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Abstract - The first collision source calculation has recently been implemented in the IDT discrete ordinates
nodal and short characteristics transport code. Several methods are developed and compared with the
multigroup discrete ordinates transport code PARTISN and the continuous in energy Monte Carlo code
TRIPOLI4 R©. The paper describes five different options: 1) a non-conservative scheme based on the tracking
through the mesh centers, 2) a non-conservative averaging of mesh corner values, 3) cell based balance scheme
with the surface averaged interface currents, 4) semi-analytic approach based on a conservative local-cell
balance with numerical surface integration and 5) method of characteristics (MOC) based conservative scheme.
The comparisons are performed on simple one group 3D test cases, one with a simple homogeneous geometry
and another with very strong material heterogeneities. The detector responses are obtained for a 42-group 3D
gamma shielding problem and compared. Results show that among the different options, the most robust are
MOC, Mesh Center and Corner Average since they are positive, whereas schemes based on the Cell Balance
may incur in negative solutions due to an inaccurate estimation of boundary currents. However, both Mesh
Center and Corner Average have slow spatial convergence and may undergo conservation issues for coarse
meshes. The MOC scheme, on the contrary, preserves global balance.

I. INTRODUCTION

IDT is a 1D/2D/3D discrete ordinates multigroup trans-
port code that uses finite differences, nodal and short character-
istics schemes in Cartesian geometry. It exists as a standalone
mockup and as a part of APOLLO2 [3] and APOLLO3 R©[4]
general purpose transport codes. It deals with homogeneous
meshes [1] and heterogeneous ones that model the lattice pins
cells in 2D and 3D with arbitrary number of concentric annuli
[2]. A purely Cartesian mock-up has already been used for
several source problem benchmark solutions [5, 6] with the
volume distributed sources without first collision feature, al-
beit some situations were characterized by localized sources
and weak scattering that essentially requires the use of the
first collision source. Recently renewed interest in determin-
istic solutions of radiative transfer problems has motivated
the development of a first collision source option in the IDT
source problem solutions. The new developments will allow
the use of IDT either for direct flux calculations, or in order to
provide importance maps for Monte Carlo calculations. The
standalone IDT is thus provided with the first collision source
option, where several techniques have been investigated. The
final version will include the first collision source from a set
of point sources but also from the surface (internal interface)
and volume distributed sources. The same ray-tracing tech-
nique used for the point source can also be used to improve
the response of point detectors.

II. METHODOLOGY

In the first collision source method the solution of the
transport equation with an isotropic point source of intensity q

at position rp

(Ω̂·∇+σ)ψ(r, Ω̂) =
∑
`≥0

(2`+1)σs`

m=−`∑
m=−`

Y`m(Ω̂)φ`m(r)+
qp

4π
δ(r−rp)

(1)
is sought as the sum ψ = ψu + ψc, that is of the uncollided
flux ψu plus the multiple collided flux ψc with the extra source
defined as emission density from the first collision. The multi-
group first collision source moments are

qg
`m =

∑
`m

σ
g′g
s` φ

g′

`m,u. (2)

The uncollided flux moments are computed as

φ
g
`m,u(r) =

∫
dΩY`m(Ω̂)ψu(r, Ω̂), (3)

ψu(r, Ω̂) =
q

4π
e−τ(r,rp)

|r − rp|
2 δ

(
Ω̂ −

r − rp

|r − rp|

)
, (4)

where τ(r, rp) is optical length between points r and rp. This
yields

φ`m,u(r) = Y`m(Ω̂rp→r)
q

4π
e−τ(r,rp)

|r − rp|
2 . (5)

The above equation allows for a direct computation of the
angular flux moments for a desired point r using the ray tracing
technique. Many implementations use the mesh cell centers
as arrival point, assigning thus such a calculated value to the
average flux within the cell. Others are based on cell vertices
by taking their average values [12, 13, 14]. The codes based
on the finite element approximation usually use the quadrature
points set for the within cell numerical integration [10, 11].
These methods converge with the mesh refinement, but in
general are not conservative, which means that one does not
preserves the balance between emission rate and loss due to
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collisions and leakage, so that the renormalization of the un-
collided flux is necessary. Mesh refinement may be prohibitive
especially in 3D, but the use of sub-meshing only for the pur-
pose of uncollided flux calculation is possible, so that the
detailed flux distribution on the sub-mesh is averaged over
the problem mesh. Instead of sub-meshing a random set of
trajectories can be used [9], where the selection is done in
batches such that the variance of the flux can be computed.

