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Abstract - This study compared the efficiency of the multigroup method to the finite-element-with-discontiguous-
support multigroup method (FEDS) for discretizing the energy domain for radiation transport simulations.
FEDS is similar to multigroup in that the energy domain is first partitioned into coarse groups, but is different
than multigroup in that it further partitions the coarse groups into discontiguous energy elements within each
coarse group. This paper presents a procedure for propagating uncertainties for FEDS, followed by two
verification problems to test if the uncertainty propagation routines were implemented correctly. The absolute
error in the verification problems were 6 × 10−8 and 5 × 10−8, respectively. Next the paper uses two criticality
benchmarks which demonstrate that FEDS converges faster than multigroup to an energy-resolved solution.
The absolute error in the two validations problems were 2 × 10−4, and 4 × 10−3, respectively.

I. INTRODUCTION

Radiation-transport deterministic methods demand plenty
of computer memory in order to discretize the space, angle,
energy, and time domains. The energy domain, by itself, is
difficult to discretize efficiently and accurately because nuclear
cross sections can vary by several orders of magnitude due
a small difference in an incident particle’s energy, as shown
in Fig.(1). In this study we compare different methods for
discretizing the energy domain.

Fig. 1. Total microscopic cross section for 238U.

The multigroup method is a deterministic method that
discretizes energy into several contiguous intervals called
groups. In the multigroup method, particles that have sim-
ilar energies fall into the same energy group, and are treated
the same as other particles within that energy group. The dis-
advantage of using the multigroup method is that thousands of
energy groups are required to properly discretize the resolved-
resonance region (RRR), unless a very accurate weighting flux
is used generate the multigroup cross sections.

The finite-element-with-discontiguous-support multi-
group method (FEDS) is a generalization of the Mutligroup
method [1]. FEDS first decomposes the energy domain into
coarse groups and then further partitions the coarse groups

into discontiguous energy elements within each coarse group.
A minimization problem is then solved in order to optimally
cluster portions of the energy domain into discontiguous ele-
ments.

In this study, we used NJOY 2012 and a set of Python
scripts to generate multigroup, FEDS, and continuous-energy
cross sections. These scripts were also used to generate covari-
ance matrices which were utilized to propagate uncertainties
from a nuclear database to a quantity of interest. Two verifica-
tion benchmarks were used to test if our uncertainty propaga-
tion scripts would produce the correct value for the variance in
a quantity of interest. We then compared the convergence rates
between multigroup and FEDS for two criticality benchmarks.

II. THEORY

1. Multigroup

The multigroup method partitions the energy domain into
several contiguous energy groups. Group cross sections Σg are
then computed such that reaction rates are conserved within
each group,

Σgψg =

∫ Eg

Eg−1

dE Σ(E)ψ(E) ,

where ψ(E) is the angular flux. However, ψ(E) is not known
before conducting the radiation transport simulation therefore
we approximate ψ(E) using a weighting function w(E) which
mimics the expected neutron spectrum and compute group
cross sections as

Σg =

∫ Eg

Eg−1
dE w(E)Σ(E)∫ Eg

Eg−1
dE w(E)

.

These group cross sections are then used in the steady-
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state multigroup equation,[
Ω̂ · ∇ + Σt,g(r)

]
ψg(r, Ω̂) =

L∑
`=0

∑̀
m=−`

2` + 1
4π

Ym
` (Ω̂)

∑
g′=1

Σs,`,g′→g(r)φm
`,g′ (r)+

χg(r)
4πk

∑
g′=1

νΣ f ,g′ (r)Φg′ (r) , (1)

where

r position of particles in space
Ω̂ particles’ direction of travel

φg(r) scalar flux for group g
ψg(r, Ω̂) angular flux for group g
Σt,g(r) total macroscopic cross section for group g

Σs,`,g′→g(r) double-differential scattering cross section
χg(r) fission energy spectrum for group g
νg′ (r) number of neutrons produced per fission

Σ f ,g′ (r) fission cross section for group g′ .

