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Abstract - The reactor physical properties of a nuclear reactor depend on the geometry of the reactor, and this
geometry in turn depends on the neutron flux, power distribution, etc. With (most) existing reactor physics
codes only perfect geometries can be treated. Even the conventional Monte Carlo method, which has sufficient
precision to be considered as a numerical experiment, can only treat exact geometries, i.e. perfect cylinders,
spheres, etc. To increase the power of reactor analysis, a calculation method which can treat truly arbitrary
geometry could be very beneficial. The recently developed Iso-Geometric Analysis (IGA) method provides
a general framework to solve PDEs with the Finite Element Method on arbitrary geometry. In the present
research the GeoPDEs package was investigated for applications to neutronic calculations in multi-group,
heterogeneous diffusion theory and transport theory. Results shown in this manuscript show the powerful
features of the IGA method, and in general very good results were obtained. The biggest drawback of GeoPDEs
is the calculation time, which is prohibitively long for practical neutronic calculations.

I. INTRODUCTION

The reactor physical properties of any nuclear reactor are
more or less sensitive to the geometrical configuration of the
reactor. Especially in fast reactors, the reactivity effect due
to changes of the core geometry can be very important. One
example is the passive safety behavior of the EBR-II reactor,
in which feedback from thermal expansion was so strong that
the reactor was capable of safely sustaining an Unprotected
Loss Of Flow (ULOF) from full power, as was verified exper-
imentally [1]. Another example is the prototype fast reactor
Monju: the pressure head of the primary pumps causes the
core support plate to bend, leading to a deformation of the
core as a function of the pump flow rate, which has a definite
(and quite strong) feedback on the reactivity; a measurement
of this effect was succesfully performed in 2010 [2].

It would be very attractive if it were possible, somehow,
to calculate the reactivity effects of the geometrical changes
directly. Thermal-hydraulics codes can be used to determine
the temperature distribution with great detail - in fact, with
sub-channel codes or CFD calculations it is nowadays possi-
ble to resolve the transient temperature in wire-wrapped fuel
bundles directly [1]. Thermo-mechanics codes can be used to
determine stress fields and the geometrical deformation. Un-
fortunately, there exist, at present, no neutronics codes which
are capable of treating truly arbitrary geometry. As detailed
in the next section, codes are commonly limited to idealized
meshes (RZ, XYZ, Hex-Z), while ray-tracing methods are
based on ideal surfaces represented by simple mathematical
equations.

The ultimate goal of the work described in this manuscript
is a method to solve neutron transport in truly arbitrary ge-
ometry, focusing on applications to (fast) nuclear reactors.
Applications of such a method include direct numerical evalu-
ation of feedback effects due to (small) geometrical changes,
e.g. due to thermal expansion or other mechanical causes,
and integration of multi-physics analysis, including thermo-
mechanical analysis, deformation analysis and direct coupling
with neutronic calculations. While this manuscript focuses

on nuclear reactors, there are many other fields of particle
transport theory where arbitrary shapes are important; medical
physics would be a good example of such a field.

In this manuscript it is proposed to use Iso-Geometric
Analysis (IGA) as a method to solve PDEs. The most im-
portant feature of IGA is that it can, in principle, treat truly
arbitrary geometry without any approximations, and the de-
scription of the geometrical domain is directly linked to the
numerical calcution on the domain. IGA can be categorized
as a Finite Element Method [3].

This manuscript is organized as follows: in Section II.
some background is given about the treatment of geometry in
numerical analysis in reactor phsyics codes. In Section III. an
introduction of NURBS (Non-Uniform Rational B-Splines) ge-
ometry is given, and in Section IV. the Iso-Geometric Analysis
(IGA) is introduced. In Section V. are given the results of some
trial calculations using the IGA-method, implemented with
the free software package GeoPDEs, and the paper finished
with a conclusion and discussion in Section VI..

II. TREATMENT OF GEOMETRY IN NUMERICAL
SIMULATIONS

This section focuses on the description of the geometrical
domain in neutronics calculations. The objective is to give an
indication where the weak points lie in the conventional meth-
ods, and how IGA can improve the situation. A distinction is
made between, on the one hand, ray tracing methods, such as
the Method of Characteristics or Monte Carlo (and, in some
cases, calculations based on Collision Probability), and on the
other hand mesh-based methods.