Another approach is to use directly the local balance of
each mesh cell [8], which for uncollided flux is obtained by
integrating Eq. 1 without the scattering term over a cell volume
V . The balance for the generic angular moment of order (`m)
gives:

Jout,u
`m − Jin,u

`m + σφ`m,uV = q δ`m,00δ(rp ∈ V) (6)

Where δ`m,00 means that only isotropic source is considered
and δ(rp ∈ V)=1 if the cell contains the point source and zero
otherwise. The net current is expressed as contribution of sur-
face integrated currents for each face of the 3D mesh cell. The
problem of evaluating the flux moments is thus substituted by
the problem of evaluating the interface currents. In this way,
as the leakage on the outer boundaries is calculated in full con-
sistency with the currents across the mesh cell interfaces, the
global balance is automatically preserved. Slight additional
complexity comes in the cases with vacuum cells. In this paper
we investigate two ways of calculating the surface currents.
The first is based on the direct computation of current com-
ponents for cell vertices (i.e. the corresponding first angular
moments, φ10, φ11, φ1,−1 for the corresponding cell faces) and
taking the average value for the face current. The second is the
one described in [8], here extended to Cartesian geometries.

III. FLUX MOMENTS CALCULATION

The code calculates the angular moments of uncollided
flux directly using Eq. 5, which provides the information to
calculate the average flux and surface currents for each mesh
cell.

The basic options for the flux averaging in cell volume φv

and on its surfaces φs are simply

φv
`m,u =

1
8

8∑
i=1

φi
`m,u, φs

`m,u =
1
4

4∑
j=1

φ
j
`m,u, (7)

where φi
`m,u and φ

j
`m,u, are the values on cell vertices in 3D

with j being the vertex index on a single cell face.
These values and additional calculations shown below

allow us to formulate five different schemes:

Mesh Center This option uses the mesh-centered value of the
uncollided flux as approximation for the average value.
The total leakage is computed by using the cell-centered
values of the x/y/z currents (φ`m, m = −1, 0, 1) of the
outer boundary meshes.

Corner Average This option is based on a direct flux moment
averaging by using the first expression in Eq. 7 whereas
the second expression is used to evaluate the total leakage
on outer boundaries.

Corner Balance This option is based on local cell balance
where we use the second expression of Eq. 7 to compute
the partial currents on cell interfaces. The same expres-
sion are used for the global leakage. Contrarily to other,
this option is implemented in a way such that it is capable
to compute the scalar flux only.

Semi-analytic This option is an adaptation to Cartesian
meshes of the scheme proposed by Alcouffe et al. for
R-Z geometries [8]. It is based on a local cell-balance
together with an approximate surface integration of the
currents.

MOC This option uses the method of characteristics to numer-
ically integrate the flux moments in each computational
mesh [7].

The details of the Semi-analytic method and of the MOC
scheme are discussed in the following sections.

1. Semi-analytic method

The detailed analytical expression for the net currents
in the scalar balance equation (Eq. 6), using the analytical
expression of the uncollided flux (Eq. 4), is:

Jout,u
`m − Jin,u

`m =
∑
α

∫
S α

dr Ω̂R · n̂αY`m(Ω̂R)
e−τ(r,rp)

|r − rp|
2 (8)

where the sum runs over the surfaces S α delimiting the cell
and having outgoing normal n̂α. The first approximation is to
assume a constant value of the exponential attenuation for each
surface which we compute as the average over the vertices of
the face. Under this assumption we rewrite Eq. 8 as:

Jout,u − Jin,u =
∑
α

Γα`m < e−τ(r,rp) > . (9)

The expression and the calculation of Γα
`m is given in Sec. 3.

2. Method of characteristics

In the MOC option, a Cartesian mesh is built on the outer
boundaries of the geometry domain and trajectories are tracked
from the point source towards the mid-points of each boundary
mesh. A solid angle ∆Ω̂t is assigned to each trajectory t and a
constant-flux approximation is done over the spherical surface
defined by the distance R from the source. The flux over
the surface is evaluated using Eq. 4 where the optical path is
computed along the trajectory t.

For each intersection of a trajectory with the computa-
tional mesh we write a balance equation:

σψt = R2
inψi(1 − exp−σlt ), (10)

with lt = Rout − Rin being the length of the intersection of the
trajectory with the region, and ψt is the trajectory-integrated
value of the angular flux.

