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Abstract - The λ, γ and α-modes can be defined in neutron diffusion equation to study the characteristics of
nuclear reactor. A high order finite element method is used for the discretization of the differential eigenvalue
problems. The aim of this work is to study the differences between the modes and analyze two methods to
compute the resulting algebraic eigenvalue problem after the spatial discretization. Krylov-Schur method is
used to solve these kind of problems. As an alternative to speed-up the calculations for γ and α-modes, a
strategy based on the modified block Newton method is proposed. To present numerical results and compare
the eigenvalue solvers, a homogeneous reactor and the NEACRP reactor are studied.

I. INTRODUCTION

The time-dependent transport equation can be trans-
formed into several eigenvalue equations forcing the criti-
cality to obtain steady-state equations [1, 2]. If fission terms
are modified to have a critical configuration, the λ-modes
problem is obtained. If instead of this, the fission and scat-
tering terms are divided by γ > 0, the resulting eigenvalue
problem is known as the γ-modes problem. Finally, if it is
assumed an exponential time behavior for the neutron flux, i.e.
ϕ(r, E,Ω, t) = eαtϕ(r, E,Ω), the α-modes problem is obtained
[3]. The dominant λ-modes have been frequently used to
study the kinetics in the reactor core with modal methods and
to study BWR reactor instabilities [4]. The α-modes have been
used to develop monitoring techniques for subcritical systems
[5]. There are not many studies on the γ-modes, but, these last
modes are interesting because they have the advantage that
they are not limited to systems on which fission is included
and they are a good option to analyze critical systems, since
the γ spectrum will be closest to the critical one [1].

However, due to the complexity of transport equation, the
multigroup neutron diffusion equation is used as an approx-
imation. The above modes problems are considered for this
approximation. In this work, the energy is divided into two
groups: fast and thermal. So, the diffusion equations for λ, γ
and α-modes are, respectively,
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If we replace β = 0 in (3), we obtain the intermediate α-modes,
otherwise the prompt α-modes are obtained [3].

All these problems are generalized eigenvalue problems
associated with differential operators and the aim of this work
is to obtain a set of dominant eigenvalues and their correspond-
ing eigenmodes.

The rest of the paper is organized as follows: In Section
II., the high order finite elements method used to discretize
equations (1), (2) and (3) is briefly exposed and an algebraic
generalized eigenvalue problem is obtained for each one of
the mode problems. In Section III., two eigenvalue solvers are
analyzed. The first one is the Krylov-Schur method, a Krylov
subspace method, typically used for this kind of computations.
The second one is an alternative method to speed-up the calcu-
lations for γ and α-modes based on Rayleigh-Ritz procedure
and modified block Newton method. To test the performance
of the method, several benchmarks are studied in Section IV..
Finally, in Section V., the conclusions are summarized.

II. DISCRETIZATION BY FINITE ELEMENTS

For simplicity, the discretization used is shown only for
one energy group but the same process can be applied for two
o more groups [6].

Let us consider the one energy group λ-modes equation,

(−∇(D∇) + Σa)φ =
1
λ

(νΣ f )φ, (4)

the weak formulation is obtained by pre-multiplying by a test
function ϕ and integrating over the domain, Ω, defining the
reactor core,∫

Ω

ϕ(−∇(D∇) + Σa)φ dV =
1
λ

∫
Ω

ϕ(νΣ f )φ dV . (5)
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Using Gauss Divergence theorem in (5) and simplifying,
the following equation is obtained
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1
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where Γ is the boundary of the domain defining the reactor.
It is supposed the domain Ω can be decomposed as Ω =

∪e=1,...,Nt Ωe, where the cross sections in Ωe remain constant
for all e = 1, . . . ,Nt, thus, (6) is equivalent to,
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The solution φ is approximated through usual trial solu-

tion as sum of shape functions N j multiplied by their corre-
sponding nodal values φ̃ j, as,

φ ≈

p∑
j=1

N jφ̃ j. (8)

Substituting in (7) and after a condensation process, a general-
ized algebraic eigenvalue problem of the form
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1
λ
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is obtained, where the matrix elements are given by
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The same method is applied to γ and α-modes problems.
For two energy groups, the generalized algebraic eigen-

value problem, after the spatial discretization, for each mode
takes the form,(
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The finite element method used in this work has been
implemented using the open source finite elements library
Deal.II [7].