In calculations based on ray tracing, the trajectory of the
particle is represented by a straight line:

l : p + tê,−∞ ≤ t ≤ ∞

where p is an arbitrary point on the trajectory and ê is the
unit vector giving the direction of particle movement. In most
codes, two types of surfaces can be represented, namely plane
surfaces:
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p : n̂T r + d = 0

with n̂ the column unit vector perpendicular to the surface,
r the location vector (i.e. r = [x, y, z]T ), and d a measure
for the translation of the plane from the origin along n̂; and
quadratic surfaces:

s : rT Ar + bT r + d = 0

where the elements of the matrix A and the vector b
determine the shape of the surface (cylinder, sphere, etc), d
determines the scale of the surface (e.g. radius of the sphere).

Having represented the surfaces as equations, the distance
t from the current point p to the point i where a particle crosses
the surface is found by solving the roots of a first- or second-
order equation. This task can be performed quickly and with
good accuracy. The drawback is that surfaces which cannot
be represented as planes or quadratic surfaces cannot be used
in these ray-tracing codes1. Thus, conventional Monte Carlo
codes can represent only a limited set of shapes: perfect planes,
perfect cylinders and perfect spheres2.

In mesh-based methods the actual geometrical domain is
subdivided into (small) parts (call them nodes) and approxi-
mations are used for derivative operators so that, in general,
only neighboring nodes interact with each other. In general,
these solution methods yield a matrix-vector solution, where
the matrix must be inverted. In the simplest of these meth-
ods, the geometrical domain is limited to XYZ, RZ, or Hex-Z.
Modeling of any real reactor with such codes necessarily im-
plies some level of a-priori geometrical simplication. In more
advanced FEM-based methods, the geometrical domain can
be more or less “complex" but the discretization into “ele-
ments" still implies an approximation. Most importantly, the
FEM mesh in general does not necessarily conserve the actual
volumes of the geometrical entities; this is a problem when
investigating the effects of geometrical changes. For example,
suppose two FEM meshes are created: one mesh is for a refer-
ence geometry, and the other mesh corresponds to a case with
higher temperature, where the fuel region is slightly larger,
and the fuel has a lower density. Since the actual volume of
fuel in the FEM mesh is not necessarily conserved, any reac-
tivity difference may be due to modeling error rather than a
real physical effect.

There are many fields of engineering where complex geo-
metrical shapes must be represented numerically - fields such
as automotive or aerospace engineering would be unimagin-
able without such flexible descriptions of the geometry! One
common method of representing arbitrary surfaces in CAD
systems is through so-called NURBS ([4], see Section III.).
Stated simply, in NURBS theory physical space represented
in a parametric space of simple geometry. For example, a

1To be complete, in MCNP one can also use a toroidal surface, represented
by a fourth-order equation. As indicated in the MCNP manual, this surface is
challenging, requiring at least double precision arithmatic to have sufficient
accuracy when determining the intersections.

2In defense of conventional Monte Carlo codes: complex geometries
can be represented by collections of rectangles, so-called voxels for volume
elements. This kind of representation is very common in medical physics and
linked to calculations based on measured 3D CAT data.

complicated surface in 3D space is represented as a 2D plane
in parametric space; denote the variables as (u, v). Techni-
cally, it is possible to use such surfaces directly for ray tracing.
Formulating the problem of ray-tracing in this way results in
a minimization problem to find the coordinates (u0, v0) cor-
responding to the intersection point between the ray and the
surface. In earlier research, such a method was investigated
but the results were discouraging: the method was slow, inac-
curate, and numerically unstable [5].

In recent years, several Monte Carlo codes have been ex-
tended to treat arbitrary surfaces with some sort of CAD-based
geometry. In most (if not all) cases, the parametric surfaces
are not used directly, but tesselation is used: one defines a
set of points (u, v)i, then calculates the corresponding vertices
(x, y, z)i and the surface is represented by triangles interpolat-
ing the vertices. The main drawbacks of this approach are
twofold, i.e. since each triangle represents a part of an infi-
nite plane, the number of planes in the geometry increases
considerably, resulting in a longer calculation time for the
ray tracing3. Another problem is that the tesselation does not
necessarily conserve the volume of the underlying body. This
may be a problem in cases where one is calculating small
differences due to small geometrical changes.

