
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Application of the Finite-Element-with-Discontinuous-Support Method to Thermal Radiation Transport

Andrew Till,∗ Robert Lowrie,∗ Christopher Fontes†

∗CCS-2: Computational Physics and Methods Group, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM
†XCP-5: Materials and Physical Data Group, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM

till@lanl.gov, lowrie@lanl.gov, cjf@lanl.gov

Abstract - Previous work has developed the Finite-Element-with-Discontiguous Support (FEDS) method
for discretizing the energy variable for neutron transport (NT) using discontiguous and discontinuous finite
elements in energy. Like nuclear cross sections for NT, atomic opacities in thermal radiation transport (TRT)
exhibit rapid oscillations as a function of particle energy. These oscillations are difficult to treat numerically
with the popular multigroup (MG) discretization when the number of degrees of freedom (DOF) in energy (the
number of groups) is much less than the number of lines, which is often the case. These interaction similarities
motivate us to apply the FEDS method to TRT problems. We derive FEDS for TRT and compare with MG as
a function of number of DOF in energy for a wall-heating problem, finding FEDS often is more consistently
convergent and has lower error than MG for the same number of DOF.

I. INTRODUCTION

Thermal radiation transport (TRT) shares numerous physi-
cal and computational similarities with neutron transport (NT).
Both describe the advection and interaction of neutral particles
through and with a medium. The solution to the TRT equa-
tions consists of the angular intensity and temperature at all
times for all spatial locations, all photon directions, and all
photon energies.1 Like the angular flux for NT, the TRT angu-
lar intensity lives in a six-dimensional phase space plus time.
The interaction of the radiation with matter is characterized
by nuclear cross sections for NT and atomic opacities for TRT.
Both exhibit rapid oscillatory behavior as a function of parti-
cle energy. In NT, this is due to resonances from quantized
nuclear energy levels of the compound nucleus, while in TRT
it is due to lines and edges from excitation and ionization of
the bound electrons. Figure 1 gives the absorption attenuation
coefficients2 for the CRASH-like problem defined and studied
in future sections.

To the extent that TRT is similar to NT, the same dis-
cretization methods should be effective for both. In this work,
we focus on discretization in energy, noting that while some
NT codes do employ continuous-in-energy cross sections, few
TRT codes do. The most popular energy discretization method
for both TRT and NT is the multigroup (MG) method, which
combines particles with similar energies and solves for the
sum of their intensity using group-averaged opacities.

MG can be sensitive to approximations in the weighting
spectrum chosen for opacity averaging, especially in the com-
mon case where groups span many lines or edges. As a result,
MG often inaccurately treats important phenomena such as
self-shielding variations. From a finite-element viewpoint,

1We distinguish the energy of an individual photon, which is directly
proportional to its frequency, from the energy in the photon field, which we
call the intensity. “Photon energies” refers to the former.

2The attenuation coefficient (1/cm), also known as an inverse mean-free-
path, is the product of the corresponding opacity (cm2/g) and the mass density
(g/cm3). Another name for the opacity is the mass attenuation coefficient. The
absorption attenuation coefficient is sometimes called absorbtivity while the
total attenuation coefficient is sometimes called the extinction coefficient.
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Fig. 1: Energy-dependent absorption attenuation coefficients
for the CRASH-like problem along with coarse group bound-
aries and numbers.

MG uses a single fixed basis function (the pre-selected spec-
trum) within each group, with no mechanism to adapt to local
solution behavior.

In previous work [1, 2], the Finite-Element-with-
Discontiguous-Support (FEDS) method was applied to NT. We
showed that, for FEDS, errors in reaction-rate based quantities
of interest, including the criticality eigenvalue, decreased with
increasing numbers of energy unknowns in the energy range
with resolved resonances, but not so for MG when groups did
not resolve the resonances. We were able to achieve 50× 10−5

relative error in all resonance coarse groups for all nuclide reac-
tion rates with 225 energy unknowns in the resolved resonance
region. We demonstrated that using SN in conjunction with
FEDS is a powerful method for solving realistic NT problems
at high resolution.

