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Abstract - A two-dimensional problem with homogeneous, isotropically scattering medium in Cartesian
geometry is utilized to examine angular discretization errors and verify asymptotic convergence of the numerical
solution to the discrete ordinates approximation of the radiation transport equation. We use Madsen’s Theorem
to derive expressions for the error in the uncollided and fully collided scalar fluxes and establish upper bounds.
Five quadrature types with increasing orders are utilized to evaluate the scattering source and the scalar flux.
They are Level Symmetric (LS), Legendre-Chebyshev Quadrangular (LCQ), Legendre-Chebyshev Triangular
(LCT), Quadruple Range (QR) and Quadruple Range S-type (QRS) quadrature sets. The Arbitrarily High
Order Transport method of the Nodal type and 0-th spatial expansion order (AHOT-N0) code is employed
to compute the region-averaged scalar fluxes. The results show that, in the source region, the uncollided
scalar flux obtained by using LS, LCQ and LCT converges asymptotically with different rates, and such flux
obtained by using QR and QRS converges faster with increasing number of angles. The convergence order of
the fully collided scalar flux is greater for LCQ and LCT compared to that of the uncollided flux. However,
the reason why QR and QRS quadrature sets exhibit faster than power-law convergence for the scalar flux
remains to be explained. In the source-free regions, the ray-effects will be more significant and the solution
error is more complicated since the uncollided angular flux is no longer exact in these regions and comprises
particles leaked from the source region. It is more difficult to see the asymptotic convergence in these regions
for all the quadrature types. Although the errors obtained by the LCT sets seem the largest for most cases (not
considering LS because it is limited to S20), they are more stable with increasing number of directions in all the
cases. However, the solution calculated by the QR and QRS quadrature sets have smallest errors among all the
results.

I. INTRODUCTION

Discretization methods are used in numerically solving
the steady-state one-speed particle transport equation that in-
volves both angular and spatial discretization that introduce
errors into the solution. Significant efforts have been made
in estimating spatial discretization errors [1–4]. Researchers
began to investigate the errors due to angular discretization
and developed various angular quadrature types [5–9] in order
to reduce the errors in the numerical solutions.

Madsen had established an upper bound on the angu-
lar flux error due to the Discrete Ordinates approximation
(SN) [10]. In this work, we extended Madsen’s theorem by
developing and establishing an upper bound on the error in
the scalar flux. We note that the scalar flux errors include 3
components:

1. The spatial discretization error;

2. The quadrature truncation error in computing the scalar
flux from the angular flux;

3. The combined quadrature error in the scattering source
and the scalar flux.

We also derived and estimated the quadrature error based
on our previous work [11] and we employed a simple two-
dimensional problem with a homogeneous, isotropically scat-
tering medium in Cartesian geometry to examine these errors
and verify asymptotic convergence of the numerical solution

to a reasonable limit. Five quadrature types with increasing
orders are utilized to evaluate the scattering source and the
scalar flux. They are Level Symmetric (LS) [12], Legendre-
Chebyshev Quadrangular (LCQ) [9], Legendre-Chebyshev
Triangular (LCT) [9], Quadruple Range (QR) [7] and Quadru-
ple Range S-type (QRS) [8] quadrature sets. The LS quadra-
ture sets require the ordinates to be rotationally symmetric
about all three axes, but the angular weights become negative
for quadrature orders N > 20, which prohibits the application
for more discrete angles. The other quadrature types have
reflective symmetry only, but can be expanded to any arbitrary
order without negative weights. The QR and QRS quadratures
accurately integrate functions that are discontinuous across
octants.

In the curvilinear coordinates system, the streaming op-
erator in the transport equation has a derivative with respect
to direction, which makes the analysis more difficult. Hence,
this work focuses on Cartesian coordinates only.

