
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

QZ-Decomposition For Matrix-Free Sweep With High Order DG-FEM

Sebastián González-Pintor∗ , Anders Ålund† , Christophe Demazière‡

∗ Department of Mathematical Sciences, Chalmers University of Technology, Sweden
† Fraunhofer Chalmers Research Centre for Industrial Mathematics, Sweden

‡ Department of Physics, Chalmers University of Technology, Sweden
sebastian.gonzalez-pintor@chalmers.se, anders.alund@fcc.chalmers.se, demaz@chalmers.se

Abstract - This work deals with the acceleration of the transport sweep for a discrete ordinates formulation of
the neutron transport equation. In particular, we focus on accelerating a matrix-free version of the algorithm.
The algorithmic complexity of a naive version of the transport sweep is studied, and a preprocessing technique
based on a QZ-decomposion of the matrices composing the sweep is proposed. This technique is not purely
matrix free, but we will see that the memory requirements for this approach is negligible in comparison with
a full inversion of the streaming operator. The proposed technique is tailored for high order Finite Element
Method on regular Cartesian meshes, where the local problems are dense matrices of small size, but with
minor modification it can be extended to regular triangular meshes and for non-matching grids with isotropic
refinements. The extension to more general geometries requires simultaneous triangularization of more than
two matrices at once. The performance of the proposed acceleration is analysed in algorithmic complexity with
respect to the number of iterations, and then it is used to predict the required CPU-time to solve the problem.
These predictions are tested with at 2D pin-by-pin problem consisting of four assemblies, and the predictions
show good agreement with the measured CPU-time for a range of polynomial degrees.

I. INTRODUCTION

The neutron transport equation is a detailed balance in
phase space, where neutrons can leave a volume in phase space
by destruction, out-scattering and streaming. Mathematically
the problem of modeling this balance may be written as [1]

LΨ = SΨ +
1
λ
FΨ (1)

where the angular neutron flux, Ψ(r,Ω, E), depends on the
following independent variables: E for energy, Ω for direction
of travel and ~r for the position. λ is the multiplication factor
of the system. The angular discretization of the transport
equation (1) chosen in this work is the Discrete Ordinates
method (SN), where one of the main features is the possibility
to invert the streaming operator by means of so-called transport
sweeps, as will be explained later. After discretization in
energy and angle, the set of balance equations reads as follows

Lg,nΨg,n =Mn

G∑
g′=1

Sg,g′DΨg′ +
1
λ
Mnχg

G∑
g′=1

Fg′φg′ ,

g = 1, . . . ,G; n = 1, . . . ,N′, (2)

where the angular flux and the scalar flux are defined as

Ψg,n(r) = Ψg(r,Ωn), and φg := D0Ψg =

N′∑
n=1

ωnΨg,n, (3)

respectively, where {ωn,Ωn}
N′
n=1 is the discrete quadrature used,

g = 1, . . . ,G denotes the energy group, and the operators are
defined as follows: Lg,n considers the streaming operator at
group g with streaming direction Ωn together with the total
collision term at group g; Sg,g′ is the scattering operator from

group g′ to g; D and Mn are the direction-to-moment and
moment-to-direction operators, respectively, used for the eval-
uation of the anisotropic scattering; χg is the fission spectrum
for group g; and Fg′ is the fission operator for group g′.

In order to discretize the spatial variable, a discontinuous
Galerkin Finite Element Method was used. Many implementa-
tions exist to approximate the SN equations with discontinu-
ous Galerkin methods, especially considering that this method
was first implemented for this particular equation [2, 3]. This
method has become one of the most robust ones in order to per-
form high fidelity approximations with the use of modern com-
puter architectures. From the most recent implementations, we
can highlight the one performed in [4], where the convergence
of the linear discontinuous Galerkin method on conforming
structured meshes was studied for the two-dimensional C5G7
problem [5] with heavy use of parallelization. Another effort
worth mentioning is the one performed in [6] to approximate
the same problem with continuous Finite Element Method of
linear and quadratic elements, achieving very similar results
to the work in [4].