III. SOLUTION OF THE EIGENVALUE PROBLEMS

The modes problems (11), (12) and (13) can be reduced to
a generic ordinary algebraic eigenvalue problem of the form,

Mv = δv, (14)

that it has to be solved to find a set of dominant eigenvalues
and their corresponding eigenfunctions (modes). We denote
the number of desired eigenvalues by q.

For λ-modes, due to their block structure, it is possible to
reduce the generalized problem to one whose matrices have
the half of the size of the initial problem,

(Aλ
11)−1(Bλ11 − Bλ12(Aλ

22)−1Aλ
21)φ̃1 = λφ̃1. (15)

For γ-modes, the problem is reduced to,

(Aγ)−1Bγφ̃ = γφ̃. (16)

And for the α-modes the ordinary eigenvalue problem
associated is equal to,

(Aα)−1Bγϕ̃ = α̃ϕ̃, with α̃ =
1
α
. (17)

All these problems are very large and the matrices in-
volved are sparse, thus the solution of the partial eigenvalue
problems is done by using an iterative method based on the
matrix-vector product. We have to take into account that the
matrix inverses are not computed explicitly. They can be han-
dled implicitly by solving systems of linear equations. These
systems are solved using the BiCGStab method, together with
a Cuthill-McKee reordering and incomplete LU factorization
for preconditioning. Note that, the matrices associated with
λ and γ-mode problems are symmetric, so, the rate of conver-
gence to solve the systems in λ and γ problems are faster than
for α-modes.

1. Krylov-Schur method

The basic idea of the Krylov-Schur method is to iteratively
expand a Krylov subspace (with the Arnoldi process) and
contract with a so-called Krylov-Schur decomposition with a
matrix in a real Schur form (for more details, see [8]). To solve
these problems by Krylov-Schur method the library SLEPc
[?] is used.

2. Modified block Newton method

As it will be discussed later, the Krylov-Schur method
is expensive from the computational point of view, specially,
to compute the γ and α-modes. Thus, an alternative method
based on the Block Newton method is studied. We want to
remark that previous studies based on Newton method only
compute the dominant mode and here we want to obtain sev-
eral modes.

This method is decomposed in two steps: first, a pro-
cedure based on Rayleigh-Ritz method is applied to obtain
an initial approximation of eigenvalue problem. Then, the
solution is iteratively computed with the Modified block New-
ton method [9], using as initial iteration the approximation
obtained in the first step.
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Given a partial eigenvalue problem of the form

MV = VΛ, (18)

where Λ is a diagonal matrix with the desired eigenvalues and
V , the matrix in whose columns are their corresponding eigen-
vectors, it is assumed that the eigenvectors can be factorized
as

V = ZS , (19)

where ZTZ = I, and it is introduced the biorthogonality con-
dition WTZ = I, where W is a fixed matrix, to make it a
determinate problem.

Introducing (19) in (18) and denoting,

K = S ΛS −1, (20)

we have the non linear problem (21)

F(Z,Λ) :=
(

MZ − ZK
WTZ − Iq

)
=

(
0
0

)
. (21)

From Newton’s method, a new iterated solution arises as

Z(k+1) = Z(k) − ∆Z(k), K(k+1) = K(k) − ∆K(k), (22)

where ∆Z(k) and ∆K(k) are solutions of the system{
M∆Z(k) − ∆Z(k)K(k) − Z(k)∆K(k) = MZ(k) − Z(k)K(k),
WT ∆Z(k) = WT Z(k) − Iq,

(23)
which is obtained by substituting (22) in (21) and removing
the second order terms.

The system of equations in (23) is coupled because K(k) is
not necessarily a diagonal matrix. To decouple this system, the
Modified Block Newton method applies two previous steps.
The first step consists of an orthogonalization to the matrix
Z(k) using the modified Gram-Schmidt algorithm. Once Z(k)

is an orthonormal matrix, i.e., Z(k)T
Z(k) = Iq, as a second

step, a Rayleigh-Ritz procedure is applied, which consists
of obtaining the eigenvectors S (k) and their corresponding
eigenvalues Λ(k) that satisfy

Z(k)T
MZ(k)S (k) = S (k)Λ(k). (24)

Note that the size of Z(k)T
MZ(k) is equal to the number of

required eigenvalues. So, the dimension of problem (24) is
much smaller than initial eigenvalue problem (18).