The paper is organized as follows. In Sec. II the quadra-
ture error and the uncolllided and the fully collided scalar flux
error expressions are derived. The upper bounds on those
errors are also derived based on Madsen’s Theorem. A two-
dimensional problem with homogeneous, isotropically scatter-
ing medium in Cartesian geometry is utilized to examine angu-
lar discretizatoin errors and verify asymptotic convergence of
the numerical solution to the discrete ordinates approximation
of the radiation transport equation. The test results are demon-
strated and discussed in Sec. III. In Sec. IV we summarize the
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work and draw conclusions.

II. THEORY

Consider the exact steady-state one-speed transport equa-
tion with isotropic scattering and with an isotropic distributed
fixed source:

Lψ(r,Ω) = Σs(r)
∫

4π
ψ(r,Ω′) dΩ′ + S (r) (1a)

where we used standard notation and L = Ω · ∇ + Σt(r) is
the streaming plus collision operator in r ∈ D, a rectangular
domain and Ω ∈ 4π, with vacuum boundary conditions

ψ(r,Ω) = 0 , r ∈ ∂D, Ω · n < 0 . (1b)

The corresponding SN based transport equation is

Lmψm(r) = Σs(r)
M∑

n=1

wnψn(r) + S (r), m = 1, 2, ..,M (2a)

with vacuum boundary conditions

ψm(r) = 0 , r ∈ ∂D, Ωm · n < 0 . (2b)

Let εm(r) ≡ ψ(r,Ωm) − ψm(r), m = 1, 2, ...,M be the angular
flux error, where ψ(r,Ωm) is the exact solution at direction
Ωm, and

ηM(r) ≡
∫

4π
ψ(r,Ω′) dΩ′ −

M∑
n=1

wnψ(r,Ωn) (3)

be the quadrature truncation error, then we have

Lmεm(r) = Σs(r)ηM(r) + Σs(r)
M∑

n=1

wnεn(r) (4)

Let Tm = Ωm · ∇ + Σt(r) − Σs(r)
M∑

n=1

wn, m = 1, 2, ...,M, then

Eq. (4) can be written as

Tmεm(r) = Σs(r)ηM(r) (5)

In order to explain the error components more clearly, we
separate the flux into uncollided and fully collided fluxes, and
use the superscripts u and c in each quantity to represent the
uncollided and fully collided contributions to that quantity,
respectively.

1. Uncollided Flux Errors

The error in the uncollided angular flux is obtained by
setting Σs(r) = 0 in Eq. (5):

Tmε
u
m(r) = 0, m = 1, 2, ...,M (6)

Since Tm is non-singular as proved by Vladimirov [13],
εu

m(r) = 0, m = 1, 2, ...,M, which means that the uncollided
angular flux obtained by Eq. (2) is exact since the uncollided

source, comprised entirely of the fixed distributed source, is
known exactly. Note that, in practice, there will be some error
in ψu

m(r) due to spatial discretization, but here, consistent with
Ref. [10], we assume exact spatial solution. In the numerical
tests presented below we utilize a reference solution obtained
by Richardson extrapolation in the spatial discretization and
consider the spatial discretization error in ψu

m(r) negligible.
The exact uncollided scalar flux is given by

φu(r) =

∫
4π
ψu(r,Ω′) dΩ′ (7)

The SN based uncollided scalar flux is

φu
M(r) =

M∑
n=1

wnψ
u
n(r) (8)

Let Eu
Q,M(r) ≡ φu(r)−φu

M(r) be the angular discretization error
of the uncollided scalar flux, where Q denotes the quadrature
type employed in Eq. (8), thus

Eu
Q,M(r) =

∫
4π
ψu(r,Ω′) dΩ′ −

M∑
n=1

wnψ
u
n(r) = ηu

M(r) (9)

2. Fully Collided Flux Errors

For the fully collided angular flux, the exact transport
equation is

Lmψ
c(r,Ωm)−Σs(r)

∫
4π
ψc(r,Ω′) dΩ′ = S u(r), m = 1, 2, ...,M

(10)
with vacuum boundary conditions as Eq. (1b), where the first
collision source is given by:

