
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Verification of MOCkingbird, an Unstructured-Mesh, Method of Characteristics Implementation Using the MOOSE
Multiphysics Framework

Derek R. Gaston,∗ Benoit Forget,† Kord S. Smith,† Richard C. Martineau,∗

∗NS&T Modeling and Simulation, Idaho National Laboratory, PO Box 1625-3835, Idaho Falls, ID 83415
†Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Avenue,

Cambridge, MA 02139
derek.gaston@inl.gov

Abstract - During operation of a nuclear reactor heat-conduction, fluid-flow, solid-mechanics, neutronics and
material science are intricately linked. Therefore, accurate simulation of a reactor requires the ability to find
solutions to systems of equations describing all of these phenomena simultaneously. In the past this has often
been accomplished by mapping fields between disparate solvers. An alternative technique is to solve all of
the physics using the same geometrical representation. In this work, neutronics is solved using the method
of characteristics (MOC) on unstructured, finite-element mesh. This allows for directly linking neutronics
together with other physics solved by the finite-element method (such as heat-conduction and solid-mechanics).
The current study is a verification of the new MOCkingbird code developed using the MOOSE framework.
Verification analysis is carried out by convergence studies using both 2D and 3D C5G7 benchmarks. The
method is shown to be both accurate and efficient.

I. INTRODUCTION

High-fidelity, multiphysics simulation of nuclear reactors
is critical for ensuring the safety and performance of both
existing reactor designs as they age and new, novel reactor
designs. Inside a nuclear reactor, heat conduction, solid me-
chanics, nuclear fission, fluid-flow and many other physical
processes interact in complex ways over its lifetime. Proper
simulation of these processes would involve the simultaneous
solution of all of these physics.

While many tools have been developed to allow for multi-
physics simulation of nuclear reactors [1, 2, 3, 4], one common
difficulty they all face is in the transfer of data and solution
fields between disparate physical representations of the geom-
etry. In particular, neutron transport is often solved using com-
putational solid geometry (CSG) representations of the reactor
[5, 6]. In contrast, heat conduction[7], solid mechanics[8]
and fluid flow often employ unstructured mesh geometrical
representations. This rift in spatial discretization has given
rise to large efforts in development of efficient and accurate
data transfers [2, 9, 10].

Another option is to utilize the same geometrical dis-
cretization for all physics. One popular choice is SN or PN
related methods for solution of neutron transport on unstruc-
tured mesh [11, 12, 13, 14, 12, 15]. Monte-Carlo (MC) meth-
ods have also been implemented on unstructured mesh for
multiphysics coupling [16, 17].

In comparison, relatively few explorations have been
made into using the Method of Characteristics (MOC) on
unstructured, finite-element mesh. NEWT [18] used a discrete
ordinate method on a non-uniform grid, though it wasn’t a
finite-element mesh. More recently, PROTEUS-MOC [19] has
shown that unstructured mesh MOC is viable, although [19]
used an operator form of MOC and a linear solver in addi-
tion to some assumptions about axially extruded geometry.
In addition, MOCUM [20] has demonstrated two-dimensional
capability.

This paper introduces MOCkingbird, a new implementa-
tion of unstructured-mesh MOC built using the MOOSE [21]
finite-element, multiphysics framework. MOCkingbird uti-
lizes long-characteristics and a traditional sweeping method
similar to CSG-based MOC codes such as OpenMOC [5]. By
building on top of an existing multiphysics framework it is pos-
sible to directly link to physics solved using the finite-element
method (such as heat conduction and solid mechanics), en-
abling high-fidelity, multiphysics reactor simulation. This
implementation also allows for fully-heterogeneous 2D and
3D geometries, including the ability to solve on a deforming
(moving) mesh. Finally, special attention has been paid to
domain decomposed parallelization allowing for whole-core
solutions.

This paper will proceed as follows: first, an explanation
of the mathematics behind the MOC method and details on
the implementation of that method using unstructured mesh
will be provided. Next, the domain decomposed, parallel ray-
tracing algorithm will be described. Finally, results of both
2D and 3D C5G7 will be used to show the accuracy of the
method.