III. A CRASH COURSE IN NURBS THEORY

In the limited space of this manuscript only a very basic
overview of the theory behind NURBS (Non-Uniform Ratio-
nal B-Splines) can be given. The interested reader is referred
to the standard work by Piegl & Tiller for more detailed ex-
planations [4]. For brevity, explanations are given here for a
one-dimensional case. A NURBS is defined by a knot-vector
k and a set of control points P; the control points form the
control polygon.

The knot vector is a vector defined on a continuous vari-
able u, so that k = [u0, u1, . . . , um]; each uk is called a knot.
Without loss of generality, it is assumed that u0 = 0 and
um = 1. The knots are ordered, i.e. uk+1 ≥ uk, and the interval
(uk, uk+1] is called a knot span. The knots need not be unique.
The knot vector determines a set of basis functions of Ni,p(u);
the degree p of these basis functions, their continuity, and the
existence and continuity of the derivatives is determined by
the multiplicity of the knots. For NURBS, the basis functions
Np,i(u) are B-spline curves.

A control point Pi is a point in three-dimensional space,
and has associated with it a weight wi. The set of control
points forms the control polygon. A NURBS curve is now
defined as:

C(u) =

n∑
i=0

Ni,p(u)wi Pi

n∑
i=0

Ni,p(u)wi

(1)

Basically, the shape of the curve is determined by the the

3To be complete, it should be noted that ray tracing on tesselated surfaces is
fundamental to the field of computer graphics and fast and accurate algorithms
are available.
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control polygon. The NURBS curve “interpolates" the con-
trol points, and the “smoothness" of the curve depends on the
degree p of the basis functions and the weights of the control
points. If linear basis functions are used, the NURBS curve in-
terpolates the control points exactly, so that the NURBS curve
coincides with the control polygon. With increasing degree
of the basis functions, the NURBS curve is an increasingly
“smoothed" approximation of the control polygon. This is il-
lustrated in Figure 1. The powerful feature of NURBS curves
is that the shape is completely arbitrary and can be customized
by changing one or more control points. Thus, NURBS curves
provide a way to mathematically represent arbitrary geometric
shapes, and perform mathematical operations and manipula-
tions on this geometry. Finally, NURBS can exactly represent
several common shapes such as straight lines, circular arcs,
etc.

IV. ISO-GEOMETRIC ANALYIS, IGA, AND GEOPDES

The NURBS basis functions Ni,p(u) have several prop-
erties which make them candidates as trial functions in a
Galerkin-style finite element method: partition of unity, fi-
nite support domain, continuity, existence and continuity of
derivatives, etc. A 3D surface in physical space can be con-
structed from a tensor surface from two NURBS curves in
parametric space; similarly, a 3D volume can be constructed
from the tensor volume from three NURBS curves in paramet-
ric space. For a surface, call the parametric variables u and v,
then there are two knot vectors ku and kv, a control network
having P × Q control points, and a set of 2D basis functions
Ni,p(u)N j,q(v). The basic premise of the Iso-Geometric Analy-
sis (IGA) is to solve the PDE on the parametric (square) (u, v)
domain, where the knot vectors ku and kv define a rectangular
mesh. Then one uses the information from the control net-
work to “transform" the parametric solution to the physical
domain. One immediately identifies the two most important re-
quirements of the transformation: the transformation from the
parametric domain to the physical must exist and be unique;
the reverse transform, i.e. from the physical domain to the
parametric domain, must exist and be unique, so that boundary
conditions and physical properties may be transformed to the
parametric domain. The resulting solution method is called
Iso-Geometric Analysis (IGA, [3]) because the basis functions
to describe the physical domain of the problem are also the
trial functions in the FEM-based solution. The most powerful
aspect of IGA is that the NURBS can represent exactly any
arbitrary geometrical shape, in other words, the shape of the
physical domain can be truly arbitrary, and still be represented
in a mathematically exact way.