S u(r) = Σs(r)
∫

4π
ψu(r,Ω′) dΩ′ (11)

Note that ψu(r,Ωm) = ψu
m(r), so the SN based transport equa-

tion can be written as

Tmψ
c
m(r) = S u(r) − Σs(r)ηu

M(r), m = 1, 2, ...,M (12)

with vacuum boundary condition as Eq. (2b). Then, the fully
collided angular flux error εc

m(r) satisfies

Tmε
c
m(r) = Σs(r)

[
ηu

M(r) + ηc
M(r)

]
, m = 1, 2, ...,M (13)

The angular flux error in Madsen’s theorem satisfies

Tmεm(r) = Σs(r)ηM(r), m = 1, 2, ...,M (14)

Equation (13) has a similar form to Eq. (14), and if

1. Σt(r), Σs(r) are piecewise continuous;

2. Σa(r) = Σt(r) − Σs(r) ≥ Σ0 > 0 for all r;

3. Σs(r) ≥ 0 for all r
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we have
‖ εc ‖≤

1
Σ0
‖ ηM ‖ (15)

where the norm is defined by

‖ εc ‖≡ max
1≤m≤M

sup
r∈D
|εc

m(r)| (16)

‖ ηM ‖≡ sup
r∈D
|Σs(r)(ηu

M(r) + ηc
M(r))| (17)

The exact and SN fully collided scalar flux are respectively

φc(r) =

∫
4π
ψc(r,Ω′) dΩ′ (18)

φc
M(r) =

M∑
n=1

wnψ
c
n(r) (19)

Let Ec
Q,M(r) ≡ φc(r) − φc

M(r) be the error of the fully collided
scalar flux, thus

Ec
Q,M(r) = ηc

M(r) +

M∑
n=1

wnε
c
n(r) (20)

Hence the fully collided scalar flux error is bounded by

|Ec
Q,M(r)| ≤ |ηc

M(r)| +
M∑

n=1

wn|ε
c
n(r)| ≤ |ηc

M(r)| + max
1≤n≤M

|εc
n(r)|

(21)
and applying the∞−norm to Eq.(21) we have

sup
r∈D
|Ec

Q,M(r)| ≤ sup
r∈D
|ηc

M(r)| + sup
r∈D

max
1≤n≤M

|εc
n(r)| (22)

Note that the last term in Eq.(22) is equivalent to ‖ εc ‖ which
is bounded by Eq.(15), thus the fully collided scalar flux error
is bounded by

‖ Ec
Q,M ‖≤‖ η

c
M ‖ +

1
Σ0
‖ ηM ‖ (23)

where: ‖ ηc
M ‖= supr∈D |η

c
M(r)|.

The spatial discretization error can be omitted by taking
the reference values obtained by Richardson extrapolation.
The quadrature truncation error can be quantified with the un-
collided scalar flux as indicated by Eq. (9) since the uncollided
angular flux is exact. The combined quadrature error in the
scattering source and the scalar flux is quantified with the fully
collided scalar flux.

3. Quadrature Error

We expand the angular flux in Eq. (3) in Taylor series at
µ = 0, η = 0, where: µ = cos φ sin θ, η = sin φ sin θ:

ηM(r) =

∫
4π

∞∑
i=0

∞∑
k=0

Di,kψ(r,Ω′)|00

i!k!
µ′iη′k dΩ′

−

M∑
n=1

wn

∞∑
i=0

∞∑
k=0

Di,kψ(r,Ω)|00

i!k!
µi

nη
k
n

(24)

where:

Di,kψ(r,Ω)
∣∣∣
00 =

∂i+kψ(r,Ω)
∂µi∂ηk

∣∣∣∣∣∣
00

(25)

then Eq. (24) can be rearranged as

ηM(r) =

∞∑
i=0

∞∑
k=0

Di,kψ(r,Ω)|00

i!k!
δi,k

M (26)

where:

δi,k
M ≡

∫
4π
µiηk dΩ −

M∑
n=1

wnµ
i
nη

k
n (27)

is the quadrature truncation error of the i, k power of the angle
cosines. The integral in Eq. (27) can be expressed analytically
in terms of the Gamma Functions as derived in Ref. [11]. Also,
δi,k

M is zero for odd i or k due to the typical reflective symmetry
of the standard angular quadrature [11].