Defining Z̄(k) := Z(k)S (k), we have, from (24), that Λ(k)

is a diagonal matrix whose elements, λi are the Ritz values
and Z̄(k) are the approximated Ritz eigenvectors, satisfying the
equation

Z(k)T
(MZ̄(k) − Z̄(k)Λ(k)) = 0. (25)

At each iteration, the matrix W in equation (23) is chosen
as the previous approximation for the invariant subspace, that
is, W = Z̄(k). Using the definition of K(k) on (20), system (23)
is decoupled into the q linear systems(
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where ∆z̄(k)
i is the i-th column of ∆Z̄(k). Vectors Z(k+1) are

updated according to equation (22) and the eigenvalues λ(k)
i

are obtained from the small problem (24). The Modified Block
Newton method to obtain the γ and α-modes from the solution
of λ-modes problem, can be summarized as in Algorithm 1.

Algorithm 1 MBNM
Input: Mδ, δ eigenvalue matrix problem (14), (δ = γ, α) and
Vλ matrix of λ problem with column eigenvectors.
Output: Λδ, diagonal matrix of eigenvalues and Vδ matrix
with corresponding column eigenvectors.

1: Orthonormalize(Vλ) . Modified Gram-Schmidt
2: Compute F = VT

λ MδVλ, . Rayleigh-Ritz (Start)
3: Solve the reduced problem FZ = ZΛδ

4: Compute Vδ = VλZ . Rayleigh-Ritz (End)
5: while Vδ, Λδ do not satisfy a termination criterion do
6: Compute ∆Vδ = [∆vδ1, . . . ,∆vδq]

(Correction determined with the
Newton iteration of Eq. (26))

7: Vδ = Vδ − ∆Vδ

8: Orthonormalize(Vδ) . Modified Gram-Schmidt
9: Compute F = VT

δ MδVδ, . Rayleigh-Ritz (Start)
10: Solve the reduced problem FZ = ZΛδ

11: Compute Vδ = VδZ . Rayleigh-Ritz (End)
12: end while

IV. RESULTS AND ANALYSIS

To study the performance of the methods exposed above
to determine the λ-modes, α-modes and γ-modes, two bench-
mark reactor problems have been considered.

The computer used has been an Intel R© CoreTM i7-4790
@3.60GHz×8 processor with 32Gb of RAM running Ubuntu
GNU/Linux 16.04 LTS.

1. Homogeneous reactor

First, a 3D prismatic reactor with homogeneous material
is considered since it can be solved analytically for all its eigen-
values and compared with the numerical results obtained using
the finite element method. The analytical solution is developed
in APPENDIX. The dimensions are 300 cm×300 cm×450 cm
and the material cross sections for the prismatic reactor are
displayed in Table I. The velocities are v1 = 2.8 · 107cm/s
and v2 = 4.4 · 107cm/s. The number of neutrons produced by
fission (ν) has been considered equal to 2.5. The modeling
mesh of reactor is composed of 36 cells of size 50 × 50 cm2

per 6 planes of height 75cm.
The mean relative error,

ε̄ =
1
Vt

∑
i

εiVi, where εi =
|Pi − P∗i |
|Pi|

and the eigenvalue error expressed in pcm,

εeig = 105
(
|δi − δ

∗
i |

|δi|

)
,
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TABLE I. Macroscopic cross section values for the homogeneous reactor.

D1(cm-1) D2(cm-1) Σa1(cm-1) Σa2(cm-1) Σ12(cm-1) νΣ f 1(cm-1) νΣ f 2(cm-1)

1.501 4.329e-01 9.400e-03 8.210e-02 1.685e-02 6.060e-03 1.010e-01

are considered to analyze the numerical results. Pi and P∗i are
the analytical power and the computed power in the i-th cell
(cell averages), respectively. Vi is the volume of the cell and
Vt is the total volume of the reactor. δi and δ∗i with δ = λ, α, γ
are the analytical and computed eigenvalues.

Tables II, III and IV show the eigenvalue and power er-
rors between the analytical and numerical solution with dif-
ferent polynomial degree in finite element method (FED),
mesh refinement level (Refin.) and number of degree of free-
dom (DoFs) for λ-modes, γ-modes and α-modes, respectively.
Also, in each case, the computational time is displayed.