Here w(E) is assumed to have the same distribution in
energy as the angular flux ψ(E). The problem with this weight-
ing technique is the angular flux may vary widely in different
regions of the problem and also as a function of angle, and is
unknown prior to the simulation, thus the weighting function
w(E) may not be similar enough to ψ(r, Ω̂, E) in order to prop-
erly conserve reaction rates. In addition, nuclear resonances
in different materials don’t necessarily fall within the same
energy intervals, therefore a group structure that works well
for one material doesn’t necessarily work well for all materi-
als. Sometimes, the only way to conduct an accurate radiation
transport simulation is to use very fine groups, but this is may
not be feasible if a simulation also requires fine space, angle,
and time discretizations.

2. FEDS

Unlike multigroup, FEDS only uses a few coarse groups,
and these coarse groups are further partitioned into discon-
tiguous energy elements within each coarse group [1]. For
example, particles of energy 1 eV and 3 eV can reside within
one energy element, and particles of energy 2 eV and 4 eV
can reside within a different energy element. The idea behind
FEDS is to minimize how much the particle flux varies within
a single element. This is not a simple minimization problem,
because the particle flux can vary drastically, even within the
same material in a problem. For example, the neutron energy
spectrum in the center of a fuel rod in a reactor is not the same
as the neutron spectrum at the edge of the fuel rod. Thus, we
first select a set of spectra that we want our finite element space
to accurately represent. Next, we solve the following mini-
mization problem to construct an optimized energy element
mesh:

1. Given a set of spectra and energy subelements, arbitrarily
map subelements into elements (the subelements are all

small contiguous energy intervals and the elements can
be composed of a discontiguous set of subelements).

2. Compute the averages of the spectra in each element.

3. Compute the difference between the continuous-energy
spectrum and the element-averaged spectrum, and sum
these differences over all elements and spectra. We will
refer to this total difference as the variance error.

4. Choose the energy element mesh which minimizes the
variance error by looking at all possible combinations of
subelements into elements.

This variance error essentially measures the accuracy of
resonance-scale behavior that is captured using a particular
energy element mesh. There are several machine-learning
algorithms for clustering subelements into elements, and iter-
ating over possible combinations of subelements into elements
to generate an optimal FEDS energy grid. These algorithms
are discussed in detail by Till in [1].

A generalized Petrov-Galerkin finite element method can
be defined for these discontiguous energy elements as

ϕ(r, Ω̂, E) ≡
Ne∑

e=1

Ψe(r, Ω̂)be(r, E) (2)

where

be(r, E) =

 fe(E)∫
Ee

dE fe(E)
if E ∈ Ee,

0 otherwise,
(3)

and
we(E) =

{
1 if E ∈ Ee,
0 otherwise . (4)

Here

ϕ(r, Ω̂, E) finite element angular flux
Ψe(r, Ω̂) angular flux for energy element e
be(r, E) basis function
Ee energy element space for element e

fe(E) arbitrary weighting flux for element e
we(E) weighting function for element e .

By substituting this basis-function representation of the angu-
lar flux into the transport equation, one can derive the steady-
state FEDS transport equation,[

Ω̂ · ∇ + Σt,e(r)
]
Ψe(r, Ω̂) =

L∑
`=0

∑̀
m=−`

2` + 1
4π

Ym
` (Ω̂)

∑
e′=1

Σs,`,e′→e(r)Φm
`,e′ (r)+

χe(r)
4πk

∑
e′=1

νΣ f ,e′ (r)Φe′ (r) (5)

Notice how the FEDS transport equation is very similar to the
multigroup equation, Eq.(1), with the exception that the en-
ergy elements, e, are computed as weighted averages over the
discontiguous support of the energy elements. The advantage
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in solving the FEDS transport equation over the multigroup
equation is that the FEDS elements are better at capturing
resonance-scale behavior. However, the FEDS transport equa-
tion is more computationally expensive because the scattering
matrix can be more dense in the resolved-resonance region
(RRR) (namely, there can be lots of up- and down-scattering
between different elements in the RRR).