Now consider the discontinuity of the angular flux in the
angular domain, say on a boundary cell with vacuum boundary
conditions. Let’s define the following notations:

δi,k
M,++

=

∫
Ω++

µiηk dΩ −
M∑

n=1

wnµ
i
nη

k
n (28a)

δi,k
M,+− =

∫
Ω+−

µiηk dΩ −
M∑

n=1

wnµ
i
nη

k
n (28b)

δi,k
M,−+

=

∫
Ω−+

µiηk dΩ −
M∑

n=1

wnµ
i
nη

k
n (28c)

δi,k
M,−− =

∫
Ω−−

µiηk dΩ −
M∑

n=1

wnµ
i
nη

k
n (28d)

where: Ω++ = {µ > 0, η > 0}, Ω+− = {µ > 0, η < 0}, Ω−+ =
{µ < 0, η > 0}, Ω−− = {µ < 0, η < 0} and

Di,kψ(r)++
00 =

∂i+kψ(µ, η)
∂µi∂ηk

∣∣∣∣∣∣
0+0+

, for µ, η ∈ Ω++ (28e)

Di,kψ(r)+−
00 =

∂i+kψ(µ, η)
∂µi∂ηk

∣∣∣∣∣∣
0+0−

, for µ, η ∈ Ω+− (28f)

Di,kψ(r)−+
00 =

∂i+kψ(µ, η)
∂µi∂ηk

∣∣∣∣∣∣
0−0+

, for µ, η ∈ Ω−+ (28g)

Di,kψ(r)−−00 =
∂i+kψ(µ, η)
∂µi∂ηk

∣∣∣∣∣∣
0−0−

, for µ, η ∈ Ω−− (28h)

Then, Eq. (26) can be expressed as

ηM(r) =

∞∑
i=0

∞∑
k=0

1
i!k!

∑
j

Di,kψ(r) j
00δ

i,k
M, j (29)
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and the quadrature truncation error is

δi,k
M =

∑
j

δi,k
M, j (30)

where: j = (++,+−,−+,−−) and δi,k
M, j is the quadrature trun-

cation error in each octant as determined by Ω j.
Different quadrature types have different values of δi,k

M, j
depending on the requirements imposed when generating the
quadrature sets. The LS sets are required to conserve the even
moments over the [−1, 1] interval in both µ and η [12]:

M∑
n=1

wnµ
2m
n =

1
2

∫ 1

−1
µ2mdµ =

∫ 1

0
µ2mdµ =

1
2m + 1

(31)

for m = 0, 1, 2, ...,N/2, here N is the quadrature order. Equa-
tion (31) indicates that LS sets can accurately integrate even
moments in each angular quadrant Ω j. The numerical results
show that LS sets cannot integrate odd moments exactly over
each individual angular quadrant Ω j even though LS can ex-
actly integrate odd moments over the entire unit sphere due
to symmetry. Similarly, the LCQ and LCT sets can only ex-
actly integrate the even moments in each angular quadrant Ω j,
which means that even though δi,k

M = 0, we cannot conclude
that δi,k

M, j = 0 for all j.
However, although the azimuthal quadratures of the QR

and QRS sets are required to integrate both odd and even
moments in each angular quadrant Ω j, whether or not the
final quadrature can integrate both odd and even moments in
each angular quadrant Ω j is determined by the smallest power
that the polar quadrature and the azimuthal quadrature can
integrate as indicated by Ref. [11]. For example, QR461214
(the number of azimuthal angles are 4, 6, 12, 14 from top level
to bottom level) set can integrate more moments over each
octant than QR1-8 (the number of azimuthal angles are 1, 2,
3, ..., and 8 from top level to bottom level) set although they
both have 36 discrete angles per octant, because QR1-8 set
contains 1 azimuthal angle in the top level, which leads to the
lowest power that the quadrature can integrate.