The method used to solve the ordinary eigenvalue prob-
lems (15), (16) and (17) has been Krylov-Schur. The number
of eigenvalues requested has been 4, the dimension of Krylov
subspace chosen has been 19 and the relative tolerance has
been set to 10−8. The tolerance in BiCGStab has been 10−9.

In these Tables it is observed, in general, that good approx-
imations are obtained choosing a finite element degree (FED)
equal to 2 and 1 mesh refinement. Although, for γ-modes, the
error are very low with FED equal to 1 and 1 refinement. Also,
it can be concluded that the errors do not depend on which
eigenvalue (first or second) is being calculated. However, the
computational times for different kind of modes are not similar,
and for λ-modes, they are smaller than for γ and α-modes.

2. NEACRP reactor

The NEACRP benchmark [10] is chosen to compare the
different modes and eigenvalue solvers in a more realistic case.
The core has a radial dimension of 21.606 cm × 21.606 cm per
assembly. Axially the reactor, with the total height of 427.3
cm, is divided into 18 layers with height (from bottom to top):
30.0 cm, 7.7 cm, 11.0 cm, 15.0 cm, 30.0 cm (10 layers), 12.8
cm (2 layers), 8.0 cm and 30.0 cm. The distribution of the
different materials is shown in Figure 1 and Figure 2. The
cross sections of materials are displayed in Table V. The
boundary condition for the solution is flux vanishing in the
outer reflector surface. And the velocities are v1 = 2.8·107cm/s
and v2 = 4.4 · 105cm/s.

In the following computations, the options used for the
finite element method to discretize the different eigenvalue
problems are: finite element degree equal to 3 and without
refinement of the mesh (Refin.=0). For solving the eigenvalue
problems, Krylov-Schur method is applied for ordinary modes
problems (15), (16) and (17) to obtain 6 eigenvalues, setting
the Krylov subspace dimension to 13. The relative tolerance
used, in Krylov-Schur and BiCGStab method, is 10−8 for λ
and γ-modes, and 10−13 for α-modes. This difference for α-
modes is because matrix Aα is ill-conditioned and to obtain
good approximations (with residual errors less than 10−5) in
the generalized eigenvalue problem is necessary to request a
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Fig. 1. Top view of NEACRP reactor and distribution of
materials.

tolerance equal to 10−13 in the ordinary eigenvalue problem.
The results for four eigenvalues together with the num-

ber of iterations of Krylov-Schur, the mean of iterations of
BiCGStab, the memory consumption of matrices and the CPU
time necessary for their calculation, are displayed in Table
VI. In this Table, it is observed that reactor is quasi-critical
since the dominant λ and γ are near 1, and α is near to 0. The
problems are large eigenvalue problems and they need to be
solved with iterative methods. If the iterations of BiCGStab
are compared, the number for α-modes is much higher to the
rest, because Aα is ill-conditioned. The number of iterations
required for the Krylov-Schur method to converge for γ-modes
is much larger compared with the other modes. The reason is
that the spectrum of γ-modes is more clustered.

The radial and axial profiles for the fast flux associated
with the first two eigenvalues are represented in Figure 3 for
each kind of mode. In this Figure, small differences are ob-
served between different kind of modes due to quasi-criticality
of reactor. Furthermore, it is shown that the fast flux for
the first modes is positive and has radial and axial symmetry,
whereas the second modes are antisymmetric in axial profile
and symmetric in the radial one.

The computational time necessary to obtain the different
modes with the Krylov-Schur method is very different (the
computational time to solve the eigenvalue problem associated
to α and γ-modes is much larger than the time for λ-modes).
So, it is proposed computing α-modes and γ-modes using
an alternative methodology based on modified block Newton
method. The MBNM is a sensitive iterative method to ini-
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TABLE II. λ-modes and errors for the homogeneous reactor.

First eigenvalue Second eigenvalue

FED Refin. DoFs λ1 εeig ε̄ λ2 εeig ε̄ CPU Time (s)

1 1 2197 3.95612 294030 8.26 3.95306 297200 4.94 1
2 0 2197 1.91598 90830 13.67 1.91597 92516 7.48 0.8
2 1 15625 1.00402 0.02 1.5e-3 0.99523 0.7 6.80e-3 4
3 0 6859 1.00402 0.07 1.4e-3 0.99526 3.2 5.41e-3 5

Anal. solut.: 1.00402 0.99523

TABLE III. γ-modes and errors for the homogeneous reactor.