3. Bondarenko Method

In order to generate FEDS or multigroup microscopic
cross sections, the spectrum of particle energies must be
known first, and spectra can vary widely for different geome-
tries and materials. In our best attempt to preserve reaction
rates in all space and directions, we begin with the steady-state
transport equation

Ω̂ · ∇ψ + Σt(r, E)ψ(r, Ω̂, E) = s(r, Ω̂, E) (6)

and integrate over all r and Ω̂ to get

J+(E) − J−(E) + Σt(E)φ(E) = s(E) , (7)

where

φ(E) scalar flux
J−(E) outward particle current
J+(E) inward particle current .

In order to solve for the flux we can make the following sub-
stitutions

Σe(E) =
J+(E)
φ(E)

and S (E) = s(E) + J−(E)

and show that
φ(E) ≈

S (E)
Σe + Σt(E)

(8)

where S (E) is the modified source rate which includes the
inward particle current, and Σe is the escape cross section
which takes leakage into account. There are many ways to
approximate an escape cross section. For simplicity, in this
study we approximated the escape cross section as the inverse
of the mean chord length of a material’s geometry.

The simplified solution for the scalar flux shown in Eq.(8)
can be used as a geometry-averaged weighting function in
order to weight multigroup or FEDS cross sections,

w(E) ≈
S (E)

Σe + Σt(E)
. (9)

However, at this point Σt(E) is still unknown. Therefore we
must iterate to obtain our values for w(E) and Σt(E). Cross-
section-generation codes typically produce microscopic cross
sections for each isotopes separately, thus we can make the
following substitution

σ0,i(E) =
1
Ni

(
Σe +

∑
j,i

N jσ
k−1
t, j (E)

)
,

to rewrite Eq.(9) in terms of microscopic cross sections,

wi(E) ≈
S (E)

Ni

(
σt,i(E) + σ0,i(E)

) ,
where σt,i is the total microscopic cross section for isotope
i and σ0,i is the background cross section for isotope i. The
background cross section includes any particle loss that is not
caused by isotope i.

Bondarenko iterations can be used to produce self-
consistent FEDS or multigroup microscopic cross sections
for each energy group and each isotope in a material. A Bon-
darenko iteration consists of the following steps:

1. Calculate the background cross section σk
0,g,i for iteration

k,
σk

0,g,i =
1
Ni

(
Σe +

∑
j,i

N jσ
k−1
t,g, j

)
.

In the first iteration the value of σk
0,g,i is guessed.

2. Compute the weighting spectrum, based on the new back-
ground cross section,

wk
i (E) ≈

S (E)
Ni

(
σk

t,g,i + σk
0,g,i

) .
3. Compute the total cross section σk

t,g,i for isotope i using
the new weighting spectrum,

σk
t,g,i =

∫ Eg−1

Eg
dE wk

i (E)σk
t,i(E)∫ Eg−1

Eg
dE wk

i (E)
.

Do this for all isotopes and groups.

4. Check if the following convergence criterion is satisfied,∣∣∣∣∣∣∣∣∣∣σk
t,g,i − σ

k−1
t,g,i

σk
t,g,i

∣∣∣∣∣∣∣∣∣∣
L∞
< ε .

If the convergence criterion is not satisfied, return to step
1 using the updated values for σk−1

t,g, j.

For FEDS, replace group g with element e in the iteration
scheme list above.