The region-averaged values of the flux angular moments
are determined by summing up all the contributions of the
trajectories crossing the region:

φ`m,u ≈
1
σV

∑
t

Γt
`mψt. (11)



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

In the last equation Γt
lm is the integration weight associated

to each trajectory, which correspond to the integral of the
Spherical Harmonics within the solid angle ∆Ω̂ associated to
the trajectory:

Γt
`m =

∫
∆Ω̂t

dΩ̂Y`m(Ω̂). (12)

The volume V appearing in Eq. 11 is computed numeri-
cally by summing up the contribution of all trajectories and by
using the weight for the zero-th moment (i.e., the solid angle):

φ`m,u ≈
∑

t

Γt
00lt

(
RoutRin +

l2t
3

)
. (13)

The Cartesian mesh used to define the trajectories does
not need to coincide with the actual flux calculation mesh.
At present, the basic option uses a constant mesh step. This,
evidently, may be insufficient if the size of the flux mesh is
smaller, such that no trajectory passes through a region. In
order to remedy this situation, additional option allows to
impose a minimum number of trajectories passing through the
peripheral flux regions. This option may still miss some tiny
regions in the domain interior and further improvements in
adaptive tracking is necessary.

3. Quadrature formula

Both MOC and semi-analytic methods require the evalua-
tion of the integral:

Γα`m =

∫
S α

dS Ω̂R · n̂α
Y`m(Ω̂R)

R2 , (14)

where Ω̂R is the unit vector from the point source to the surface
point r, and R is the distance between the two points. An alter-
native form of the integral in Eq. 14 can be cast by introducing
the change of variable r = rp + RΩ̂R so that dS |Ω̂R · n̂α|:

Γα`m =

∫
α

dΩ̂RY`m(Ω̂)sg(Ω̂ · n), (15)

where sg(x) is the sign function of x, and the integral is for the
trajectories emanating from the point source and intersecting
the surface S α. Under this form we can see that the coefficient
Γα
`m corresponds to the integral of the Spherical Harmonic over

the solid angle relative to the surface S α.
The integration of Eq. 14 can be done analytically for

a rectangular surface. In the particular case of the isotropic
spherical harmonic, the resulting expression corresponds to
the solid angle:

Γ00 = tan−1 v2w2

u0r22
+ tan−1 v1w1

u0r11
− tan−1 v1w2

u0r12
− tan−1 v2w1

u0r21
,

(16)
with r jk =

√
u2

0 + v2
j + w2

k . Here we have considered an orthog-
onal coordinate system uvw centered in the source, having u
oriented along the normal to the surface, and such that u = u0,
v = [v1, v2] and w = [w1,w2] are the coordinates of the surface.

As an example, we also report here the primitive functions
deriving from the integration over a surface oriented along the
z direction of some of the first Spherical Harmonics:

Γ10 = −

z tan−1
(

y
√

x2+z2

)
2
√

x2 + z2
,

Γ20 = −
xyz

2
(
x2 + z2) r

,

Γ30 = −

z
((

3x2 − 2z2
)

r2 tan−1
(

y
√

x2+z2

)
+ 5x2y

√
x2 + z2

)
16

(
x2 + z2)3/2 r2

.

For increasing orders, the complexity of these expressions
increases so that it is difficult to cast them in a stable form for
a correct numerical evaluation. For this reason, we choose to
adopt a numerical approach and integrate Eq.14 by partitioning
the surface S α in smaller rectangular sub-meshes and by using
a rectangle-like quadrature formula:

Γα`m ≈
∑

n

Γn
00Y`m(Ω̂n). (17)

Here Γn
00 is the isotropic coefficient associated to each sub-

surface, whereas Ω̂n is the direction pointing to the sub-mesh
centers. The integration is done by iterating on the number
of sub-divisions until a given convergence criterion is met.
Due to the oscillating nature of the Spherical Harmonics, the
convergence rate of this strategy may be slow. However, for
sufficiently small and distant surfaces, we found that one single
sub-mesh is sufficient to provide an accurate solution. The
iterative solution thus can be optionally deactivated to reduce
the computational costs. The improvement of this integration
strategy is a subject of future research and it is not deeply
addressed in this work.