II. METHOD OF CHARACTERISTICS

What follows is a brief introduction to the MOC method
utilized in MOCkingbird. To begin, a simplified form of the
Boltzmann transport equation is considered. In particular,
steady state is assumed and an eigenvalue problem is formed:

Ω̂ · ∇ψ(r, Ω̂, E) + Σtψ(r, Ω̂, E) =∫ ∞

0

∫
4π

Σs(r, Ω̂ ·Ω′, E′ → E)ψ(r,Ω′, E′)dΩ′dE′

+
χ(E)
4πk

∫ ∞

0
νΣ f (r, E′)φ(r, E′)dE′.

(1)

Equation (1) can be solved to find the angular flux (ψ) and
principle eigenvalue (k) that balance the system. Σt, Σs and

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Σ f are the total, scatter and fission cross sections respectively
which represent collision probabilities. r denotes a position
in three dimensional (3D) space. Ω̂ represents direction with
E being energy. φ is the "scalar flux" and is computed as
φ =

∫
4π ψ(r,Ω, E)dΩ. χ represents the fission spectrum and ν

is the neutron multiplicity.
To further simplify (1) a substitution is made:

Q(r, Ω̂, E) =

∫ ∞

0

∫
4π

Σs(r, Ω̂ ·Ω′, E′ → E)ψ(r,Ω′, E′)dΩ′dE′

+
χ(E)
4πk

∫ ∞

0
νΣ f (r, E′)φ(r, E′)dE′.

(2)

If the equation is considered only along a single pathΩ (a
"characteristic"), with s as the distance along the path beyond
s0, (1) can be rewritten using (2) as:

∂

∂s
ψ(s,Ω, E) + Σt(s, E)ψ(s,Ω, E) = Q(s,Ω, E). (3)

Solving (3) and discretizing energy into discrete energy
groups g leads to:

ψg(s,Ω) = ψg(s0,Ω)e−
∫ s

s0
Σtg(s′)ds′

+

∫ s

s0

Qg(s′,Ω)e−
∫ s

s′ Σtg(s′′)ds′′ds′,
(4)

Finally, if cross sections and scalar fluxes are considered
to be piecewise constant over regions of the domain and mul-
tiple lines (called "tracks", denoted with subscript k) through
the domain are considered:

ψk,g(s) = ψk,g(s0)e−τk,i,g +
Qi,g

Σt,i,g
(1 − e−τk,i,g) (5)

τk,i,g = Σt,i,g(s − s0), (6)

where τ is the "optical depth" and i represents intersections
of the k tracks with individual regions within the geometry.
These i intersections are called "segments".

Equation (5) is conducive to solution via computational
methods. A source iteration method is formed for solution of
the eigenvalue problem where each iteration involves iteration
across the k tracks and i segments, taking incoming angular
flux (ψk,g(s0)) on each segment and producing ψk,g(s) on the
other side.

Within MOCkingbird MOC "sweeps" (integrations
across tracks) are performed in a similar manner to most
other MOC based codes, such as OpenMOC [5]. It should
also be noted that MOCkingbird currently lacks advanced ac-
celeration methodology; the implementation of which will be
the focus of future research. The main distinguishing MOC
features of MOCkingbird is the handling of geometry, track
intersections and parallelization.

III. RAY TRACING

To utilize (5) for solution of the eigenvalue problem it’s
required to trace tracks through the domain, intersecting them
with the geometry. This can be thought of as being simi-
lar to traditional ray tracing applications. While traditional
MOC codes often employ CSG for geometrical representa-
tion, MOCkingbird directly utilizes the unstructured mesh
native to MOOSE. Using unstructured mesh has both pros and
cons. As mentioned earlier, working on unstructured mesh al-
lows MOCkingbird to directly couple to other physics solved
using MOOSE and allows for a large amount of geometrical
flexibility (anything that can be meshed can be used as the
domain). However, it also presents difficulties in the form
of mesh movement, non-axis aligned boundaries, gaps in the
mesh, etc. In addition, distributed memory parallelization is
not straightforward with unstructured mesh. What follows
is a brief overview of the ray-tracing capabilities currently
contained within MOCkingbird.