4. Uncertain Parameters in Neutron Transport

For this portion of the theory section, we will limit our dis-
cussion to propagating uncertainties for the steady-state form
of the neutron transport equation. The steady-state neutron
transport is

Ω̂ · ∇ψ + Σt(r, E)ψ(r, Ω̂, E) =∫
4π

dΩ′
∫ ∞

0
dE′ Σs(r, Ω̂′ · Ω̂, E′ → E)ψ(r, Ω̂′, E′) +

1
keff

1
4π

∫ ∞

0
dE′ Σ f (r, E′ → E)ψ(r, Ω̂′, E′) (10)
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and

ψ(r, Ω̂, E, t) = f (r, Ω̂, E, t) for r ∈ ∂V, Ω̂ · n̂ < 0 .

where the macroscopic cross section Σx for reaction x is the
sum of microscopic cross section σi,x of the constituent iso-
topes, weighted by the number densities of those isotope Ni,

Σx =

I∑
i=1

Niσi,x

In Eq.(10), the fission source term contains a double-
differential fission cross section Σ f (r, E′ → E) (which is sim-
ilar to a double-differential scattering cross section, except
multiple neutrons can be produced per fission). This fission
source term is physically accurate because the number of neu-
trons produced per fission and the energy of those neutrons
is dependent on the incident neutron energy. However, it’s
important to note that typically the following approximation
is made for the fission source term∫ ∞

0
dE′ Σ f (r, E′ → E)ψ(r, Ω̂′, E′) ≈

χ(E)
∫ ∞

0
dE′ νΣ f (r, E′)ψ(r, Ω̂′, E′) . (11)

where χ(E) is a steady-state fission spectrum for prompt and
delayed neutrons, and ν is the average number of neutrons
produced (prompt and delayed) per fission. Together Eq.(10)
and Eq.(11) contain several uncertain parameters:

Ni number density of isotope i
σt,i(r, E) total microscopic cross section

σs,i(r, Ω̂′ · Ω̂, E′ → E) double-differential scattering
χi(E) fission neutron energy spectrum
νi(r, E′) neutrons produced per fission
σ f ,i(r, E′) fission cross section

∂V location of boundary or interface
f (r, Ω̂, E) boundary condition

In order to properly propagate uncertainties, we need
more than just the standard deviation of the uncertainty of
each uncertain parameter. We also need the covariance be-
tween all uncertain parameters. The covariances between
different isotopes at different energies are computed based on
experimental data. The covariance between two parameters pi
and p j is defined as

cov(pi, p j) = 〈pi p j〉 − 〈pi〉〈p j〉 , (12)

where 〈·〉 is used to represent expected value. The covariance
between all uncertain parameters can be represented by a
covariance matrix. However, constructing a covariance matrix
for all uncertain parameters is computationally expensive, and
may be unnecessary since many parameters are uncorrelated.

We can reduce the size of the covariance matrix by as-
suming there is no correlation between the cross sections of

different materials. This results in each material having it’s
own separate covariance matrix. While this assumption is
valid for most materials, it is not the case for all materials.
Furthermore, we can greatly reduce the size of this covari-
ance matrix by determining the covariance between scattering
cross sections (instead of double-differential scattering cross
sections) by using the property

cov(σs,g, σs,g) =

G∑
g′=1

G∑
g′′=1

cov(σs,g→g′ , σs,g→g′′ ) (13)

and compute sensitivity of the quantity of interest Q to σs,`,g
using the following relation was derived by Bruss in [2],

∂Q
∂σs,`,g

=

G∑
g′=1

∂Q
∂σs,`,g

σs,`,g→g′

σs,g
. (14)

5. Uncertainty Propagation for FEDS

In order to propagate uncertainties for FEDS, we will first
define the variance in some quantity of interest Q as

var(Q) =

P∑
i=1

P∑
j=1

∂Q
∂pi

∂Q
∂p j

cov(pi, p j) (15)

where p is used to represent any parameter which may affect
the quantity of interest, and P is the total number of relevant
parameters. These parameters can be cross sections for dif-
ferent interactions, at different incident-particle energies, in
different materials as well as many other uncertain parameters.

Note that the value of cov(pi, p j) could have some uncer-
tainty itself which isn’t being considered in Eq.(15). Also,
high-order sensitivities of the quantity of interest (such as
∂2Q/∂p2

i ) are not included in Eq.(15) which may be important
for some uncertainty calculations.