For the semi-analytic method we compute Γ coefficients
for all the surfaces delimiting each mesh volume and for all
anisotropy orders required to satisfy the region balance. In-
stead, for the MOC option, Γ coefficients are built only for
a Cartesian mesh covering the geometry boundaries. It fol-
lows that for the semi-analytic method, the construction of the
quadrature requires a larger number of operations.

4. Two dimensional case

In two dimensions the point source becomes a line source
and the integration along the axial direction must be performed.
This corresponds to the integration over the polar angle which
results in higher order Bickley functions and different ex-
pressions for the analytical surface integrals. These are not
considered in this paper.

IV. COMPARISONS

1. Two-zone cube

The first test case consists of a simple two zone geometry.
An 11 cm cube with total cross section σ with a centered
internal cube cavity of 1 cm containing the isotropic point
source in its center. The five options which are referred here as
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Fig. 1. Normalization factor for Corner average option per
mesh size and different optical densities.

Mesh Center, Corner Average, Corner Balance, Semi-analytic
and MOC scheme have been investigated for values of σ equal
to 3, 1 and 0.3. The Mesh Center and Corner Average options
are not conservatives, a problem which is customary addressed
by introducing a normalization factor, f , defined such that:

f =
Q − L

R
, (18)

where Q, L and R are respectively the total source intensity,
the total leakages through the outer boundaries, and the total
reaction rate calculated with the uncollided flux. This normal-
ization factor can be considerably far from one in the case of
optically large meshes, so we take this factor as a measure of
the accuracy of the non conservative options. Figs. 1-2 show
this factor for varying mesh size and for three values of the
total cross section. It can be seen that the largest balance errors
occur for optically large meshes. In order to further underline
the issues deriving by using non-conservative schemes, we
also show the total reaction rate in Figs. 2-2. It is clear that
non-conservative schemes without renormalization may incur
in a loss or an increase of the number of particles in the system.
On the contrary, conservative schemes inherently preserve the
globally-integrated reaction rates (provided a coherent estima-
tion of internal and external interface currents). These values
are those corresponding to the asymptotic values reached by
the non-conservative schemes for a sufficiently fine mesh, and
they are not showed in the figures.

Fig. 13 shows comparative plots of uncollided flux dis-
tributions in the horizontal mid-plane at the level of the point
source calculated with three options. The mesh size used here
is 15 meshes per centimeter and σ = 3. Strong oscillations
occur around the source for the second option (Balance) that
maybe due to the sensitive numerics involving the division by
the square of distance and it needs further investigation. On
the contrary, the Semi-analytic remains stable for the same
mesh size and source distance.

2. Lead-concrete shielding problem

The second test case represent a mono-energetic point
source next to a lead plate, which is 40 cm large and 5 cm
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Fig. 2. Normalization factor for Mesh center option per mesh
size and different optical densities.
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Fig. 3. Variation of total reaction rate with mesh size and
different optical densities for Corner average option.
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Fig. 5. Geometry of the Lead-concrete shielding problem.

thick as shown in Fig. 5. The concrete ceiling above is 20 cm
thick. The length of 50 cm is adopted in the third dimension
(y-axis), with the reflective boundary condition at the plane
y = 0, where the source is situated. This test illustrates the
application to the configurations with highly heterogeneous
media.

Fig. 6 shows the normalized uncollided flux in the log-
arithmic scale along the symmetry plane where the source
is positioned, obtained with MOC option, which provides a
smooth solution. One may observe a linear decrease (expo-
nential decay) of the flux along the lead shield. Contrarily to
the first test case (simple cube) the non-conservative methods
in this case give seemingly less sensitive solutions, which can
be seen in Fig. 7. Strong material discontinuities produce the
shadow effects which deteriorate the solution in the partially
shadowed meshes resulting in negative flux values that are
observed for Corner Balance and Semi-analytic options.

V. MULTIGROUP TEST CASE

We present a multigroup test case with the geometry
shown in Fig. 8. The point source, which corresponds to
a 60Co gamma ray emitter, is positioned below a 20 cm thick
concrete block, 2 m large and 1 m wide in the third dimension.
Above the concrete, there is a series of aligned and equally
spaced point detectors as shown in figure, for which the multi-
group flux is calculated. The calculation is performed using
the ZZ-KASHIL-E70, 42-group photon cross section library,
provided by OCDE/NEA Data bank [15]. The results are com-
pared with those of the TRIPOLI4 R©Monte Carlo code and also
with the results of PARTISN [17] that uses the first collision
source option. One must be aware that both PARTISN and
IDT use the multigroup cross sections and are compared with
continuous in energy Monte Carlo. The anisotropy of scatter-
ing is limited to P3 Legendre expansion, which in this case is
prone to the negative directional sources. In order to avoid the
inconsistency in the treatment of negative values in PARTISN
and IDT the option of the negative flux fix-up is turned off.
The S 30 discrete ordinates set of the Legendre-Chebyshev type
with triangular arrangement is used in all calculations.