The basic approach of NURBS geometry is on the fol-
lowing (based on the introduction given in the manual of
the GeoPDEs software [6]). Consider that one has an n-
dimensional parametric domain Ω̂ = (0, 1)n, and a physical

domain Ω = F(Ω̂) ⊂ Rr, of dimension r, n ≤ r, defined by
a parametrization F. The Jacobian of F is denoted as JF
and is an r × n matrix. Let V be a Hilbert space, to which
the continuous solution of the problem belongs, and Vh ⊂ V
a discrete subspace of V in which we seek an approximate
solution. Given a bilinear form a : V × V → R and a func-

0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.5

0

0.5

1

1.5

x [-]

y 
[-

]

NURBS curve with varying degree p

p = 1

p = 2

p = 3

control point

(a) NURBS curve C(u) for linear, quadratic and cubic basis func-
tions. As the degree p increases the curve becomes smoother.

0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.5

0

0.5

1

1.5

x [-]

y 
[-

]

P0

P1

P2

P3 P4

P5

P6

NURBS curve with varying weight w3

w3 = 1.0

w3 = 2.0

w3 = 3.0

control point

(b) NURBS curve C(u), cubic basis functions, with a variation of
the weight of control point P3. As the weight w3 increases the
curve is more strongly pulled towards P3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x [-]

y 
[-

]

Basis functions N(u)

(c) The cubic basis functions Ni,p(u) used in this NURBS curve.

Fig. 1: Example of a NURBS curve.
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tion f ∈ L2(Ω), the variational formulation of the differential
equation becomes: Find uh ∈ Vh such that

a(uh, vh) = ( f , vh), ∀vh ∈ Vh (2)

where (·, ·) represents the L2-inner product (i.e., integrals
over the problem domain). Based on the assumption of a
parametric domain, the approximation domain Vh becomes:

Vh :
{
vh = pF(v̂h), v̂h ∈ V̂h

}
(3)

where pF is a push-forward defined from the parametriza-
tion F. If F is sufficiently regular, then one can define a basis
B̂ =

{
v̂ j, j = 1, . . . ,Nh

}
for the space V̂h and one can derive a

basis for the space Vh by applying the push-forward operator
to the v̂ j, i.e., B =

{
pF(v̂ j), j = 1, . . . ,Nh

}
. Thus, the solutions

uh can be written as:

uh =

Nh∑
j=1

α jv j =

Nh∑
j=1

α j pF(v̂ j)

If one replaces in Eq. (2) the expansion of uh, and testing
against each basis function vi, i = 1, . . . ,Nh, a linear system
of equations follows with the α j as unknowns and a matrix
Ai j = a(v j, vi) and a right hand side fi = ( f , vi).

In general the integrals appearing in Ai j and fi cannot
calculated exactly and some numerical approximation is used.
For the present, the integrals are replaced by quadrature rules.
The parametric domain Ω̂ is divided into Nel non-overlapping
subregions K̂k :=

{
K̂k

}Nel

k=1
; the subregions are loosely referred

to as elements. If the parametrization F is not singular, the im-
age of the elements in the phsyical space is a non-overlapping
partition of Ω denoted as Kk := {Kk}

Nel
k=1, with Kk = F(K̂k).

Assume that a quadrature rule is defined on each element K̂k,
defining on each element a set of nk quadrature nodes:

x̂l,k ∈ K̂k l = 1, . . . , nk, k = 1, . . . ,Nel

and quadrature weights:

ŵl,k ∈ R, l = 1, . . . , nk, k = 1, . . . ,Nel

Thus, an integral of some function φ(x) in the physical
domain can be written as:

∫
Kk

φ(x)dx =

∫
K̂k

φ(F(x̂))|JF(x̂)|dx̂

≈

nk∑
l=1

φ(F(x̂l,k))|JF(x̂l,k)|ŵl,k =

nk∑
l=1

φ(x̂l,k)wl,k

where xl,k = F(x̂l,k) are the images of the quadrature
nodes in the physical domain and wl,k = ŵl,k JF(x̂l,k), with
|JF| the measure evaluated at the quadrature points. Stated
simply: the integrals in the physical domain are transformed
to integrals in the parametric domain with a coordinate trans-
formation; the integrals are subsequently approximated by
a quadrature rule in the parametric domain; and the quadra-
ture rule in the parametric domain can be interpreted as a

quadrature rule in the physical domain. In Figure 2 is given
an illustration of the relations between an element in the phys-
ical domain Ωe, the corresponding element in the parametric

domain Ω̂e and the image of the element in the domain where
the Gaussian integration is performed Ω̃e.