The present document is structured as follows: The spa-
tial discretization with a high order Finite Element Method
is described in Section II, together with the system of equa-
tions depending on one parameter. This is the local problem,
that has to be solved many times for different values of the
parameter. This is the key point. Then, the algorithmic com-
plexity of a naive version of the transport sweep is studied,
and a preprocessing technique based on a QZ-decomposion of
the matrices composing the sweep is proposed and analysed
in Section III. In Section IV we use the C4 benchmark in
order to compare the expected performance of the proposed
acceleration in algorithmic complexity, with respect to the
required CPU-time to solve the problem. The conclusions are
summarized in Section V, together with possible extensions



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

and future work.

II. HIGH ORDER DG-FEM DISCRETIZATION

A source problem with the streaming term is used as
the model problem to show the implementation of the high
order Discontinuous Galerkin Finite Element Method for the
transport equation. Here we drop the indices for energy and
direction in order to simplify the notation. Let us consider the
strong form of the transport equation as follows

Ω · ∇Ψ + ΣΨ = q, (4)

where Ω is a given direction, and the equation is defined on
a domain V , with in-flow boundary Γ−. Fixed incoming flux
boundary conditions, Ψ(Ω) = g(Ω) in Γ−, are assumed to
simplify the notation.

The first step is to rewrite the problem defined by Eq. (4)
in weak form as follows

(v,Ω · ∇Ψ)V + (v,ΣΨ)V = (v, q)V , (5)

where the inner product is defined as (u, v)V =
∫

V uvd~r.
Then we set a partition, Th = {T }, covering the domain V ,

and split the previous integral in a sum of integrals over each
subdomain T (where the cross-sections are assumed constant)
as follows∑

T∈Th

(v,Ω · ∇Ψ)T +
∑
T∈Th

ΣT (v,Ψ)T =
∑
T∈Th

(v, q)T . (6)

We then integrate by parts the first term of the equation, and
using the boundary conditions we obtain

−
∑
T∈Th

(Ψ,Ω · ∇v)T +
∑
e∈Eh

〈
Ψ−,Ω · [~nv]

〉
e

+
〈
Ψ,Ω · ~nv

〉
Γ+

+
∑
T∈Th

ΣT (v,Ψ)T

=
∑
T∈Th

(v, q)T +
〈
g,Ω · ~nv

〉
Γ−
, (7)

where Eh = {e} is the set of internal edges of the triangulation
Th, Γ+ is the out-flow boundary, and the integral over the edges
e is defined by 〈u, v〉e =

∫
e uvds. The jump [·] is defined by

[~nv] = ~n+v+ + ~n−v−, (8)

where the superscripts refer to the upwind (+) and downwind
(−) values at the edge.

1. The Local Problem

In order to perform a matrix-free transport sweep, the first
step is to sort the elements for a fixed direction Ω in such a
way that the flux at the incoming boundary is known when
solving for a particular element. In particular, we focus on
the approximation of a single subdomain during the transport
sweep. The discretization of the neutron transport equation
for a fixed direction Ω in an element T is as follows

(Ψ,Ω · ∇v)T +
〈
Ψ,Ω · ~nv

〉
∂+T + ΣT (v,Ψ)T

= (v, q)T +
〈
Ψ−,Ω · ~nv

〉
∂−T , (9)

where ∂−T and ∂+T represent the in-flow and out-flow bound-
aries of T , respectively. The only requirement to solve Eq. (9)
is that the incoming flux Ψ− is known.

We notice that up to now no assumption has been made
for the shape of the element T , so that it can be of triangular
or quadrilateral shape. For the numerical experiments, instead,
quadrilateral elements will be used, but similar results are
expected for triangular elements.

The solution of problem (9) has to be performed for each
source iteration, each energy group, each direction, and each
element over the mesh, and thus the optimization of this oper-
ation would have an important impact on the final CPU-time
required to solve the problem. For instance, the local matrices
can be precalculated [7] in order to minimize the time for this
local operation. Usually, the DG-FEM method for the trans-
port problem will not have the required regularity in order to
justify the use of high order FEM, but it has been reported that
increasing the order of the approximation improves the conver-
gence rate for the DG-FEM [8] by reducing the constant that
multiplies the term of the order of convergence, i.e, reducing
the C in Chα. Nevertheless, for high-order FEM, the inversion
of the local matrices are increasingly expensive for two- or
three-dimensional problems when increasing the polynomial
order. Here we propose an alternative approach based on a
reduction on the complexity of the local solver for the sweep,
while keeping low memory requirements, provided that we
restrict ourselves to structured geometries.