First eigenvalue Second eigenvalue

FED Refin. DoFs γ1 εeig ε̄ γ2 εeig ε̄ CPU Time (s)

1 1 4394 1.0022 5.2 8.95e-8 0.99711 19.4 1.26e-7 0.5
2 0 4394 1.0023 0.07 1.23e-8 0.99730 1.1 4.44e-7 1.2
2 1 31250 1.0023 0.02 4.63e-8 0.99731 0.07 2e-7 11.5
3 0 13718 1.0023 0.02 5.26e-8 0.99731 0.01 4.28e-7 20

Anal. solut.: 1.0023 0.99731
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Fig. 2. Profile view of NEACRP reactor and distribution of
materials.

tial approximation. As near criticality the eigenfunctions for
different kind of modes are similar, it is proposed initiate the
MBNM with the solution of λ-modes problem to compute
the solution of γ and α eigenvalue problems. The stopping
criterion used in these methods is based on the residual of
the calculated eigenvalues and eigenvectors in generalized
eigenvalue problem,

res =

√ ∑
k=1,...,q

‖Aδvk − Bδvkδk‖2, (27)

where the vk are the corresponding k-eigenvectors associated
to the eigenvalues δk = λk, γk, αk.

The computational times necessary to obtain the γ and
α-modes with both methods are shown in Table VII with
residual error (res) lower than 10−6. The computational time
for λ-modes has been added to CPU time of MBNM shown.
It is observed that the MBNM is competitive for computing α
and γ modes.

V. CONCLUSIONS

In this work, the λ, α and γ-modes have been considered
for neutron diffusion equation. A high order finite element
method is used to discretize these equations. A homogeneous
reactor is presented to analyze the numerical errors in the dis-
cretization method and to compare them between the different
modes. A good approximation is obtained with degree of
polynomial in finite element equal to 2 and one refinement of
the mesh.

According to modes, the γ eigenvalues have the advan-
tage that they are not limited to systems with fissions like the
λ-modes. However, it has the limitation that |γ − 1| is lower
than |λ − 1| for the same configuration, this implies that the
eigenvalue is less sensitive, and its numerical calculation re-
quires more computational time to reach the convergence than
the λ-modes calculations.

Regarding α-eigenvalues, they are best suited for transient
analysis, due to the nature of this kind of modes. Nevertheless,
as the γ-modes problem, the computational time necessary to
obtain the α-modes is larger than for the computation of the
λ-modes. The reason is that the matrix obtained in discretiza-
tion of α-modes problem is ill-conditioned. Solving linear
system with this matrix is very expensive and low tolerances
in ordinary eigenvalue problem are needed to set to obtain
good approximations in the generalized problem.

The Modified block Newton Method has been considered
as an alternative to compute the α and γ-modes. As near
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TABLE IV. α-modes and errors for the homogeneous reactor.

First eigenvalue Second eigenvalue

FED Refin. DoFs α1 εeig ε̄ α2 εeig ε̄ CPU Time (s)

1 1 4394 173.10 2313.7 2.11e-7 -225.19 7183 1.10e-7 0.5
2 0 4394 177.13 41.5 4.65e-7 -210.97 413.5 4.09e-7 1
2 1 31250 177.19 2.6 7.46e-8 -210.16 26.8 5.06e-8 14
3 0 13718 177.20 0.06 2.78e-7 -210.11 3.1 6.95e-8 10

Anal. solut.: 177.20 -210.10

TABLE V. Macroscopic cross section of the NEACRP reactor.