To derive a covariance matrix for FEDS cross sections
let’s first assume σi and σ j are cross sections for energy ele-
ments i and j, respectively, and are composed of a discontigu-
ous set of subelements such that

σi =
1

∆Ei

M∑
m=1

∆Ei,mσi,m

σ j =
1

∆E j

N∑
n=1

∆E j,nσ j,n

where σi,m and σ j,n are subelement cross sections, ∆Ei,m and
∆E j,n are subelement bin widths, ∆Ei and ∆E j are the sum of
constituent subelements bin widths for elements i and j, and
M and N are the total number of subelements within elements
i and j. Now we can use the covariance property,

cov(aX + bY,Z) = a cov(X,Z) + b cov(Y,Z)

where a and b are constants, and X, Y , and Z are variables, to
show that covariance between two element cross sections is a
weighted sum of the covariances of their subelements,

cov(σi, σ j) =

M∑
m=1

N∑
n=1

(
∆Ei,m

∆Ei

)(
∆E j,n

∆E j

)
cov(σi,m, σ j,n) . (16)
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Together Eq.(15) and Eq.(16) can be combined to estimate
that the variance in the quantity of interest for FEDS.

Figure 2 shows an example of an element correlation
matrix and it’s corresponding subelement correlation matrix.
A correlation matrix is simply a covariance matrix that is
normalized such that there are ones along the main diagonal
of the matrix.

Fig. 2. Comparison of subelement correlation matrix (top) and
an corresponding element correlation matrix (bottom) for 238U
generated using Barnfire for a coarse energy mesh.

III. RESULTS

Recently, a cross section generation framework known as
Barnfire was developed at Texas A&M University. Barnfire
leverages the Nuclear Data Processing System (NJOY) [3] and
Parallel Deterministic Transport (PDT) [4] to generate cross
sections and simulate radiation transport. Barnfire uses the
Bondarenko method to construct accurate weighting spectra
and it can generate multigroup, FEDS, and continuous-energy

cross sections.
Two verification problems were used to determine if Barn-

fire was correctly propagating uncertainties and determine the
correct variance in some quantity of interest. While, two vali-
dation criticality benchmarks were used to test Barnfire and
compare the multigroup method to FEDS.

1. Verification Problem 1

The first verification problem is a pure-absorbing infinite-
medium with an isotropic source of neutrons, where the quan-
tity of interest Q is the reaction rate per unit volume, we can
calculate Q by

Q = 〈ψ, q†〉

where 〈·, ·〉 is an inner product over the relevant phase space,

〈·, ·〉 ≡

∫
V

dV
∫

4π
dΩ

∫ ∞

0
dE

and
q† =

σt

V
.

The following arbitrary values for the source rate, cross sec-
tions, and the covariances were used for energy mesh which
had 2 elements with each element was composed of 2 subele-
ments of equal size, (

s1
s2

)
=

(
2
2

)
(
σt,1
σt,2

)
=

(
1
2

)

cov(σt, σt) =


σt,1,1 σt,2,1 σt,1,2 σt,2,2

σt,1,1 0.02 0.01 0 0
σt,2,1 0.01 0.02 0.01 0
σt,1,2 0 0.01 0.02 0.01
σt,2,2 0 0 0.01 0.02



cov(σs, σs) =


σs,1,1 σs,2,1 σs,1,2 σs,2,2

σs,1,1 0.02 0.01 0 0
σs,2,1 0.01 0.02 0.01 0
σs,1,2 0 0.01 0.02 0.01
σs,2,2 0 0 0.01 0.02


The subscripts for the σ’s in the covariance matrices represent
the element and it’s subelement, respectively. Also, we will
assume the source rate has no uncertainty in this problem.

Now that we have prescribed all the values for the verifi-
cation problem, we can derive the analytical solutions for Q
and var(Q). For a 2-element pure-absorbing infinite medium,
composed of only one isotope, the FEDS transport equation
reduces to

σt,1φ1 = σs,1→1φ1 + σs,2→1φ2 + s1

σt,2φ2 = σs,1→2φ1 + σs,2→2φ2 + s2 .
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where s is the source rate divided by the number density. The
quantity of interest can now be expressed as

Q =

E∑
e=1

∫
4π

dΩ̂ψeσt,e = σt,1φ1 + σt,2φ2 .