Fig. 2: The relations between an element in the physical do-
main Ωe, the corresponding element in the parametric domain
Ω̂e and the image of the element in the domain where the
Gaussian integration is performed Ω̃e.

From Figure 2 some observations can be made about
the calculation settings for IGA. The knot vectors create a
rectangular mesh in parametric space; each square is referred
to as an element. A first option for refinement is to choose a
finer spacing of the knots, increasing the number of elements
(in NURBS parlance: knot refinement). The second option is
degree elevation of the basis functions. Increasing the degree
of the basis functions has various side effects so care must
be taken. Finally, one can increase the number of quadrature
nodes for the Gaussian integrations in each element.

Essential differences between IGA and conventional FEM

The difference between conventional FEM and IGA is
illustrated in Figure 3. In conventional FEM, the problem
domain is first meshed with a number of elements. The number
of elements and their basic shape is selected by the user. In
IGA, the problem domain is subdivided into so-called patches
(this is for convenience only, the theory remains valid if the
entire domain is one single patch), and on each patch, the
equation is solved directly based on the NURBS description
of the geometry. IGA is sometimes grouped as a “mesh-less"
FEM. With NURBS-based geometry, the parametrization F
can represent any arbitrary, smooth domain.

The IGA method as described in [3] is a conventional
Galerkin Finite Element Method, where the trial functions (ba-
sis functions) are chosen to be the basis functions of NURBS
geometry. There is thus an intimate relation between the de-
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Fig. 3: Conventional FEM meshing versus NURBS-based
geometry in IGA. Top right: the physical domain. Top left: a
potential FEM-mesh on the (simplified) domain. Bottom left:
a refined mesh to capture the stress concentration in the corner
section. Bottom right: NURBS-based IGA mesh.

scription of the problem geometry and the trial functions used
in the numerical solution. In conventional FEM, one describes
the geometry of the problem domain followed by some kind
of meshing algorithm to create the FEM mesh. The FEM
mesh is thus always an approximation of the actual physical
domain, even if one uses higher-order (curved) FEM meshes.
In IGA the actual physical domain is used for the solution. An-
other difference is that IGA, due to the nature of the NURBS
geometry, has the possibility to use knot refinement and de-
gree elevation to refine the solution space while maintaining
the exact same physical domain Ω. In conventional FEM
meshes, the shape of the meshes is often related to the trial
functions, and higher-order trial functions may require a dif-
ferent FEM mesh. Finally, as a matter of practical concern,
the IGA method can use data from CAD software directly, i.e.
numerical analysis can be done on the actual geometry rather
than relying on an intermediate meshing. As illustrated in [3]
the creation of FEM meshes is one of the bottlenecks for large
scale FEM calculations.

V. IGA WITH GEOPDES FOR REACTOR PHSYICS

The GeoPDEs software [6] provides a complete frame-
work to do IGA-based calculations in Octave or Matlab4.
GeoPDEs provides some basic routines to create NURBS
geometries, and provides routines to set up common PDEs. In
the present work, we have approached the problems as follows:
first, calculations were done based on homogeneous geometry,
using diffusion theory with 1 energy group. Then, GeoPDEs
was used for multi-group diffusion calculations in multi-patch
geometries. Finally, a first approach to transport theory was
implemented.

4Available for download from http://rafavzqz.github.io/geopdes/

TABLE I: Comparison of GeoPDEs results with analytical
calculations for diffusion theory.

Cuboid Cylinder Sphere
30 × 45× R = 20 cm R = 45 cm

50 cm Z = 40 cm

keff 1.126019 1.116927 1.316095
k error [%] 2.29 × 10−4 1.84 × 10−3 3.96 × 10−2

φ error [%] 3.16 × 10−5 1.06 × 10−4 2.03 × 10−3

time [s] 191 141 159
# elements 5 × 5 × 5 ← ←

# quad points 3 × 3 × 3 ← ←

degree 2 × 2 × 2 3 × 3 × 3 ←

1. 1-group homogeneous diffusion theory

Calculations were done based on homogeneous geometry,
using diffusion theory with 1 energy group. For the eigen-
value calculation, the conventional power method was applied.
Solutions from GeoPDEs were compared with analytical cal-
culations. The results are shown in Table I.