Mat. D1(cm-1) D2(cm-1) Σa1(cm-1) Σa2(cm-1) Σ12(cm-1) νΣ f 1(cm-1) νΣ f 2(cm-1) Σ f 1(cm-1) Σ f 2(cm-1)

1 5.9263 8.2277e-01 2.6191e-04 1.1477e-02 2.7988e-02 0.0000 0.0000 0.0000 0.0000
2 1.1276 1.6978e-01 1.1878e-03 1.9865e-01 2.3161e-02 0.0000 0.0000 0.0000 0.0000
3 1.1276 1.6978e-01 1.1878e-03 1.9865e-01 2.0081e-02 0.0000 0.0000 0.0000 0.0000
4 1.4624 3.9057e-01 8.4782e-03 6.2649e-02 1.9684e-02 5.0150e-03 8.7684e-02 6.1479e-14 1.1511e-12
5 1.4637 3.9489e-01 8.8239e-03 7.0055e-02 1.9435e-02 5.6085e-03 1.0421e-01 6.9274e-14 1.3681e-12
6 1.4650 3.9855e-01 9.1498e-03 7.6924e-02 1.9195e-02 6.1819e-03 1.1951e-01 7.6810e-14 1.5689e-12
7 1.4641 4.0582e-01 9.0882e-03 7.7758e-02 1.8525e-02 5.5830e-03 1.0286e-01 6.8995e-14 1.3504e-12
8 1.4641 4.0950e-01 9.1752e-03 8.0371e-02 1.8221e-02 5.5741e-03 1.0229e-01 6.8912e-14 1.3429e-12
9 1.4642 4.1317e-01 9.2609e-03 8.2990e-02 1.7919e-02 5.5649e-03 1.0166e-01 6.8816e-14 1.3347e-12

10 1.4653 4.0923e-01 9.4110e-03 8.4530e-02 1.8287e-02 6.1564e-03 1.1804e-01 7.6529e-14 1.5497e-12
11 1.4655 4.1280e-01 9.4969e-03 8.7097e-02 1.7985e-02 6.1474e-03 1.1741e-01 7.6448e-14 1.5414e-12
12 5.5576 8.7000e-01 2.7396e-03 3.7064e-02 2.4796e-02 0.0000 0.0000 0.0000 0.0000
13 5.6027 8.6358e-01 2.4190e-03 3.3753e-02 2.5209e-02 0.0000 0.0000 0.0000 0.0000
14 1.4389 4.0090e-01 1.0956e-02 8.8237e-02 1.6492e-02 4.9121e-03 8.4861e-02 6.0264e-14 1.1141e-12
15 1.4413 4.0669e-01 1.1579e-02 1.0257e-01 1.6053e-02 6.0592e-03 1.1622e-01 7.5334e-14 1.5259e-12

the criticality of reactor, the eigenfunctions are similar, the
λ-modes have been used to initiate the Modified block Newton
method to compute the γ and α-modes. The numerical results
show that this last method computes the solution in a faster
way than Krylov-Schur method.

APPENDIX

Analytical solution for λ-modes

A 3D rectangular homogeneous reactor is considered. The
λ-modes problem for a tridimensional domain, Ω = [0, Lx] ×
[0, Ly] × [0, Lz], is defined as

− ∇D1∇φ1 + (Σa1 + Σ12)φ1 =
1
λ

(νΣ f 1φ1 + νΣ f 2φ2), (A.1)

− Σ12φ1 − ∇D2∇φ2 + Σa2φ2 = 0, (A.2)

with the boundary conditions

φg(0, y, z) = φg(Lx, y, z) = 0,
φg(x, 0, z) = φg(x, Ly, z) = 0, g = 1, 2.
φg(x, y, 0) = φg(x, y, Lz) = 0,

Using the variables separation method, the solution of
λ-modes problem is obtained. The thermal and fast group
eigenfunctions are, respectively,

φ2(x, y, z) = k sin
(

mπ
L1

x
)

sin
(

nπ
L2

y
)

sin
(

pπ
L3

z
)
. (A.3)

φ1(x, y, z) =
D2B2

m,n,p + Σa2

Σ12
φ2(x, y, z). (A.4)

with
B2

m,n,p = B2
x,m + B2

y,n + B2
z,p. (A.5)

and

Bx,m =
mπ
Lx
, By,n =

nπ
Ly
, Bz,p =

pπ
Lz
. (A.6)

Different values of the integer numbers m, n and p cor-
respond to the different eigenvalues and the corresponding
eigenfunctions of the reactor.

The eigenvalues λ are of the form,

λ =
νΣ f 1(D2B2

m,n,p + Σa2) + νΣ f 2Σ12

(D2B2
m,n,p + Σa2)(Σa1 + Σ12 + D1B2

m,n,p)

Analytical solution for γ-modes

The γ-modes problem for a tridimensional domain, Ω =
[0, Lx] × [0, Ly] × [0, Lz], is defined as,

− ∇D1∇ψ1 + (Σa1 + Σ12)ψ1 =
1
γ

(νΣ f 1ψ1 + νΣ f 2ψ2), (A.7)

− ∇D2∇ψ2 + Σa2ψ2 =
1
γ

Σ12ψ1, (A.8)
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TABLE VI. Eigenvalues of NEACRP reactor.