1. Ray Tracing Algorithm

Ray tracing within MOCkingbird heavily relies on the
connectivity structure present within the unstructured mesh of
MOOSE. As shown in Algorithm 1, each ray begins life within
a particular element. Each side of that element is tested for
intersection with the ray. The connectivity of the elements is
then utilized to find the next element the ray will move to and
then the algorithm repeats. By testing each side and moving to
neighboring elements the ray can be traced completely across
the domain from one domain boundary to another.

current_elem← starting element;
current_point← starting point;
while not at domain boundary do

for each side of current_elem do
test intersection

end
if no intersection then

if very near boundary then
apply boundary condition
break loop

end
if near element corner then

for all elements at corner do
look for longest path out

end
end

end
current_point← optimal intersection;
current_elem← neighboring element;

end
Algorithm 1: Ray Tracing Algorithm

The most basic component of a ray tracing capability
is to find intersections of lines (rays) with the geometry.
MOCkingbird currently supports geometry containing trian-
gles and quadrilaterals in 2D as well hexahedrals in 3D. For

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

two dimensional ray tracing a straightforward line to line-
segment intersection algorithm is utilized. In 3D a modified
form of the algorithm described in [22] is used for finding
intersections of rays with the quadrilateral sides that form a
hexahedral.

A. Corner Cases

Unstructured mesh provides many opportunities for both
figurative and literal corner cases that must be carefully con-
sidered. For instance, a ray directly striking a junction be-
tween four quadrilateral elements will have difficulty travers-
ing through the connectivity structure to emerge on the other
side. As shown in Algorithm 1, these cases are explicitly
handled within the ray tracing capability of MOCkingbird
with specialized code that searches for optimal pathways away
from the current intersection point.

In the case of a ray striking an internal (to the domain)
corner, each element connected to the corner of the current
element will be inspected to see if it is a candidate for the
ray to leave through. Longer path lengths out of a corner are
preferred, otherwise a ray may infinitely cycle through all of
the elements meeting at the corner due to floating point toler-
ances in the ray tracing algorithm. Therefore, each element
connected to the corner is taken in turn and searched for an
intersection point, with the one providing the longest path out
of the corner being chosen.

A ray intersecting an internal (to the domain) element
edge very near a boundary (within floating point tolerance)
but not actually an element edge that lies on the boundary may
not be able to continue to the boundary. In this case, as shown
in Algorithm 1, MOCkingbird will just consider the ray to
have actually met the domain boundary. MOCkingbird will
then search for a side in the current element that is actually
on a boundary and (within floating point tolerance) could
contain the current intersection point. The intersection point
is then assigned to that side, ultimately causing the boundary
condition to be applied to the ray and the ray tracing to end.

IV. PARALLELIZATION

The geometric representation and accuracy needed in re-
actor physics requires a massive amount of computational
capability. Therefore, parallelization is essential for any neu-
tron transport tool. Modern clusters and supercomputers typ-
ically employ two types of parallelism: shared memory and
distributed memory. Shared memory parallelism is utilized
within one computational "node" of the cluster, allowing mul-
tiple processors to share data within one memory hierarchy.
Distributed memory parallelism typically involves communi-
cation between nodes over a network, often employing the
Message Passing Interface (MPI) [23]. These two capabilities
are complementary and both are used within MOCkingbird
and can be used simultaneously.

1. Shared Memory

Shared memory parallelism within MOCkingbird is
achieved using a "task-based" interface to UNIX threads. The
backend for those tasks can be served by either pthreads

Fig. 1: Assembly geometry partitioned for use with 8 MPI
processes.

[24], OpenMP [25] or Intel TBB [26] depending on the con-
figuration of the cluster. All major compute loops within
MOCkingbird and MOOSE are threaded. In particular, the ray
tracing / transport sweep loops within MOCkingbird are com-
pletely threaded. Each thread receives a "packet" of tracks
that need to be traced and all threads carry out that tracing
simultaneously. Instead of using thread locking, duplicate
memory banks are used for the source contributions from the
integration process, allowing each thread to work completely
independently.

2. Distributed Memory

Distributed memory parallelism is handled using MPI
[23]. One defining feature of the distributed memory capability
within MOCkingbird is the utilization of asynchronous MPI
communication to reduce message passing overhead. This is
an active area of research that may allow MOCkingbird to
scale to full-core problems.

A. Mesh Partitioning

In order to achieve distributed memory parallelism, work
has to be split up over the available nodes within the cluster.
Within MOCkingbird the well-known METIS [27] library is
utilized to split the mesh. METIS has been used for many
years by finite-element tools employing distributed memory
parallelism. Figure 1 shows an example of an assembly that
has been partitioned by METIS. A custom libMesh tool takes
the partitioning from METIS and generates individual mesh
files for each MPI process to read when MOCkingbird is run.
This ensures that each process only reads and stores the portion
of the domain it is working with.

