected to have little 

impact on the accuracy of the numerical solution. 

 

2. Evaluation of B&W-1484 Core I & II 
 

Particle conservation can be achieved by direction-

independent renormalization of the tracks (and centroids 

calculation) for both FS and LS MOC when considering 

isotropic source. In the case of anisotropic sources, 

directional quantities must be computed in order to satisfy the 

constraint regardless of the angular quadrature being used. 

Storage requirements for renormalization factors (and 

centroid) increase by the number of azimuthal directions for 

the FS and LS MOC. This might become significant for the 

LS MOC since it involves three direction-dependent 

quantities times the number of source region. Therefore, an 

evaluation of the additional storage requirements is necessary 

for realistic applications. The results shown in this section are 

limited to two-dimensional geometry, but may provide some 

indication of what might be encountered for a three-

dimensional LS MOC implementation. 

Following previous analysis of the B&W-1484 [6], 

updated models accounting for the detailed non-symmetric 

geometry, compositions and conditions are considered in the 

evaluation of the LS MOC schemes. 
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Fig. 2. B&W-1484 Core I geometry. 

 

 
 

Fig. 3. B&W-1484 Core II geometry. 

 

The Core I & II geometry is depicted in Fig. 2 & 3. Core 

I consists of 458 fuel pins arranged in a circular shape and is 

designed to be in a very high-leakage configuration. Core II 

consists of 1764 identical fuel pins arranged in a square shape 

and is designed to be in a relatively low-leakage 

configuration. 

The transport calculations performed for the Core I & II 

used a 95 energy-group structure and an effective axial 

buckling, which is used to capture the effects of leakage in 

three dimensions. The anisotropic source treatment relied on 

the expansion of the scattering source up to 3L  , which 

resulted in the computation of a total of ten angular moments 

of the flux. The angular discretization is based on the default 

64 azimuthal angles and 0.05 cm ray spacing. A summary of 

the results is presented in Table V and the fission 

distributions are depicted in Figs. 4 & 5. 

 

Table V. Results for B&W-1484 Core I & II with 

anisotropic sources. 

 

Core Norm K-effective Rel. Mem. Rel. Time 

I ISO 0.99921 1.0 1.0 

 AZI 0.99921 1.01 0.991 

II ISO 1.00086 1.00 1.0 

 AZI 1.00086 1.01 0.992 

 

 
 

Fig. 4. B&W-1484 Core I normalized fission distribution. 

 

 
 

Fig. 5. B&W-1484 Core II normalized fission distribution. 

 

The resulting eigenvalue (K-effective) indicates that for 

realistic numerical transport calculations there is practically 

no difference between the renormalization and centroid 

definitions when considering anisotropic sources. Although 

not shown in this section for brevity, it is worthwhile to note 

that both options (ISO and AZI) converged in exactly the 

same number of transport sweeps and the final fission 

distribution was identical. The relative memory requirements 

and run time, tabulated in Table V, indicate that performing 

direction-dependent renormalization (and centroid 

calculation) results in a slight decrease in the run time 

accompanied by an increase in memory (storage) 

requirements. Therefore, the use of such direction-dependent 

definitions may not constitute an exorbitant increase in 

resources. 

The fission distributions were compared to those 

resulting from a transport-corrected P0 (TRN) and an 

uncorrected P0 calculations (NONE.) The results are 

tabulated in Table VI and indicate that good agreement may 

be achieved by using the transport-corrected P0 

approximation, whereas neglecting any correction clearly 

results in unacceptable results. 
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Table VI. Results for B&W-1484 Core I & II with 

isotropic sources. (Relative to 3L   results.) 

 

Core P0 K-effective Delta-k Max. % Diff. 

I NONE 1.04102 4181 11.5 

 TRN 1.00076 155 1.7 

II NONE 1.10176 10090 25.0 

 TRN 1.00082 -4 0.6 

 

The transport-corrected P0 approximation used in 

CASMO5, which is based on the inflow formulation and used 

for several decades, is discussed in detail in various other 

publications, including [12]. 