Thus, considering that all elements have the same shape
and size, equation (9) can be re-written in matrix notation as
follows

(Gw + Eo
w + sg,eM)ui,g,w,e = qi,g,w,e − Ei

wui
i,g,w,e (10)

where the indices i, g, w and e, respectively, correspond to
the iteration, the energy group, the angular direction and the
physical element. A similar break down of the cost of the
local problem has been done in [9], where also more spatial
discretizations schemes are considered. While the mass matrix
M does not depend on anything, the local stream matrix Gw
depends on the angular direction. The edge matrices Eo

w, E
i
w

are for the out-flow and in-flow boundaries, the vectors u and
q are the solution and the source, which are different for every
index, and sg,e represents the cross section for a particular
element and energy group. Then the local problem for ui,g,w,e
can be written as

(Go
w + sg,eM)ui,g,w,e = S i,g,w,e (11)

where we combine the streaming matrix together with the edge
contributions as

Go
w := Gw + Eo

w, (12)

and the source term, considering also the incoming flux, is
renamed as

S i,g,w,e := qi,g,w,e − Ei
wui

i,g,w,e (13)

(not to be mistaken with the scatering, which is included in
the qi,g,w,e) for later convenience of the notation (Q will be



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

the unitary matrix in the QZ-decomposition). Equation (11)
has the property that, for a given angular direction, the local
matrix, Go

w + sg,eM, depends linearly on just one parameter,
sg,e, for the different groups and elements, and we are going
to take advantage of this structure to simplify the solution of
this system after a preprocessing step.

III. QZ-DECOMPOSITION FOR THE LOCAL PROB-
LEM IN THE TRANSPORT SWEEP

The time required to perform the transport sweep is one of
the dominant factors of the total time required for solving the
previous equation, being more relevant when the number of
directions is higher. Thus, many efforts focused on reducing
the number of sweeps that are required for the solution by
using different acceleration techniques [10], such as the Diffu-
sion Synthetic Acceleration (DSA) or the Non-linear Krylov
Acceleration (NKA), together with strategies for parallelizing
the sweeps. The combination of these accelerations generally
makes the discrete ordinates method a competitive alternative
to approximate the neutron transport equation.

In the following, different algorithms to apply the trans-
port sweep are shown. We start with the standard approach,
i.e., to build and solve the local systems every time it is re-
quired, and then we study different alternatives. Special atten-
tion is put on the memory required for the alternatives and the
expected speed-up of the calculations (based on the number
of operations needed for each algorithm).

1. On-the-fly Calculation

The on-the-fly form of the transport sweep can be written
as in Algorithm 1. It is worth to notice that in Algorithm 1

Algorithm 1 On-the-fly
1: function Transport Sweep
2: for i < Ni do
3: for g < Ng do
4: for w < Nw do
5: for e < Ne do
6: S := qi,g,w,e − Ei

wui
i,g,w,e . O(n2)

7: A := Go
w + sg,eM . O(n2)

8: Solve Aui,g,w,e = S . O(n3)

we solve the local systems in line 8 with a LU-decomposition,
but any other algorithm, such as Gaussian elimination, will be
O(n3). Regarding the memory required for this algorithm, we
observe that we use the temporal vector S to store the right
hand side, and the temporal matrix A to store the local matrix,
thus making the amount of required memory negligible.

The number of iterations (Ni) is defined as the number of
source iterations (Ns) times the number of full sweeps (N f s)
needed for every source iteration (Ni = Ns × N f s). Ns can
be reduced by using a better algorithm for the eigenvalue
problem (Jacobian Free Newton Krylov, Non-linear Krylov
Acceleration, Anderson Mixing, ...), while N f s can be reduced
by preconditioning the source iteration (DSA, Multigrid, ...).
Here we focus on improving the computational effort neces-
sary for the innermost loop, thus reducing the CPU-time for

each sweep, so that this can be combined with the accelera-
tions mentioned previously which are focused on reducing the
number of sweeps.