After deriving the appropriate expressions for the sensitivies
of different parameters to the quantity of interest and plugging
in the corresponding values for these expressions we get that

Q = s1 + s2 = 4

var(Q) = 2.56 .
A simulation was then conducted in PDT using these prede-
fines cross sections and covariances, and Barnfire was used to
propagate uncertainties to provide an estimate of Q and var(Q)
from the simulation. The results we obtained for Q and var(Q)
listed in Table I.

TABLE I. Comparison of Analytical Results to Barnfire for
Verification Problem 1

Analytical Barnfire Absolute Error
Q 4.0 4.0 0

var(Q) 0.64 0.64 −6.13 × 10−8

These results confirmed that the uncertainty propagation
routines were implemented correctly and that Barnfire is ca-
pable of determining the variance of the reaction rate due to
nuclear data uncertainty.

2. Verification Problem 2

The second verification problem is an isotropic-scattering
infinite medium with a small fission source evenly-distributed
in the medium. For simplification assume there are only 2
energy elements with 2 subelements of equal size in each
element, where χ1 = 1, χ2 = 0, and

σt,1
σt,2
νσ f ,1
νσ f ,2
σs,1→1
σs,1→2
σs,2→1
σs,2→2


=



91
108

1
7

75
10
5

100


Now we’ll prescribe some arbitrary values for the covari-
ance matrix for a 2-element problem with 2 subelements
within each element. We will assume that there are no cross-
parameter covariances (note that this would not be true in a
realistic problem because σt, νσ f , and σs would in fact be
correlated).

cov(σt, σt) =


σt,1,1 σt,2,1 σt,1,2 σt,2,2

σt,1,1 1.0 0.2 0 0
σt,2,1 0.2 1.0 0.2 0
σt,1,2 0 0.2 1.0 0.2
σt,2,2 0 0 0.2 1.0



cov(νσ f , νσ f ) =


νσ f ,1,1 νσ f ,2,1 νσ f ,1,2 νσ f ,2,2

νσ f ,1,1 1.0 0.2 0 0
νσ f ,2,1 0.2 1.0 0.2 0
νσ f ,1,2 0 0.2 1.0 0.2
νσ f ,2,2 0 0 0.2 1.0



cov(σs, σs) =


σs,1,1 σs,2,1 σs,1,2 σs,2,2

σs,1,1 1.0 0.2 0 0
σs,2,1 0.2 1.0 0.2 0
σs,1,2 0 0.2 1.0 0.2
σs,2,2 0 0 0.2 1.0


In addition, we will set the quantity of interest to be the reac-
tivity of the system

Q = ρ =
k − 1

k
.

Now that we have prescribed all the values for the verifi-
cation problem, we can derive the analytical solutions for Q
and var(Q). For a 2-element eigenvalue problem where χ1 = 1
and χ2 = 0, the transport equation simplifies to

σt,1φ1 = σs,1→1φ1 + σs,2→1φ2 +
1
k

(
νσ f ,1φ1 + νσ f ,2φ2

)
σt,2φ2 = σs,1→2φ1 + σs,2→2φ2 .

From here we can show that

φ2

φ1
=

σs,1→2

σt,2 − σs,2→2

and

Q =
(
1 −

1
k

)
= 1 −

σt,1 − σs,1→1 − σs,2→1
( σs,1→2

σt,2−σs,2→2

)
νσ f ,1 + νσ f ,2

( σs,1→2

σt,2−σs,2→2

) .

After deriving the appropriate expressions for the sensitivities
of different parameters to the quantity of interest and plugging
in the corresponding values for these expressions we get that
the material is critical (reactivity is equal to zero),

Q = 0

and
var(Q) = 0.4281 .