Note that Taylor series depends on the true solution’s
regularity. For a discontinuous solution, we need to consider
the solution’s regularity in each individual octant and combine
them together.

III. RESULTS AND ANALYSIS

In this work, the cell-wise uncollided and fully collided
scalar fluxes are computed by the Arbitrarily High Order Trans-
port method of the Nodal type and 0-th spatial expansion order
(AHOT-N0) code [14], and the region-averaged scalar flux
errors are examined in lieu of the cell-wise values considered
above.

1. Problem Configuration

The simple test problem configuration depicted in Figure
1 comprises a homogeneous-material square region, a = b = 1
cm, with vacuum boundary conditions on the top and right
edges and reflective boundary conditions on the bottom and

Fig. 1. Test Problem Configuration.

left edges, and a unit source only in the square region as = bs
= 0.5 cm. The cross sections in all four regions are constant,
and the scattering ratio is set to 0.1.

The LS, LCQ, LCT, QR that were reviewed in Ref. [11]
and QRS [8] quadrature sets with different orders are tested.
The LS, LCT and QRS quadrature sets with order N have
M = N(N + 2)/8 angles per octant. The LCQ quadrature
set with order N has M = N2/4 angles per octant. The QR
quadrature sets with order N are characterized by N polar
angles and 1 to 2N − 1 azimuthal angles in each level per
octant.

2. Spatial and Angular Convergence

We discretize the problem domain into 2 j × 2 j, j =
1, 2, ..., 9 uniform spatial cells and utilize LS, LCQ, LCT, QR
and QRS quadrature sets with increasing orders to examine
the spatial convergence of the numerical solutions for each
quadrature type, Q, and order N. The region-averaged scalar
flux error is computed by first using the Richardson extrapola-
tion to generate the spatially converged reference values, and
then computing the absolute errors [15]. We observed second
order convergence in the source region (Region 1) as reported
in Ref. [11, 15], which establishes the spatial convergence of
the region-averaged scalar flux with mesh refinement. We also
observed second order convergence in Region 2 and 4 except
for the uncollided scalar flux in Region 4 for all the quadrature
types.

Richardson Extrapolation is used to generate the reference
solution for each quadrature type separately in both spatial and
angular discretization. In this work, we first carried out the
spatial extrapolation to obtain the spatially reference solution
and then carried out the angular extrapolation to obtain the
reference solution, as indicated by the solid black line in Fig-
ure 2. We also exercised the extrapolation direction indicated
by the dashed black line, obtaining reference solutions that are
practically identical. However, we have not tried to accelerate
along the diagonal (red line) in the discretization space.

Table I lists the reference solutions obtained by Richard-
son Extrapolation in both spatial and angular space for all
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Fig. 2. Extrapolation Direction in the Discretization Space.

the quadrature types. The results show that all the solutions
converge to slightly different limits for different quadrature
types due to different asymptotic regimes, which means that,
although the quadrature truncation goes to zero as the number
of discrete angles goes to infinity [10], the convergence rate
may be different among the different quadrature types, and
thus the extrapolation based on some finite points may lead to
different limits. The solutions obtained by LS sets are in large
error due to the limited number of discrete directions.