2. Precompute Local Inverses

In order to accelerate the sweep, the simplest approach
would be to precalculate the inverses of the local matrices,
with a preprocessing step as costly as performing a full sweep
for all the different groups. This will reduce the effort of
applying the sweep for each iteration to O(n2), as we can see
in Algorithm 2. While Algorithm 2 looks all right, it requires

Algorithm 2 Precompute Local Inverses
1: function LU-Preprocessing
2: for g < Ng do
3: for w < Nw do
4: for e < Ne do
5: A := Go

w + sg,eM . O(n2)
6: [Lg,w,e,Ug,w,e] := lu(A) . O(n3)
7: function Transport Sweep
8: for i < Ni do
9: for g < Ng do

10: for w < Nw do
11: for e < Ne do
12: S := qi,g,w,e − Ei

wui
i,g,w,e . O(n2)

13: Solve Lg,w,ev = S . O(n2)
14: Solve Ug,w,eui,g,w,e = v . O(n2)

to store all the local inverses, which in general is prohibitive
because of the high memory requirements.

3. QZ preprocessing

In order to reduce the memory requirements of precom-
puting the inverses, we should restrict ourselves to precom-
pute and store fewer matrices. In this direction, we suggest a
QZ-decomposition [11] of the streaming matrix and the mass
matrix. Because these matrices do not depend on the cross sec-
tions, meaning that they are the same for all energy groups and
for all elements, the number of precomputations is highly re-
duced. In particular, the QZ-decomposition of a pair {Go

w,M}
will generate four matrices as follows

[Ĝw, M̂w,Zw,Qw] = qz(Go
w,M) (14)

such that

Ĝw = ZwGo
wQw, M̂w = ZwMQw, QT

wQw = I, ZT
wZw = I,

where Ĝw, and M̂w are triangular and quasi-upper triangular
matrices. Then the local system (11) becomes

(Ĝw + se,gM̂w)QT
wui,g,w,e = ZwS i,g,w,e,

to be solved for ui,g,w,e. This procedure applied to the transport
sweep is shown in Algorithm 3.

There are many ways of solving the system in line 12 of
Algorithm 3. One option is to perform a LU decomposition



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Algorithm 3 QZ preprocessing
1: function QZ-Preprocessing
2: for w < Nw do
3: [Ĝw, M̂w,Zw,Qw] = qz(Go

w,M) . O(n3)
4: function Transport Sweep
5: for i < Ni do
6: for g < Ng do
7: for w < Nw do
8: for e < Ne do
9: S := qi,g,w,e − Ei

wui
i,g,w,e . O(n2)

10: b := ZwS . O(n2)
11: A := Ĝw + sg,eM̂w . O(n2)
12: Solve Ax = b . O(n2)
13: ui,g,w,e := QT

wx . O(n2)

of a Hessenberg system, which is O(n2), together with the
backward solver of the L matrix (which is bi-diagonal due
to the Hessenberg form of A), and the forward solver for the
upper triangular matrix U, which is O(n2). Instead, we use
the quasi-upper triangular form of A to perform a direct solve
with LAPACK similar to a block-wise forward solver, with
a maximum size of blocks equal to two. This reduces the
complexity of the sweep from O(n3) to O(n2), while keeping
low memory requirements. More information about solving
quasi-upper triangular is provided in the Appendix.

A. Alternative preprocessings

The main idea is based on a generalized eigen-
decomposition. Consider the following problem of interest

(A + σB)x = b,

with A and B symmetric dense matrices, which has to be solved
for many different values of the parameter σ and different right
hand sides b. We know that the eigendecomposition of the
pencil (A, B) is

AX = BXΛ

where X(:, i) is the i-th eigenvector, and Λ is a diagonal con-
taining the real (because of the symmetry) eigenvalues, and

Λ = XT AX, I = XT BX (notice XT X , I)

Then, for solving the linear systems, we rewrite it as

X−T (Λ + σI)X−1x = b

and the solution x can be obtained by

y = (Λ + σI)−1XT b; x = Xx

where only products by the matrix X (and its transpose) and
the solution of a diagonal system with (Λ + σI) are required.
Here the preprocessing would be very efficient because of the
simple inversion.