A simulation was then conducted in PDT using these prede-
fines cross sections and covariances, and Barnfire was used to
propagate uncertainties to provide an estimate of Q and var(Q)
from the simulation. The results we obtained for Q and var(Q)
listed in Table II.

These results confirmed that PDT and Barnfire’s uncer-
tainty propagation routines are capable of providing the vari-
ance in the reactivity for a criticality problem. Thus, we
confident that the variance we obtain from PDT and Barnfire
for experimental criticality benchmarks will be correct.
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TABLE II. Comparison of Analytical Results to Barnfire for
Verification Problem 2

Analytical Barnfire Absolute Error
Q 0 −1.01 × 10−8 −1.01 × 10−8

var(Q) 0.10703 0.10703 −5.33 × 10−8

3. Validation Problem 1

The first validation problem is an infinite medium of
highly-enriched uranium (HEU), and the quantity of interest
is the criticality factor, keff. Table III shows the concentration
of uranium isotopes in the HEU.

TABLE III. Concentration of isotopes in HEU.
isotope number density

[ atoms
barn-cm

]
234U 4.9184 × 10−4

235U 4.4994 × 10−2

238U 2.4984 × 10−3

Barnfire was used to generate FEDS, multigroup, and
continuous-energy cross sections for all three isotopes (with
nuclear data from the ENDF/B-VII.1 cross section library).
The multigroup method split up the RRR into logarithmically
spaced energy groups. Meanwhile, FEDS decomposed the
RRR into 25 logarithmically-spaced coarse groups with vary-
ing number of elements per coarse group, depending on the
simulation. Figure 3 provides an example of how Barnfire de-
composed the RRR for FEDS using 75 energy elements. These
multigroup and FEDS energy grids were used in separate PDT
simulations.
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Fig. 3. This demonstrates how Barnfire partitions the resolved-
resonance region of the energy domain into 25 logarithmically-
spaced coarse-groups with 3 elements per coarse group, for a
total of 75 elements.

The neutron spectrum generated by PDT using multigroup
cross sections with 75 groups in the RRR was compared to the
neutron spectrum generated by MCNP6 [5] using continuous-
energy cross sections, as shown in Fig.(4). The neutron spec-

trum generated by PDT using FEDS cross sections with 75
elements in the RRR was also compared to the neutron spec-
trum generated by MCNP6 [5] using continuous-energy cross
sections, as shown in Fig.(5). Notice how FEDS does a better
job of capturing the resonance-scale behavior in comparison
to multigroup.

Fig. 4. Comparison of the multigroup neutron spectra in PDT
to a continuous-energy neutron spectrum in MCNP6. This
multigroup simulation used 75 groups in the RRR.

Afterwards, we compared the convergence rate of keff

between using multigroup and FEDS in the RRR. Table IV
shows the energy grid that was used for this particular study,
and Figure 6 compares the convergence rates between FEDS
and multigroup. Note in Table IV that only 14 groups are
used in the thermal energy range. The reason for this is that
HEU generates a fast neutron spectrum. Thus a small fraction
of neutrons down-scatter all the way to the thermal energy
range, so using 14 thermal groups is sufficient for this problem.
Convergence studies were used to determine the number of
groups that were needed in the unresolved-resonance range
(URR). We determined that 250 were needed to reduce the
absolute error in this high energy range to less than 10−5. By
ensuring that the thermal and URR energy grids are fully-
resolved, we narrowed down our source of discretization error
to only the energy resolution of the RRR.

As shown in Fig.(6) and Fig.(7), the multigroup and FEDS
values for keff agree when there are 25 degrees of freedom in
the RRR because in this case the FEDS simulation has 25
coarse groups with just a single element within each coarse
group, so it is essentially just a multigroup method. Figure
7 demonstrates how FEDS converges much faster to within
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Fig. 5. Comparison of the FEDS neutron spectra in PDT to a
continuous-energy neutron spectrum in MCNP6. This FEDS
simulation used 75 elements in the RRR.
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Fig. 6. This plot shows the discrepancy between the multi-
group and FEDS values for keff from a reference solution
which is fully-resolved in energy for validation problem 1 (the
reference solution in this case is the FEDS value for keff with
100 elements in the RRR).

error margins of the continuous-energy value for keff than the
multigroup method.