B. Track Claiming

Once the domain is split, decisions must be made on how
to trace tracks across it. Other MOC codes often employ

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

"Spatial Domain Decomposition" (SDD) [28] where tracks
begin and end at processor boundaries and boundary angular
fluxes are exchanged after each iteration. This has a large
downside of requiring the storage of angular fluxes at the
intersection of every ray with every processor boundary. While
this may work well in codes employing structured geometry
that can easily be partitioned into equal pieces, unstructured
mesh partitioning can create many processor boundaries which
would then imply an excess amount of memory utilization.

To combat this, MOCkingbird utilizes a "long character-
istic" approach. At each iteration, all tracks start at the domain
boundary and are traced the full length of the domain until
they intersect another domain boundary. This provides for the
exact same execution behavior in both serial and parallel. In
addition, there are no internal (to the domain) angular fluxes
to store, greatly reducing the overall memory requirements of
the application.

Of course, this capability is not completely free of issues.
In particular a lot of messages need to be sent in a very unstruc-
tured pattern during the iteration. Further, processors working
on the internal portion of the domain can remain idle while
they wait for work to propagate to them. The aforementioned
asynchronous MPI communication strategy has been devel-
oped to help combat these two issues. While still research in
progress, the capability is operating smoothly and is able to
provide good preliminary results as shown below.

Critical to this capability is the assignment of track start-
ing positions. As mentioned earlier, OpenMOC is utilized to
generate the long characteristic tracks on the fly in memory.
MOCkingbird takes each track and uses a quad/oct-tree search
mechanism to find where it will begin within the mesh (re-
quired by ray tracing Algorithm 1). Each MPI processes does
this independently for all tracks that could start on that pro-
cess’s portion of the domain.

The next step is a "claiming" round where each process
attempts to claim tracks which begin within its subdomain
(note that a track starting directly on a processor boundary
could be claimed by more than one MPI process). MPI com-
munication is used to determine the ultimate "winner" for each
track. That winner will always start that track at the beginning
of every iteration. The parallel ray tracing capability within
MOCkingbird will ensure that every track that is started from
the boundary is propagated across the domain, achieving a
transport sweep.

V. RESULTS

While there are many areas of active research within
MOCkingbird, the current study is primarily concerned with
accuracy of the deterministic transport scheme. In order to
assess the efficacy of the solver both the 2D and 3D versions of
the C5G7 benchmark were run. Those results are summarized
in the next sections.

1. 2D C5G7

The well-known C5G7 benchmark [29] has often been
used in the literature as a verification step for MOC-based,
deterministic transport codes [5, 30, 31, 20]. As shown in Fig-

Fig. 2: Quarter-core C5G7 geometry. Colors represent sets of
fuel mixtures and the moderator.

(a) Fuel pin-cell (b) Reflector cell

Fig. 3: Representative cells making up the C5G7 discretiza-
tion.

ure 2, the quarter core 2D benchmark includes four assemblies
with 17x17 fuel pins and a water reflector. One of the defining
features of C5G7 is the heterogeneous representation of the pin
cell with the exception of the clad and gap homogenization.

The first step in producing solutions using MOCkingbird
is to discretize the domain using a finite-element mesh.
MOCkingbird is currently compatible with first-order quadri-
lateral and triangular elements in 2D, and tetrahedral and
hexahedral elements in 3D. Python scripts were used to create
the geometry and generate volume-preserving pin-cells using
Cubit [32]. These pin-cells were then extruded and stitched
together using MOOSE MeshModifiers to form the final mesh.

Figure 3a shows the unstructured mesh utilized by
MOCkingbird for each of the pin-cells in the following re-
sults. Each pin-cell contains 84 elements, for a total of 97,104
elements within the assembly regions of the domain. As shown
in Figure 3b, the water reflector mesh is quite a bit coarser,
containing only 36 elements per cell for a total of 52,020 el-
ements in the water reflector. In total, 149,124 elements are
used to discretize the 2D domain. This total is directly in
line with the level of spatial resolution used in the CSG-based
OpenMOC results [5] for the same problem.
MOCkingbird employs two different angular flux inte-

gration strategies: deterministic using a fixed quadrature and
stochastic using the Tramm Random Ray Method (TRRM)

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Fig. 4: Thermal flux using 40 azimuthal angles.

Fig. 5: Relative error in normalized pin powers.