Because the matrices we have are not symmetric it can
happen (and it actually happens) that some eigenvalues come

in complex pairs, so one of the following two alternatives must
be considered: a) deal with complex matrices, and be sure than
the obtained solution to the system is a vector of real numbers;
b) look for an alternative decomposition which involves a
posterior inversion more expensive than for a diagonal matrix,
but of the same order than the matrix vector product, i.e.,
O(n2) with n being the size of the matrices. Here we have
investigated the second option with a QZ decomposition.

IV. RESULTS

We use LAPACK for the QZ decomposition, the quasi-
upper triangular solver, the LU decompositions, the backward
and forward triangular solvers, and the matrix-vector products,
in order to obtain a fair comparison of the different methods
due to different implementations. The calculations have been
done on a single processor Intel i7-4770, but further analysis
considering the cache sizes of this processor for different sizes
of the data that each algorithm moves must be performed in
order to obtain more accurate predictions of the performance.
The study here is limited to a qualitative comparison between
the different algorithms.

Algorithm 1 will be tested against Algorithm 3 for a sim-
ple problem, while Algorithm 2 is not considered because the
memory required by this algorithm grows very fast with the
size of the problem, making it impractical even for medium
size problems.

1. 2D case: C4 problem

A. Problem description

The C4 problem is a semi-reflected MOX checker board.
This two-dimensional problem with two energy groups, pro-
posed in [12], consists of a 2 × 2 assemblies mini-core with
17 × 17 pins for assembly, for which the material distribution
is shown in Figure 1.

It has been considered in [13] as a test for a group-wise
refinement of the mesh with a Finite Element Method. Here
we use the material configuration of the C4 problem to solve
the neutron transport equation. The fluxes Φ0 and Φ1 obtained
with a S2 discrete ordinates configuration are shown in Fig. 2.

B. Prediction of the number of operations

The mesh consists of quadrilateral elements, so that in d-
dimensions the size of the local matrices is defined by n = (p +
1)d, where p is the polynomial degree for the approximation.
If we consider that the number of operations for Algorithm 1
is

Cfly
p,d ≈

2
3

n3 =
2
3

(p + 1)3d =
2
3

(p + 1)6, (15)

and for Algorithm 3 is

Cqz
p,d ≈ 6n2 = 6(p + 1)2d = 6(p + 1)4, (16)

then we can predict the number of operations required for
different polynomial degrees, respectively, in 2-dimensional
problems with quadrilateral elements, as shown in Fig. 3.



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Fig. 1: C4 material composition [12]. Each color represents a
given composition.

C. Measurements of CPU-time

If we measure the CPU-time needed for the different de-
grees, what also involves moving data through the different
memories, we see that the improvement shows a similar be-
havior, although being more modest. This is shown in Fig. 4.

It is worth to notice here that the prediction fails mainly
in the first part of the interval. This can be explained because
the prediction has been made considering only the the highest
order term for number of operations, and this higher order
term will be dominant and representative of the asymptotic
behaviour when large values of the matrix size are considered.
Moreover, moving the data would also produce an extra cost
that is not considered in our prediction.

2. Expected performance in other dimensions

For completeness, we show the expected operation counts
for the proposed preprocessing in one- and three-dimensional
problems. We assume that the mesh consists of quadrilateral
elements, so that in d-dimensions the size of the local matrices
is defined by n = (p + 1)d, where p is the polynomial degree
for the approximation. If we consider that the number of
operations for Algorithm 1 and for Algorithm 3 for dimension
d are

Cfly
p,d ≈

2
3

(p + 1)3d, Cqz
p,d ≈ 6(p + 1)2d, (17)

then for one-dimensional problems we have a count of

Cfly
p,1 ≈

2
3

(p + 1)3, Cqz
p,1 ≈ 6(p + 1)2, (18)

(a) Fast flux Φ0

(b) Thermal flux Φ1

Fig. 2: Fast and thermal flux for C4 problem

and for three-dimensional problems we have a count of

Cfly
p,3 ≈

2
3

(p + 1)9, Cqz
p,3 ≈ 6(p + 1)6. (19)

In figure 5 we can see the curves for one- and three-
dimensional problems for a range of polynomial degrees from
0 up to 7.