From the table, one can immediately identify a problem
with GeoPDEs: the very long calculation time, which is un-
acceptable for large-scale problems. Another, much more
practical problem, was found with the GeoPDEs software: it
is not easy to create the NURBS geometries. For example, a
circular surface can be created by first creating a curve (cir-
cular arc) of radius r1, then creating a second curve (circular
arc) of radius r2, and then defining a ruled surface between the
two curves, thus creating an annulus. r1 must be positive in
GeoPDEs, i.e. r1 = 0 is not acceptable. This was checked with
the developers, it is a practical problem of GeoPDEs, not a
theoretical problem of IGA. In our current work, r1 was set to
a small value and reflective boundary conditions were applied
on the boundary. The same problem affects 3D bodies, for ex-
ample, a sphere can be created by first creating a half-annulus
and then revolving over 2π; however, GeoPDEs cannot handle
this geometry so some approximations are necessary. This is
clearly something to be addressed if IGA is applied to nuclear
reactor geometries. In Figure 4 we show an exaggerated image
of the spherical body used in our work.

2. Multi-group, heterogeneous, diffusion theory calcula-
tions on multi-patch geometry.

In multi-group diffusion theory, the neutron diffusion
equation is written as:

−∇ · Dg
∇φg + Σ

g
t φ

g =

G∑
g′=1

Σ
g′→g
s φg′ +

χg

k

G∑
g′=1

νΣ
g′

f φ
g′ (4)

It is usual to write the RHS of this equation as two source
terms, i.e. a scatter source S g and a fission source Fg:
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Fig. 4: NURBS spherical geometry. In our calculations, the
radii of the “open spaces" are set to very small values and
reflective boundary conditions are applied.

S g =

G∑
g′=1

Σ
g′→g
s φg′

Fg =
χg

k

G∑
g′=1

νΣ
g′

f φ
g′

−∇ · Dg
∇φg + Σ

g
t φ

g = S g + Fg

The last equation contains a divergence operator and a
multiplication operator. GeoPDEs has routines to handle these
operators. The scatter and fission term require knowledge of
the flux. In our present implementation, we have used the
standard GeoPDEs routines to construct the physical solution
from the Finite Element solution. This step proved to be a
rather time-consuming step in the algorithms and for dedicated
reactor physics calculations the calculation of the source terms
should be optimized.

There are two ways to describe a heterogeneous geometry
in GeoPDEs: one option is to use space-dependent material
properties to set different cross sections for fuel, cladding,
moderator, etc. In GeoPDEs the material properties can be
continuous (user-supplied) functions, but the accuracy of such
an approach is doubtful and the programming for the space-
dependent cross sections can become complicated and error-
prone. Thus, it was decided to use piecewise homogeneous
regions, so that the geometry is made up of several NURBS-
based parts; in NURBS parlance, this is called a multi-patch
geometry. GeoPDEs has some support for multi-patch geome-
tries but we have had to add quite a bit of programming for
our purposes. The basic approach is to solve the equations on
individual patches and then use continuity conditions to link
the solutions between the patches.

A 2D PWR lattice was investigated. A 7× 7 lattice of fuel
pins was selected with reflective boundary conditions. Using
symmetry properties, the model is reduced to a 1/8 sector.

TABLE II: Heterogeneous, 4-group diffusion calculation on
PWR model with GeoPDEs. Note: GeoPDEs calculation time
includes time to render figures (approx. 130 s).

GeoPDEs T-NEWT ∆

keff 1.30936 1.30714 0.17%
time [s] 2114 0.1

The multipatch model was created using 45◦ patches, i.e. one
complete PWR cell (fuel, clad, and coolant) is composed of 24
patches. The total model thus comprises 147 patches. Cross
sections were prepared using the T-NEWT module of SCALE6
and collapsed to 4 energy groups. The flux maps are shown in
Figure 5 and a comparison with T-NEWT is given in Table II.
It is to be noted that T-NEWT uses transport theory rather than
diffusion theory so a comparison is perhaps not completely
jusitified.
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Fig. 5: 1/8 sector of a PWR model, heterogeneous, multigroup
diffusion calculation with GeoPDEs, flux map.
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Fig. 5: 1/8 sector of a PWR model, heterogeneous, multigroup
diffusion calculation with GeoPDEs, flux map.