3. Scalar Flux Errors in the Source Region

Figure 3 shows the errors of the uncollided scalar fluxes
obtained by various types of quadrature sets with increasing
orders against increasing number of discrete angles per oc-
tant. The reference solutions in angular discretization used in
computing the plotted errors are also generated by Richardson
extrapolation for each quadrature type using three sets whose
orders are higher than the highest indicated order in Figure 3.
Note that since the angular refinement is not uniform over the
unit sphere, the extrapolation utilizes Newton’s iteration to
compute the reference value and the convergence order where
1
M is taken as angular mesh length. Since the LS quadrature
sets have negative weights when the order N > 20, we cannot
judge if it converges to a limit but the trend seems close to the
LCQ and LCT quadrature types.

In the source region, the uncollided scalar flux error ob-
tained by LCQ and LCT converge asymptotically with slightly
different orders as listed in Table II, while those obtained by
QR and QRS converge at faster rates as evident from Figure
3. We observed that if we increased the quadrature order from
1, 2, 3, ...,N, the convergence orders for LCQ sets with odd
orders is 0.96 and 1.65 for the even orders. Thus, we treat
LCQ sets with odd and even orders separately and we find
that the convergence order for both odd and even sets is the
same and equals 1.12. All the results in this section except
Figure 4 show the errors obtained by LCQ sets with odd orders.
The uncollided flux convergence orders for QR and QRS are
omitted from Table II because they do not exhibit power-law
convergence, an unexpected trend that still presents an open

Fig. 3. Absolute Errors for Uncollided Scalar Flux in Region
1 for Different Quadrature Types.

question.
From Sec. II, we know that the uncollided scalar flux

error is just the quadrature truncation error. Assuming the
true angular flux has only L j finite derivatives in Ω j, j =
(++,+−,−+,−−), Eq.(29) can be written as

ηM(r) =
∑

j

L j−1∑
i,k=0

1
i!k!

Di,kψ(r) j
00δ

i,k
M, j + RL j (ψ)

 (32)

where: RL j (ψ) is the remainder bounded by the Remainder
Estimation Theorem [16]: for all µ, η ∈ Ω j, if |DL jψ00| ≤ ψ̄ j,
then

|RL j (ψ)| ≤
ψ̄ j(|µ| + |η|)L j

L j!
(33)

If a quadrature set is able to integrate the polynomials
µiηk terms through maximum power PM over each octant Ω j

and let L̄ = max j (L j − 1), L̃ = min j (L j − 1), then we have if
PM ≥ L̄:

ηM(r) =
∑

j

RL j (ψ) (34)

and if PM ≤ L̃:

ηM(r) =
∑

j

 L j−1∑
i,k=PM+1

1
i!k!

Di,kψ(r) j
00δ

i,k
M, j + RL j (ψ)

 (35)

otherwise, for L̃ < PM < L̄:

ηM(r) =
∑

j

RL j (ψ) +
∑

L j−1>PM

 L j−1∑
i,k=PM+1

1
i!k!

Di,kψ(r) j
00δ

i,k
M, j


(36)

The value of PM depends on the quadrature types [11].
Also, the regularity(smoothness) L j of the true solution with
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φu
1 φc

1 φu
2 φc

2 φu
4 φc

4

LS 4.2762751(−1) 2.4412083(−2) 1.2246803(−1) 1.1497853(−2) 5.9712787(−2) 6.6938922(−3)
LCQ 4.2929063(−1) 2.4433447(−2) 1.2233254(−1) 1.1505697(−2) 5.9740307(−2) 6.7058623(−3)
LCT 4.2929418(−1) 2.4433270(−2) 1.2233554(−1) 1.1505985(−2) 5.9704286(−2) 6.7058651(−3)
QR 4.2929239(−1) 2.4433259(−2) 1.2233524(−1) 1.1506011(−2) 5.9707220(−2) 6.7063444(−3)
QRS 4.2929238(−1) 2.4433264(−2) 1.2233525(−1) 1.1506012(−2) 5.9706895(−2) 6.7063422(−3)

TABLE I. Reference Solutions Obtained by Richardson Extrapolation. Note: (−x) means ×10−x.