[33]. For this verification study only the deterministic option
will be used. Track starting positions and directions are read
from a file or directly generated by OpenMOC [34]. OpenMOC
provides many options for track generation, in this study only
spacing and number of azimuthal angles will be modified. In
the polar direction, TY [35] quadrature with three angles is
used.

Figure 4 shows a solution using 64 azimuthal angles and
a 0.01 azimuthal spacing. This result agrees well with other
published results [5]. In addition, the normalized, relative pin
power error is shown in Figure 5. This result is similar to those
found in [31], showing larger error in the fuel pins near the
reflector.

To assess the accuracy of the code an angular convergence
study was conducted. A set azimuthal spacing of 0.01 was
utilized with increasing azimuthal angles. Convergence was

TABLE I: MOCkingbird converged eigenvalues for increasing
azimuthal angles with an azimuthal spacing of 0.01.

Angles # Sweeps ke f f ∆ρ (pcm) Time (s)
4 642 1.18553 -102 502
8 651 1.18486 -169 955
16 650 1.18516 -139 1836
32 649 1.18641 -14 3587
64 649 1.18666 11 7103
128 649 1.18678 23 14492

judged using a fission source RMS step tolerance:√√√√√∑
q

(
Σ f φnew−Σ f φold

Σ f φold

)2

Nq
(7)

(where q is iterating over the fissionable elements) of 1e-5.
The results can be found in Table I. The results were run using
a single 12-core 2.6 GHz, Intel Core i7 processor. The twelve
cores were all utilized via 12 MPI processes performing the
domain-decomposed sweeps. This test setup was chosen to
closely replicate the results in [5].

The results in Table I show excellent agreement with the
results published in [5]. Both the trends and actual numbers
for sweeps, ke f f , ∆ρ and even run time correlate well with
the published results. The true benchmark reference ke f f is
1.18655 ± 9.5 [29]. MOCkingbird is able to converge to
within a few 10’s of pcm of this value.

The time to solution in Table I is generally more than that
found for OpenMOC in [5]. This is in line with the fact that
MOCkingbird is using full double-precision and the intrinsic
exponential whereas OpenMOC is typically run using single-
precision and an optimized, table-based exponential evaluation.
In addition, MOCkingbird incurs a penalty for performing all
ray-tracing "on-the-fly" as opposed to the offline ray tracing
and segmentation that OpenMOC uses.

While on-the-fly ray-tracing incurs a time penalty it also
provides increased flexibility for heterogeneous 2D and 3D
geometries with reduced memory overhead. In addition, on-
the-fly ray-tracing also allows for domain modifications during
the calculation such as when coupling to solid-mechanics for
computation of mesh deformation. With these differences in
mind, the time to solution matches well with expectations.

2. 3D C5G7

The C5G7 benchmark has been extended to a full suite of
3D benchmarks [36]. There are three primary configurations
in the 3D benchmark: Unrodded, Rodded A and Rodded B.
Rodded B offers a large challenge by having multiple banks
of control rods partially inserted to different depths. As a
consequence it is the focus of the current study.

The mesh for Rodded B was generated by taking the
2D mesh used previously and extruding it using MOOSE in
four separate sections representing each of the unique radial
layouts encountered axially in the problem. These four three
dimensional meshes were then stitched together using MOOSE
to form the final domain. In this way, the radial fidelity was
automatically set by the 2D mesh, however the axial fidelity
is left as a choice. The number of axially extruded elements
needed to achieve a high-fidelity result will be the focus of
this verification effort.

Three different meshes were created: coarse, medium and
fine corresponding to using 48, 100 and 200 total axial seg-
ments and generating final domains with 7.5M, 15M and 30M
elements respectively. After examining the results in Table
I the number of azimuthal angles for track generation was
chosen to be 32. An azimuthal spacing of 0.13cm was chosen
after a small amount of experimentation trying to balance ac-
curacy and problem size. In 3D the number of polar angles

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Fig. 6: Thermal flux for the coarse 3D mesh.

and axial spacing must also be chosen. The current study used
6 polar angles with 0.3cm axial spacing. Ultimately, these
settings generated nearly 21M tracks within the 3D domain. It
needs to be stressed that 3D deterministic track generation is
a non-trivial problem that has been the focus of considerable
research [34] and the current authors are grateful for the ability
to reuse that work here.