 

3. Evaluation of Quarter-Core 17x17 PWR 
 

In order to verify memory and run-time penalties 

incurred by using the direction-dependent schemes (relative 

to the direction-independent option) a quarter-core geometry 

of a hypothetical PWR core constituted of typical 17x17 fuel 

assemblies was modeled using CASMO5. The default 

angular quadrature was used in the calculation in conjunction 

with a detailed 95 energy-group structure and a 3L   

anisotropic source expansion order. The quarter-core 

geometry generated from the ray-tracing is depicted in Fig. 6, 

which includes the explicit modeling of the baffle, core barrel 

and pad. 

 

 
 

Fig. 6. Two-dimensional PWR core geometry. 

 

Some degree of multi-processing is necessary when 

performing large calculations in order to reduce the wall-

clock time to a reasonable level. Using the multi-threading 

OpenMP capabilities implemented into CASMO5 [2], which 

relies on the angular decomposition of the MOC transport 

sweep, a total of 8 cores were utilized in the calculation which 

resulted in a speed-up proportional to a factor of 7. The 

resulting fission distribution is depicted in Fig. 7. It is 

worthwhile to note that fresh assemblies involving identical 

enrichment were used in this hypothetical core, therefore the 

resulting fission distribution (proportional to power) is not 

flat as expected in realistic core designs. 

The resulting eigenvalues, corresponding to the ISO and 

AZI options, were found to be within ~1 pcm difference, 

which is considered to be in good agreement given the size 

of the problem. The total number of transport sweeps 

performed was found to be identical between the two cases. 

A comparison of the memory requirements during execution 

indicates an increase in the relative memory resource usage 

of approximately 1.4% when using the AZI option relative to 

the ISO option. This estimate was verified by comparing an 

internal tally of maximum memory usage the code provides 

in the output. Finally, the relative wall-clock time used by the 

calculation using the AZI option, relative to the ISO option, 

is approximately 0.93. In other words, the use of the AZI 

option shows a reduction in terms run-time of approximately 

7% relative to the ISO option. 

 

 
 

Fig. 7. Two-dimensional PWR core fission distribution. 

 

IV. CONCLUSIONS 

 

The developments summarized in this work indicate that 

direction-independent track renormalization and centroid 

definitions result in particle conservation when applying the 

LS MOC scheme to problems involving isotropic sources. In 

the case of anisotropic sources, direction-dependent 

renormalization and centroids are required to respect 

conservation. Various examples are presented which 

numerically verify the theory behind particle conservation for 

LS MOC. In addition, realistic two-dimensional transport 

problems involving anisotropic scattering and many energy 

groups are used to evaluate the impact of using direction-

dependent track renormalization and centroids. The results 

indicate practically no difference in terms of convergence, 

eigenvalue or fission distributions between the two 
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approaches. This is due to the very fine angular quadrature 

used in CASMO5 by default, which diminishes the 

inconsistencies, as shown in the numerical results. However, 

a slight increase in relative memory requirements is observed 

due to the direction dependence of the renormalization and 

centroids, relative to the direction-independent case. The 

slight increase in memory requirements is accompanied by a 

reduction in the total wall-clock time due to the cancellation 

of various quantities when considering direction-dependent 

centroids. 

Given the emphasis on particle conservation from a 

theoretical perspective, the results presented here indicate 

that is not prohibitive to consider direction-dependent 

renormalization and centroids in a practical LS MOC 

implementation involving anisotropic scattering. 

Implementations involving three-dimensional FS/LS MOC 

and anisotropic sources should consider an analogous 

evaluation of the track renormalization (and centroids) if such 

an approach is under consideration. 

 

NOMENCLATURE 

 

MOC = Method of Characteristics 

FS = Flat Source 

LS = Linear Source 

ISO = isotropic or direction-independent normalization 

AZI = azimuthal or direction-dependent normalization 
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