Quadrature Type Uncollided Fully Collided

LCQ 1.12 ∼1.6
LCT 0.99 1.2
QR / ∼2.5

QRS / ∼2.5

TABLE II. Convergence Orders for Different Quadrature
Types in Region 1.

respect to direction in each octant Ω j is problem-specific and
should not depend on the quadrature type, thus the derivative
terms Di,kψ(r) j

00 should not depend on the quadrature type.
Clearly from Eq.(34), the quadrature error is bounded

if PM ≥ L̄ and thus, uncollided scalar flux error is bounded.
Otherwise, no matter the quadrature error is determined by
Eq.(35) or Eq.(36), the value of δi,k

M, j/i!k! plays an important
part.

Let’s define δ̄M, j ≡ maxi,k

∣∣∣∣δi,k
M, j/i!k!

∣∣∣∣ be the maximum
quadrature truncation error. Then, we have

L j−1∑
i,k=PM+1

1
i!k!

Di,kψ(r) j
00δ

i,k
M, j ≤

 L j−1∑
i,k=PM+1

Di,kψ(r) j
00

 δ̄M, j (37)

Altough the derivatives are difficult to evaluate, the term in
the bracket of the right side of Eq.(37) is finite by definition
of L j and therefore this term is finite. Hence, the quadrature
truncation error is bounded. In our case, PM = 0 for all
quadratures, the only difference among all the quadrature types
is the maximum quadrature truncation error δ̄M, j.

Figure 4 shows the maximum quadrature truncation er-
ror versus increasing number of discrete angles per octant.
Comparing with the results in Figure 3, we observed the same
trend, which indicates that the uncollided scalar flux error in
the source region is bounded by Eq.(35) or Eq.(36) depending
on the reguarity of the solution. Meanwhile, the quadrature
error also includes the summation over remainders of each oc-
tant which is a function of µ and η. We conjecture that makes
it different among the results obtained by different quadrature
types.

The difference in the obtained errors for the lowest order,
i.e. one angle per octant, is caused by the different polar angles
prescribed by LS, LCQ, and LCT on the one hand versus QR
and QRS on the other hand. Due to reflective symmetry, the
only azimuthal angle is 45 degree for all the quadrature types
with the lowest order. The polar angle is the root of Cheybshev
Polynomial for LCT and LCQ sets, and Gauss-Christoffel
Polynomial for QR and QRS sets.

Fig. 4. Maximum quadrature error.

Figure 5 shows the absolute errors of fully collided scalar
fluxes in Region 1 against increasing number of discrete angles
per octant. The turning points of QR and QRS quadrature
sets are due to the fact that the fluxes obtained by these two
quadrature sets do not trend monotonically with increasing
quadrature orders. Here too, the LCQ and LCT errors are
greater than those of QR and QRS but all errors are clearly
asymptotic for M > 30.

Note that the fully collided flux convergence orders of
LCQ and LCT are greater than the corresponding uncollided
flux convergence orders as indicated in Table II, which is still
under investigation.

4. Scalar Flux Errors in the Source-free Regions

Figure 6 shows the absolute errors of the uncollided scalar
fluxes against increasing number of discrete angles per octant
in Region 2. We observed that the error curves are not as
smooth as those in Region 1, especially for the QR sets be-
cause in this region, the uncollided source comprises particles
leaked from the source region along discrete directions, the
angular flux is not exact anymore. Thus the scalar flux error
comprises not only the quadrature error. In fact, we observed
the uncollided scalar fluxes obtained by the LCQ and QR sets
do not increase or decrease monotonically with increasing
number of discrete angles, which means that these fluxes do
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Fig. 5. Absolute Errors for Fully Collided Scalar Flux in
Region 1.

not converge asymptotically. So we used the highest three
points which can be extrapolated to get the reference solutions.
That’s why the error of LCQ seems steep and there is a turning
point in the QR curve. For other quadrature types, the QR and
QRS sets outperform others with smaller errors.