Each of the three meshes were used in runs of
MOCkingbird that utilized 960 processors on Idaho National
Laboratory’s Falcon supercomputer. Falcon consists of nodes
containing 24 Intel Xeon cores interlinked by infiniband. The
results of these runs can be found in Table II. Within Table II
AVG and RMS are measures of the fission source error and
are defined as:

AVG =

∑
n |en|

Nn
, (8)

RMS =

√∑
n e2

n

Nn
, (9)

where n is iterating over fuel pins, Nn is the total number of
fuel pins and en is the percent error as compared to the bench-
mark. It should be noted that timings and iteration counts for
the 3D runs have been omitted due to the use of experimental
acceleration techniques that are beyond the scope of this paper.

TABLE II: Eigenvalues and fission source errors for each mesh
used for the 3D C5G7 Rodded B configuration.

Mesh # Elem ke f f ∆ρ (pcm) AVG RMS
Coarse 7.5M 1.07455 322 0.60 0.82
Medium 15M 1.07687 90 0.53 0.76
Fine 30M 1.07752 25 0.45 0.67

The results show that MOCkingbird is able to achieve a
ke f f within 25pcm of the benchmark solution (1.07777) on
the finest grid. It is clear that axial fidelity does matter in
this case as the coarse mesh result is off by 322pcm. The
convergence of MOCkingbird toward the true eigenvalue and
fission source as the mesh is refined is a good indicator that
the 3D, parallel, unstructured mesh MOC solution algorithm
is working properly.

VI. CONCLUSIONS

High-fidelity nuclear reactor simulations rely on the close
coupling of many fundamental physics. One way to achieve
that coupling is by solving all of the physics using the same
geometrical representation. MOCkingbird is a new MOC-
based neutron transport tool with the explicit goal of enabling
straightforward coupling with finite-element based solution
methods for multiphysics simulation. It has been shown to be
accurate for both 2D and 3D on the C5G7 benchmark, with
more testing to come in the future. The goal of this new tool
is to help enable safety analysis and design studies on both
existing and next generation designs.

VII. ACKNOWLEDGMENTS

The authors would like to thank John Tramm from MIT
for his aid during the development of these algorithms. We
would also like to acknowledge Samuel Shaner and Geoffrey
Gunow from MIT for their contributions in track generation
methodology and implementation. This research made use of
the resources of the High Performance Computing Center at
Idaho National Laboratory, which is supported by the Office
of Nuclear Energy of the U.S. Department of Energy and the
Nuclear Science User Facilities under Contract No. DE-AC07-
05ID14517. This work was funded by Idaho National Labora-
tory. This manuscript has been authored by Battelle Energy
Alliance, LLC under Contract No. DE-AC07- 05ID14517 with
the US Department of Energy. The United States Government
retains and the publisher, by accepting the article for publica-
tion, acknowledges that the United States Government retains
a nonexclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes.

REFERENCES

1. D. R. GASTON, C. J. PERMANN, J. W. PETERSON,
A. E. SLAUGHTER, D. ANDRŠ, Y. WANG, M. P.
SHORT, D. M. PEREZ, M. R. TONKS, J. ORTENSI,
ET AL., “Physics-based multiscale coupling for full core
nuclear reactor simulation,” Annals of Nuclear Energy,
84, 45–54 (2015).

2. M. ELLIS, B. FORGET, K. SMITH, and D. GASTON,
“Preliminary coupling of the Monte Carlo code OpenMC
and the Multiphysics Object-Oriented Simulation Envi-
ronment (MOOSE) for analyzing Doppler feedback in
Monte Carlo simulations.” in “ANS MC2015 - Joint In-
ternational Conference on Mathematics and Computation
(MC), Supercomputing in Nuclear Applications (SNA)
and the Monte Carlo (MC) Method,” (2015).

3. K. CLARNO, T. EVANS, B. COLLINS,
R. PAWLOWSKI, R. MONTGOMERY, B. KOCHUNAS,
and D. GASTON, “Design of a High Fidelity Core
Simulator for Analysis of Pellet Clad Interaction,” Tech.
rep., CASL Technical Report CASL-U-2015-0036-000
(2015).

4. J. LEPPÃĎNEN, V. HOVI, T. IKONEN, J. KURKI,
M. PUSA, V. VALTAVIRTA, and T. VIITANEN, “The

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Numerical Multi-Physics project (NUMPS) at VTT Tech-
nical Research Centre of Finland,” Annals of Nuclear
Energy, 84, 55 – 62 (2015), multi-Physics Modelling of
LWR Static and Transient Behaviour.