We can observe than in one-dimensional problems the
lower complexity of the proposed algorithm does not compen-
sate for the range of polynomial degrees that we have chosen.
To this we must add the time spent in the preprocessing, and
the fact that for lower number our estimators are not as ac-
curate (as shown in the comparison for the two-dimensional
case).



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

0 1 2 3 4 5 6 7

FEM degree

10-1

100

101

102

103

104

105

106

O
p
e
ra

ti
o
n
s 

co
u
n
t

On-the-fly

QZ-preprocessing

Fig. 3: Operations for different polynomial degrees

0 1 2 3 4 5 6 7

FEM degree

100

101

102

103

104

C
P
U

 t
im

e
 (

s)

On-the-fly

QZ-preprocessing

Fig. 4: CPU time for different polynomial degrees

On the other hand, for the three-dimensional case, we see
the opposite effect: the higher order of the exponent makes
the proposed acceleration to be worth for lower polynomial
degrees, and it gets better when the polynomial degree is
increased. Nevertheless, we want to notice here than even if
three-dimensional calculations are performed nowadays, those
are computationally very demanding, and two-dimensional
computations still represent the preferred approach.

V. CONCLUSIONS

When solving the neutron transport equation with the dis-
crete ordinates method, the transport sweep is one of the most
demanding operations, increasingly demanding with respect
to the number of angular directions. This operation requires
the solution of small linear systems whose matrix is dense.
Moreover, the size of this system grows rapidly with the poly-
nomial degree when using a high order Finite Element Method
for the spatial discretization.

The solution of these small systems, different for ev-
ery cross-section and different angular directions, requires
cubic complexity, for instance using LU-decomposition or
Gaussian elimination. Here, for the specific case of regular
meshes, we provide an alternative algorithm, based on a QZ-
decomposition in a pre-processing step, allowing us to reduce

0 1 2 3 4 5 6 7
FEM degree

10-1

100

101

102

103

O
p
e
ra

ti
o
n
s 

co
u
n
t

On-the-fly
QZ-preprocessing

(a) Expected operation count in 1d

0 1 2 3 4 5 6 7
FEM degree

10-1

100

101

102

103

104

105

106

107

108

O
p
e
ra

ti
o
n
s 

co
u
n
t

On-the-fly
QZ-preprocessing

(b) Expected operation count in 3d

Fig. 5: Expected operation count for 1d and 3d.

to quadratic complexity for the solution of the local system
with a minor expense in memory consumption.

This method is tested with a simple problem, improving
the original strategy, while more significant improvements are
expected with a more efficient usage of the cache.

ACKNOWLEDGEMENTS

The authors would like to thank the reviewers of the ex-
tended summary version of this document for many sugges-
tions for improvement and/or extensions of the current work.
Additionally, this work has been partially supported by the
Swedish Research Council (VR-Vetenskapsrådet) within a
framework grant called DREAM4SAFER, research contract
C0467701.



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

APPENDIX

Quasi upper triangular systems

After a QZ decomposition, the local system becomes

(Â + σB̂)QT x = Zb,

where the matrix Â + σB̂ would be quasi-upper triangular.
A simpler form as an upper Hessenberg matrix would have
worked too, because the LU decomposition of an upper Hes-
senberg matrix (see [14] for example) together with the so-
lution of the linear systems can be achieved in O(n2), which
is the same as the matrix vector product operation that we
already have to do. Here we have chosen the quasi-upper
triangular matrix form because there is already a LAPACK
routine available that solves this type of system, DLAQTR,
and we have decided to rely on that implementation to mini-
mize the damage than a naive implementation can produce in
the performance.

A brief explanation of the way this routine works is as
follows:

a) For solving a triangular system of size n × n we must
invert every element in the diagonal. Assume we are
working in with row i, and then continue with backward
substitution performing products with all the elements in
the same row with higher column index i < j < n. After
finishing we move to row i − 1 and continue the process.