In the 42-group structure the 60Co source emits in group
22 only. The results are also shown for the IDT without
the first collision source option, where the point source is
represented as a volume source within a small mesh of the size
(0.1× 0.1× 0.05 cm3). The relative errors of the flux values
at the position of detectors for different codes and options
are shown in Figs. 10 and 11. Four IDT options with first

collision source (FCS) are shown: with tracking through Mesh
centers, Semi-analytic method, Corner average and MOC.
Evidently, IDT without FCS is largely erroneous in the group
22 where the source emits. The other IDT options together
with the PARTISN results follow each other closely in this
group except for the detectors far from the source. A general
underestimation of the flux in the far detectors is observed for
all options, especially for the group 26.

The maximum contribution of the uncollided flux to the
total flux in the group 22 at the level of detector plane is 71%
(see Fig. 9). The consequence of the ray effect are clearly visi-
ble in Fig. 12 where the ratio of the fluxes calculated without
and with the FCS option is shown. The group 26 in the figure
shows the minimum far from the source, with a significant un-
derestimation due to the insufficiently precise emission density
which is a consequence of wrongly calculated flux in group
22.

VI. CONCLUSIONS

The standalone variant of the purely Cartesian IDT multi-
dimensional nodal and characteristics discrete ordinates code
is now operational with the first collision source capability.
The angular emission from the point source is accounted by the
ray tracing technique. Five different options were investigated.
The first one is based on the tracking through the mesh centers,
the second on the averaging of mesh corner values. Both are
non-conservative schemes which require the renoramalization
in order to insure global particle balance. The three other are
on the contrary inherently conservative. Among these are the
cell based balance scheme with the surface averaged inter-
face currents, and one with a semi-analytic approach based
on local-cell balance using numerical surface integration. The
first one manifests the instabilities due to the erroneous esti-
mation of the interface currents, while the other remedies to
this problem by providing more accurate integration weights.
Nonetheless, for highly heterogeneous cases such scheme may
be very sensitive as shown in the example. Finally the fifth
option is based on the method of characteristics which appears
to be an efficient alternative to all others, albeit it needs a
careful choice of trajectory set in order to correctly treat very
tiny regions. The detailed convergence studies will be done in
further work.

The example of the 42-group shielding test problem
shows that the use of FCS is of essential importance for a
physically valid estimation of flux in deep penetration prob-
lems. The results also show that IDT with FCS is of equivalent
accuracy as PARTISN transport code.

Although the development described here is related only
to the point source, the volume distributed source may be
treated using the sub-meshing feature. Further work will be
oriented to the development of random ray-tracing and last
collision flux for point detectors responses.
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Fig. 6. 3D view (left) of the uncolided flux (log10 φ) in the plane containing the source of the lead-concrete problem using MOC
option. 2D view of the same distribution is on the right.

Fig. 7. Uncolided flux ratios. Four options relative to MOC solution: Corner Average (top-left), Mesh Center (top-right), Corner
Balance (bottom left) and Semi-analytic (bottom-right). Grey surface is the limit of the truncated plot.
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Fig. 8. Geometry of the multigroup test case.
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Fig. 9. Uncollided (blue) and total (orange) flux profiles in
group 22 along the line of detectors.
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Fig. 10. Relative errors of the flux at the detector positions of
the group 22, compared to Monte Carlo reference.
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Fig. 11. Relative errors of the flux at the detector positions of
the group 26, compared to Monte Carlo reference.

Fig. 12. Ratio of the fluxes calculated without FCS and the
ones calculated using with FCS and MOC option for the
groups 22 (top) and 26 (bottom). This is a top view on the
plane passing through the detectors and parallel to the concrete
surface
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Fig. 13. Comparative plots of uncollided flux distributions in logarithmic scale in the horizontal plane containing the point
source. The order of options is Average, Balance and Semi-analytic. The mesh size used is 15 meshes per centimeter and σ = 3.
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