5. W. BOYD, S. SHANER, L. LI, B. FORGET, and
K. SMITH, “The OpenMOC method of characteristics
neutral particle transport code,” Annals of Nuclear Energy,
68, 43–52 (2014).

6. P. K. ROMANO and B. FORGET, “The OpenMC Monte
Carlo Particle Transport Code,” Ann. Nucl. Energy, 51,
274–281 (2013).

7. C. NEWMAN, G. HANSEN, and D. GASTON, “Three di-
mensional coupled simulation of thermomechanics, heat,
and oxygen diffusion in UO2 nuclear fuel rods,” Journal
of Nuclear Materials, 392, 1, 6–15 (2009).

8. J. HALES, S. NOVASCONE, R. WILLIAMSON,
D. GASTON, and M. TONKS, “Solving nonlinear solid
mechanics problems with the Jacobian-free Newton
Krylov method,” Computer Modeling in Engineering &
Sciences(CMES), 84, 2, 123–153 (2012).

9. S. SLATTERY, P. WILSON, and R. PAWLOWSKI, “The
data transfer kit: a geometric rendezvous-based tool for
multiphysics data transfer,” in “International Conference
on Mathematics & Computational Methods Applied to
Nuclear Science & Engineering (M&C 2013),” (2013),
pp. 5–9.

10. V. S. MAHADEVAN, “Coupled Physics Environment
(CouPE) library-Design, Implementation, and Release,”
Tech. rep., Argonne National Laboratory (ANL), Argonne,
IL (United States) (2014).

11. F. N. GLEICHER, J. ORTENSI, B. W. SPENCER,
Y. WANG, S. R. NOVASCONE, J. D. HALES, D. R. GAS-
TON, R. L. WILLIAMSON, and R. C. MARTINEAU,
“The coupling of the neutron transport application RAT-
TLESNAKE to the nuclear fuels performance application
BISON under the MOOSE framework,” in “JAEA Con-
ference,” (2015).

12. Y. WANG, “Nonlinear diffusion acceleration for the multi-
group transport equation discretized with S {sub N} and
continuous FEM with rattlesnake,” Tech. rep., Ameri-
can Nuclear Society, 555 North Kensington Avenue, La
Grange Park, IL 60526 (United States) (2013).

13. J. MOREL, J. MCGHEE, and E. W. LARSEN, “A three-
dimensional time-dependent unstructured tetrahedral-
mesh SP N method,” Nuclear science and engineering,
123, 3, 319–327 (1996).

14. G. PALMIOTTI, M. SMITH, C. RABITI, M. LECLERE,
D. KAUSHIK, A. SIEGEL, B. SMITH, E. LEWIS,
ET AL., “UNIC: Ultimate neutronic investigation code,”
in “Joint International Topical Meeting on Mathematics
& Computation and Supercomputing in Nuclear Applica-
tions, Monterey, California,” (2007).

15. A. WATSON, R. GROVE, and M. SHEARER, “Effective
Software Design for a Deterministic Transport System,”
in “International Conference on Advances in Mathetatics,
Computational Methods, and Reactor Physics, Saratoga
Springs, NY,” (2009).

16. T. GOORLEY, M. JAMES, T. BOOTH, F. BROWN,
J. BULL, L. COX, J. DURKEE, J. ELSON, M. FENSIN,

R. FORSTER, ET AL., “Initial MCNP6 release overview,”
Nuclear Technology, 180, 3, 298–315 (2012).

17. M. AUFIERO, C. FIORINA, A. LAUREAU, P. RUBI-
OLO, and V. VALTAVIRTA, “Serpent–openfoam cou-
pling in transient mode: simulation of a godiva prompt
critical burst,” in “Proceedings of ANS MC2015–Joint In-
ternational Conference on Mathematics and Computation
(M&C), Supercomputing in Nuclear Applications (SNA)
and the Monte Carlo (MC) Method, Nashville, Tennessee,”
(2015).

18. M. D. DEHART, “Advancements in generalized-geometry
discrete ordinates transport for lattice physics calcula-
tions,” In Proc. Of PHYSOR-2006, pp. 10–14 (2006).

19. A. MARIN-LAFLECHE, M. SMITH, and C. LEE,
“Proteus-MOC: A 3D deterministic solver incorporat-
ing 2D method of characteristics,” in “Proceedings of
the 2013 International Conference on Mathematics and
Computational Methods Applied to Nuclear Science and
Engineering-M and C 2013,” (2013).