11 2 3 4 5 6
0 88 9 10 11 12
0 0 1515 16 17 18
0 0 0 2222 23 24
0 0 0 0 2929 30
0 0 0 0 0 3636


b) A quasi upper-triangular system is essentially the same

as an upper-triangular system, but for each pair of conju-
gates complex eigenvalues of this matrix we find a 2 × 2
block in the diagonal that is not diagonal. Now, solv-
ing a system with this quasi upper-triangular matrix of
size n × n works as in the previous case when we find
an element in the diagonal that is associated with a real
eigenvalue. If instead, we find a 2 × 2 block consisting
of rows i and i + 1, then we solve this small system and
perform the multiplication and additions blockwise with
the elements for column indices i + 1 < j ≤ n.

11 2 3 4 5 6
0 0 9 10 11 12
0 14 0 16 17 18
0 0 0 2222 23 24
0 0 0 0 0 30
0 0 0 0 35 0


REFERENCES

1. W. M. STACEY, Nuclear reactor physics, John Wiley &
Sons (2007).

2. W. H. REED and T. R. HILL, “Triangular mesh methods
for the neutron transport equation,” Los Alamos Report
LA-UR-73-479 (1973).

3. P. LESAINT and P. A. RAVIART, On a Finite Element
Method for Solving the Neutron Transport Equation, Univ.
Paris VI, Labo. Analyse Numérique (1974).

4. C. N. MCGRAW, M. L. ADAMS, W. D. HAWKINS,
M. P. ADAMS, and T. SMITH, “Accuracy of the Linear
Discontinuous Galerkin Method for Reactor Analysis with
Resolved Fuel Pins,” in “Physor 2014,” Kyoto, Japan
(2014).

5. M. A. SMITH, E. E. LEWIS, and B.-C. NA, “Benchmark
on deterministic 2-D/3-D MOX fuel assembly transport
calculations without spatial homogenization (C5G7 MOX
Benchmark),” Tech. rep., Report NEA/NSC/DOC (2003)
16, OCDE/NEA, Paris, France (2003).

6. Y. WANG, M. D. DEHART, D. R. GASTON, F. N. GLE-
ICHER, R. C. MARTINEAU, J. W. PETERSON, J. OR-
TENSI, and S. SCHUNERT, “Convergence study of Rat-
tleSnake solutions for the two-dimensional C5G7 MOX
benchmark,” in “Proceedings of the Joint International
Conference on Mathematics and Computation (M&C),
Supercomputing in Nuclear Applications (SNA), and the
Monte Carlo (MC) Method, Nashville, TN,” (2015).

7. Y. WANG and J. C. RAGUSA, “A high-order discontin-
uous Galerkin method for the SN transport equations on
2D unstructured triangular meshes,” Annals of Nuclear
Energy, 36, 7, 931–939 (2009).

8. D. FOURNIER, R. HERBIN, and R. L. TELLIER, “Dis-
continuous Galerkin Discretization and hp-Refinement
for the Resolution of the Neutron Transport Equation,”
SIAM Journal on Scientific Computing, 35, 2, A936–A956
(2013).

9. S. SCHUNERT, Development of a Quantitative Deci-
sion Metric for Selecting the Most Suitable Discretization
Method for SN Transport Problems, Ph.D. thesis, North
Carolina State University) (2013).

10. J. WILLERT, H. PARK, and D. A. KNOLL, “A compari-
son of acceleration methods for solving the neutron trans-
port k-eigenvalue problem,” Journal of Computational
Physics, 274, 681–694 (2014).

11. C. B. MOLER and G. W. STEWART, “An algorithm for
generalized matrix eigenvalue problems,” SIAM Journal
on Numerical Analysis, 10, 2, 241–256 (1973).

12. C. CAVAREC, J. PERRON, D. VERWAERDE, and
J. WEST, “Benchmark calculations of power distribution
within assemblies,” Tech. rep., Nuclear Energy Agency
(1994).

13. Y. WANG, W. BANGERTH, and J. RAGUSA, “Three-
dimensional h-adaptivity for the multigroup neutron diffu-
sion equations,” Progr. Nucl. Energy, 51, 543–555 (2009).

14. J. J. BUONI, P. A. FARRELL, and A. RUTTAN, “Algo-
rithms for lu decomposition on a shared memory multi-
processor,” Parallel Computing, 19, 8, 925–937 (1993).