1st 2nd 3rd 4th its. Krylov-
Schur

mean its.
BiCGStab

memory con-
sumption

CPU Time (s)

λ-modes 0.99919 0.98792 0.98442 0.98442 16 17.35 406.19Mb 131s
γ-modes 0.99955 0.99332 0.99137 0.99137 40 5.01 388.39Mb 422s
α-modes -31.2450 -468.709 -612.494 -612.494 6 43.61 493.91Mb 651s

TABLE VII. Computational time(s) using Krylov-Schur and
MBNM methods.

Method Krylov-Schur MBNM

α-modes 651 563
γ-modes 488 389

with the boundary conditions

ψg(0, y, z) = ψg(Lx, y, z) = 0,

ψg(x, 0, z) = ψg(x, Ly, z) = 0, g = 1, 2.

ψg(x, y, 0) = ψg(x, y, Lz) = 0,

The solution of γ-modes problem is obtained using the
variables separation method following an analogous process
to the λ-modes problem. For this problem we get,

ψ2(x, y, z) = k sin
(

mπ
Lx

x
)

sin
(

nπ
Ly

y
)

sin
(

pπ
Lz

z
)
, (A.9)

ψ1(x, y, z) =
γ(B2

m,n,pD2 + Σa2)

Σ12
ψ2(x, y, z), (A.10)

with m, n, p ∈ N.
The eigenvalue γ is a solution of the equation[

D1B2
m,n,p(D2B2

m,n,p + Σa2) + (Σa1 + Σ12)(D2B2
m,n,p + Σa2

]
γ2

−
[
νΣ f 1(D2B2

m,n,p + Σa2)
]
γ − Σ12νΣ f 2 = 0,

with B2
m,n,p defined in (A.5). In typical reactors, the two solu-

tions of this equation are real and they are sorted by largest
magnitude. Different values of m,n, p correspond to the differ-
ent eigenvalues and eigenfunctions of the reactor.

Analytical solution for α-modes

The α-modes problem for a tridimensional domain, Ω =
[0, Lx] × [0, Ly] × [0, Lz], is defined as,

v1
(
∇D1∇ϕ1 − (Σa1 + Σ12)ϕ1 + νΣ f 1ϕ1 + νΣ f 2ϕ2

)
= αϕ1,

(A.11)

v2
(
Σ12ϕ1 + ∇D2∇ϕ2 − Σa2ϕ2

)
= αϕ2, (A.12)

with the boundary conditions

ϕg(0, y, z) = ϕg(Lx, y, z) = 0,

ϕg(x, 0, z) = ϕg(x, Ly, z) = 0, g = 1, 2.

ϕg(x, y, 0) = ϕg(x, y, Lz) = 0,

Using a similar procedure to the one followed for the
other modes, the analytical solution of the α-modes problem
is,

ϕ2(x, y, z) = k sin
(

mπ
L1

x
)

sin
(

nπ
L2

y
)

sin
(

pπ
L3

z
)
, (A.13)

ϕ1(x, y, z) =
B2

m,n,pv2D2 + v2Σa2 + α

v2Σ12
ϕ2(x, y, z), (A.14)

with m, n, p ∈ N, where the eigenvalues α are solutions of

α2 +
[
B2

m,n,pv2D2 + v2Σa2 − v1νΣ f 1 + v1(Σa1 + Σ12) (A.15)

+ v1D1B2
m,n,p

]
α + v1D1B2

m,n,p(B2
m,n,pv2D2 + v2Σa2) (A.16)

+ v1(Σa1 + Σ12)(B2
m,n,pv2D2 + v2Σa2) (A.17)

− (v1νΣ f 1(B2
m,n,pv2D2 + v2Σa2) + v2Σ12v1νΣ f 2 = 0, (A.18)

and B2
m,n,p defined in (A.5). If typical macroscopic cross sec-

tions are used, the two solutions of this equation are real
numbers. Also, different eigenvalues are obtained changing
the value of m, n and p.
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