3. Approach to transport theory

If one uses the conventional, multi-group SN-method to
solve the neutron transport equation, the basic equation to
solve in the inner iterations is the following:

Ω̂m · ∇ψ
g
m (r) + Σ

g
t (r)ψg

m (r) = qg
m (r) (5)

with ψg
m (r) ≡ ψg

(
r, Ω̂m

)
the angular neutron flux in direc-

tion Ω̂m in energy group g, Σ
g
t the total cross section in group

g, and qg
m ≡ qg

(
r, Ω̂m

)
a general neutron source in group g

injecting neutrons in direction Ω̂m. This source can be due
to fissions, scattering, external, etc. This equation has the
same form as the convection term which appears in the classic
convection-dominated diffusion problem, where a term v · ∇c
appears. GeoPDEs has a routine op_vel_dot_gradu_v to
calculate this type of equation; if the velocity function vel
is chosen to be Ω̂m, GeoPDEs can be used to solve SN-type
equations.

With transport theory, the choice of the problem domain
is limited. In diffusion theory it was possible to use annuli
instead of cylinders, but in the case of transport theory the use
of a reflective boundary condition on the inner surface of the
annulus does not make physical sense. For this reason, trial
calculations were performed on two simple 2D geometries as
a proof of concept.

The first geometry is a rectangular domain, composed
of a four rectangular patches. An angular source is present
in two of the four patches. The resulting flux is shown in
Figure 6. For these figures, Ω̂m = π/6. Important aspects are
the calculation time (25.5 s) and the presence of “ripples" in
the solution. As explained in the GeoPDEs manual, these are
due to the implementation of the boundary conditions, an area
which we will continue to study.

A second trial calculation was done on a hexagonal ge-
ometry. There are 7 hexagons in total, and each hexagon is
built up of 3 quadrilateral patches, for a total of 21 patches.
Some patches contain sources, injecting neutrons in a direction
Ω̂ = π/7. The resulting flux map is shown in Figure 6.

From the aforegoing results, GeoPDEs can be used for
calculations with the SN-method, but the calculation time is
prohibitive. For example, the calculation in the hexagonal
geometry required 121.8 s, for one energy group, in one direc-
tion.

VI. CONCLUSION AND DISCUSSION

In the present work we have used the GeoPDEs software
to perform calculations using the IGA-method for neutron dif-
fusion theory and neutron transport theory in multiplying sys-
tems. Our conclusion based on the work is that the GeoPDEs
software is capable of simulating all the important aspects of
conventional multi-group diffusion and transport theory, but
the calculation time is unacceptable. We did not investigate
the cause of the long calculation time. Codes like Octave
are well-known for being user-friendly, but slow. It may be
possible to accelerate the GeoPDEs software but this was not
attempted in the current work.

One powerful feature of GeoPDEs is that the physical
properties of the domain are treated as continuous functions,
opening the possibility to perform detailed multi-physics cal-
culations. This feature also causes GeoPDEs to be slow for
reactor physics calculations: to determine the sources due to
fission and scatter, the solution has to be transformed from the
parametric domain to the physical domain to obtain the phys-
ical neutron flux, then perform the multiplications with the
cross sections, and subsequently the updated neutron source
must be transformed back to the parametric domain.

In the present work, the biggest practical problem was the
creation of the geometry based on NURBS. GeoPDEs offers
some functions to create elementary patches, such as circular
arcs, rectangles, etc, but the creation of multi-patch geometries
proved to be a rather time-consuming problem. Another issue
is that the NURBS geometries in GeoPDEs must retain the
unique transform between parametric and physical domain,
which makes it impossible to make for example true circular
domains. For future development of the IGA method, it would
be attractive if dedicated CAD software can be used, such as
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(b) SN calculation, square geometry, 3D view.

Fig. 6: SN calculation in 2D square geometry.

FreeCAD5, to create, check, and validate the definition of the
problem domain.

GeoPDEs (and the NURBS toolbox included in
GeoPDEs) are useful to study the IGA method, and useful
as examples of how to implement the IGA method in practice.
In the future, we aim to create a code based on the IGA-method
to perform multi-group neutron transport theory calculations
with the SN-method (similar to work presented by other re-
searchers [7]). We also target the extension to multi-physics
calculations.
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