Fig. 6. Absolute Errors for Uncollided Scalar Flux in Region
2.

Figure 7 shows the absolute errors of the fully collided
scalar fluxes against increasing number of discrete angles per
octant in Region 2. Similarly, the error curves are not as
smooth as those in Region 1. For the fully collided scalar flux
error, it is more complicated since this component of the error
includes the error from the source region. However, the LCQ

and LCT errors are greater than those of the QR and QRS
errors. The LCQ and LCT errors seem to trend asymptotically
with the number of angles with relatively close convergence
orders.

Fig. 7. Absolute Errors for Fully Collided Scalar Flux in
Region 2.

In Region 4, we observed that the uncollided scalar flux
obtained by all the quadrature types converges but not quadrat-
ically in the spatial variable like it does in the other regions.
Figure 8 shows the absolute errors of the uncollided scalar
fluxes against increasing number of discrete angles per octant
in this region. Although we observed that even for the same
quadrature type, the spatial convergence order is different for
different quadrature orders, the flux errors of the LCT sets
converges almost asymptotically with order 0.96 in the angu-
lar discretization. Again, the QR and QRS sets outperform
the other quadrature types but their trends are not definitively
asymptotic.

Figure 9 shows the absolute errors of the fully collided
scalar fluxes against increasing number of discrete angles per
octant in Region 4. From the results, we observe the lack of
asymptotic convergence of the angular discretization error for
all quadrature types, except potentially LCT that appears to
converge faster than a power-law. We also note that the big
advantage of QR and QRS in terms of smaller error than the
other quadratures is far diminished in this case.

IV. CONCLUSIONS

In this paper, we have derived the uncollided and fully
collided scalar flux angular-discretization error expressions
and established upper bounds on these errors in the source
region based on Madsen’s theorem. The uncollided angular
flux obtained by the SN transport equation does not incur
angular discretization error, and the uncollided scalar flux error
stems from the angular quadrature truncation error only. The
fully collided angular flux error is bounded by the quadrature
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Fig. 8. Absolute Errors for Uncollided Scalar Flux in Region
4.

truncation error and the corresponding scalar flux error is also
bounded by the quadrature truncation error. Also, we have
derived the quadrature error considering the discontinuous
angular flux at angular boundary and observed the asymptotic
convergence of the quadrature maximum truncation error.

A simple test problem is solved using five quadrature
types and AHOT-N0 code with spatial and angular mesh re-
finements. Richardson extrapolation is used to obtain the
region-averaged reference values for uncollided and fully col-
lided scalar flux with spatial and angular refinement. The
results show that the uncollided scalar flux obtained by using
LS, LCQ and LCT converges asymptotically with different
rates, and such flux obtained by using QR and QRS converges
faster with increasing number of angles. That’s because of the
difference among the maximum quadrature truncation error
δ̄M, j in each octant. The convergence order of the fully col-
lided scalar flux is greater for LCQ and LCT quadrature sets
compared to their respective orders for the uncollided flux.

The scalar flux error in the source-free regions (Region
2 to 4) is more complicated to analyze since the uncollided
source in those regions comprises particles leaked from the
source region along discrete directions. Since there is no dis-
tributed fixed source, ray-effects will be more significant in
these regions. It is more difficult to see the asymptotic conver-
gence in these regions for all the quadrature types. Although
the error obtained by the LCT sets seems the largest, they are
more stable with increasing number of directions in all the
cases. However, the solutions calculated by the QR and QRS
quadrature sets have the smallest errors among all the results
for this region.

Nevertheless, the reason why QR and QRS quadrature
sets exhibit faster than power-law convergence in the source
region for the uncollided scalar flux remains to be explained.
More efforts are needed to verify the relationship between the
solution error and the quadrature error. Also the method of

Fig. 9. Absolute Errors for Fully Collided Scalar Flux in
Region 4.

extrapolation in both spatial and angular variables along the
diagonal should be considered in future work.
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