20. X. YANG, R. BORSE, and N. SATVAT, “{MOCUM}
solutions and sensitivity study for {C5G7} benchmark,”
Annals of Nuclear Energy, 96, 242 – 248 (2016).

21. D. GASTON, C. NEWMAN, G. HANSEN, and
D. LEBRUN-GRANDIE, “MOOSE: A parallel computa-
tional framework for coupled systems of nonlinear equa-
tions,” Nuclear Engineering and Design, 239, 10, 1768–
1778 (2009).

22. A. LAGAE and P. DUTRÉ, “An efficient ray-quadrilateral
intersection test,” journal of graphics, gpu, and game
tools, 10, 4, 23–32 (2005).

23. W. GROPP, E. LUSK, N. DOSS, and A. SKJELLUM, “A
high-performance, portable implementation of the MPI
message passing interface standard,” Parallel computing,
22, 6, 789–828 (1996).

24. B. NICHOLS, D. BUTTLAR, and J. FARRELL, Pthreads
programming: A POSIX standard for better multiprocess-
ing, " O’Reilly Media, Inc." (1996).

25. L. DAGUM and R. MENON, “OpenMP: an industry stan-
dard API for shared-memory programming,” IEEE com-
putational science and engineering, 5, 1, 46–55 (1998).

26. A. KUKANOV and M. J. VOSS, “The Foundations for
Scalable Multi-core Software in Intel Threading Building
Blocks.” Intel Technology Journal, 11, 4 (2007).

27. G. KARYPIS and V. KUMAR, “Parallel Multilevel k-way
Partitioning Scheme for Irregular Graphs,” SC Conference,
0, 35 (1996).

28. B. KELLEY, ET AL., “CMFD Acceleration of Spatial
Domain-decomposition Neutron Transport Problems,” in
“PHYSOR 2016,” Knoxville, TN, USA (April 2012).

29. E. LEWIS, M. SMITH, N. TSOULFANIDIS,
G. PALMIOTTI, T. TAIWO, and R. BLOMQUIST,
“Benchmark specification for Deterministic 2-D/3-D
MOX fuel assembly transport calculations without spatial
homogenization (C5G7 MOX),” NEA/NSC (2001).

30. B. COLLINS, B. KOCHUNAS, and T. DOWNAR, “As-
sessment of the 2D MOC solver in MPACT: Michigan
parallel characteristics transport code,” Tech. rep., Ameri-
can Nuclear Society, 555 North Kensington Avenue, La
Grange Park, IL 60526 (United States) (2013).

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

31. R. M. FERRER and J. D. RHODES III, “A Linear Source
Approximation Scheme for the Method of Characteris-
tics,” Nuclear Science and Engineering, 182, 2, 151–165
(2016).

32. T. D. BLACKER, W. J. BOHNHOFF, and T. L. ED-
WARDS, “CUBIT mesh generation environment. Volume
1: Users manual,” Tech. rep., Sandia National Labs., Al-
buquerque, NM (United States) (1994).

33. J. TRAMM, K. SMITH, B. FORGET, and A. SIEGEL,
“The Random Ray Method – A computationally efficient
algorithm for 2D and 3D neutron transport enabling high
fidelity nuclear reactor simulation,” (2017), manuscript
submitted for publication.

34. S. SHANER ET AL., “Theoretical Analysis of Track
Generation in 3D Method of Characteristics,” in “Joint In-
ternational Conference on Mathematics and Computation
(M&C), Supercomputing in Nuclear Applications (SNA)
and the Monte Carlo (MC) Method,” Nashville, Tennessee
(2015), Joint International Conference on Mathematics
and Computation (M&C), Supercomputing in Nuclear
Applications (SNA) and the Monte Carlo (MC) Method.

35. A. YAMAMOTO, M. TABUCHI, N. SUGIMURA,
T. USHIO, and M. MORI, “Derivation of optimum po-
lar angle quadrature set for the method of characteristics
based on approximation error for the Bickley function,”
Journal of Nuclear Science and Technology, 44, 2, 129–
136 (2007).

36. OECD, “Benchmark on Deterministic Transport Calcu-
lations Without Spatial Homogenisation, MOX Fuel As-
sembly 3D Extension Case,” NEA (2005).