4. Validation Problem 2

The second validation problem is Godiva, a sphere of
HEU with a radius of 8.7407 cm. This benchmark problem
is the same as Validation Problem 1 except the geometry is
spherical (refer to the description of Validation Problem 1 for
material specifications). The criticality factor for Godiva was
determined experimentally to be one. The difficulty of using
PDT for this benchmark is that PDT currently only has two
options for spatial discretization, a 3D Cartesian mesh and a
triangular mesh in the X-Y plane which can be extruded along
the Z axis to construct a 3D geometry. For this benchmark,
PDT’s triangular mesh was used to approximate the sphere of
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Fig. 7. This plot demonstrates how the FEDS value for keff

quickly falls within the error bounds of MCNP6’s continuous-
energy solution while the multigroup solution is very slow to
converge.

TABLE IV. Energy grid used for PDT simulations
Energy Range Number of Elements
thermal (< 1.7eV) 14
RRR (1.7eV —31keV) variable
URR ( > 31keV) 250

HEU, as shown in Figure 8.
The same energy discretization for Validation Problem 1,

shown in Table IV, was also used for Validation problem 2. In
Validation Problem 2, we also used 16 quadrature angles per
octant for the PDT discrete-ordinates calculation, and P3 as
the highest Legendre-moment for the scattering kernel. Due
to computational resource constraints we did not run a Godiva
simulation that was fully resolved in space, energy and angle.
However, we were mostly interested in comparing the energy-
discretization converge rates between FEDS and multigroup.
The convergence rates of keff for Godiva are shown in Fig.(9).
These results were very similar to the convergence rates for
the infinite medium problem. However, Fig.(10) shows neither
method approaches the experimental value of keff ≈ 1. The
results from Validation Problem 1 gives us confidence that
most of the discrepancy in Validation Problem 2 is generated
by spatial and angular discretization error, rather than cross
section error.

IV. CONCLUSIONS

To summarize, FEDS is generalization of the multigroup
method in which coarse groups can be further partitioned into
discontiguous energy elements. The energy element mesh for
FEDS is constructed such that the variation of the continuous-
energy cross section within an element is minimized. This
allows FEDS to capture resonance scale behavior more easily
than multigroup. The two verification problems that were used
provided confidence that Barnfire and PDT were accurately
propagating uncertainties for FEDS. While, the two criticality
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Fig. 8. A 32-sided polygon in the X-Y plane, extruded into 19
extrusion steps along the Z axis was constructed in order to
approximate Godiva.
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Fig. 9. This plot shows the discrepancy between the multi-
group and FEDS values for keff from a reference solution
which is fully-resolved in energy for validation problem 2 (the
reference solution in this case is the FEDS value for keff with
100 elements in the RRR).

benchmarks demonstrated that FEDS converged much faster
than multigroup for the energy resolution in the RRR.

In the future, PDT will be capable of doing 1-D spherical-
geometry discrete-ordinates solves, and we will reattempt
Validation Problem 2 using the spherical mesh with increased
levels of angular and spatial refinement. In addition, we plan
to split up the fission source term in the neutron transport equa-
tion into prompt and delayed terms and generate multigroup
and FEDS cross sections for these terms separately. For the
prompt fission term we plan to use a double-differential fission
matrix, and for delayed neutrons we plan to use a different
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Fig. 10. This plot demonstrates how far the multigroup and
FEDS values for keff are from the experimental value for Go-
diva. This discrepancy is mostly due to spatial and angular
discretization error.

fission spectrum for each delayed neutron precursor flavor.
This will provide better estimates for keff, and pave the way to
using FEDS for time-dependent simulations later on.
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