In this paper, we extend the FEDS method to TRT. We
begin by noting relevant differences between TRT and NT.
We then review the finite-element underpinnings of FEDS,
introduce basis function definitions specific to TRT, and derive
the FEDS TRT equations. We briefly describe how to generate
energy meshes for FEDS. Next, we compare FEDS to MG
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as a function of number of energy unknowns (i.e., degrees
of freedom [DOFs] in energy) for a simplified semi-analytic
model. We conclude by looking ahead to extensions that may
be required to make FEDS performant for TRT problems with
large temperature ranges, many partially ionized materials,
and varying densities.

II. THEORY

1. Relevant Differences Between TRT and NT

Aspects of TRT and its opacities create unique numerical
challenges. The main challenge involves increased dimen-
sionality of the atomic opacities used in TRT compared to
the nuclear cross sections used in NT. The essential differ-
ence is that the nuclear cross sections at different temperatures
are highly correlated whereas the atomic opacities are par-
tially correlated at different temperature and density states. By
correlation we mean, for a given photon energy, being able
to predict the opacity at one temperature / density from the
opacity at a different temperature / density.

Were the opacities at different temperatures / densities
perfectly correlated, it would be accurate to use a multiband or
ODF (opacity distribution function) method [3].3 The totally
un-correlated case would similarly be straightforward to treat,
for example by using multiband with an interface conditions to
smear the intensity within a group over its bands when going
to a cell with a non-correlated opacity. Partial correlation
is difficult to treat because such interface conditions are not
analytic.

Figure 2 zooms in on two energies ranges to show the
line structure of some opacities. While the argon opacities
at the two temperature-density points share many lines, the
magnitudes of the lines differ in complicated ways. Figure 3
shows the same data differently. Instead of plotting two lines
of opacity vs energy, for each photon energy in the dataset a
mark is added to the plot with x-position corresponding to the
opacity for one state of argon and the y-position corresponding
to the opacity for the other state. This comparison shows
the correlation between the two opacities. Similarity occurs
because disparate opacities share terms in the sum over atomic
cross sections (cm2), and because the atomic cross sections
for different ion stages represent lines and edges at similar
locations. However, due to difference in ion stage populations,
not all lines are present at every temperature and density, and
those that are shared may be present in differing proportion.
This behavior explains the imperfect correlation of the argon
opacities in Fig. 3, with perfect correlation corresponding to
all of the data lying on one line and correlation decreasing
with increasing data spread.

FEDS worked well for NT because the solution was low-
dimensional. It was able to be represented with relatively
few DOFs in energy, each of which was an energy element
that lived within discontiguous energy ranges. An important
cause of this low dimensionality was few important resonant
nuclides. For many TRT problems, there are many important
opacities because each temperature/density point acts as a new

3See [1] for a history, literature review, and comparison of different energy
discretization methods.
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Fig. 2: Energy-dependent absorption attenuation coefficients
for two energies ranges of the CRASH-like problem.

material whose opacity has its own fine structure.
Despite these differences, we extend FEDS to TRT, begin-

ning with a conceptually simple but numerically challenging
problem that highlights the potential and challenges for FEDS.
Future work will look at generalizing FEDS while maintaining
its strengths of consistency of correlations among differing ma-
terials / temperatures / densities and accuracy / convergence,
even at low DOFs in energy.

2. The FEDS Method for TRT

The FEDS method is a Petrov-Galerkin finite-element
method. Our weight functions, we(E) for element index e ∈
{1, . . . ,Ne}, are unity for energies within an energy element
and zero otherwise. The basis functions have the same support
as the weight functions but also have a normalized spectral
shape. The “DS” in FEDS indicates that the weight and basis
functions are allowed to have discontiguous support. We
require that elements do not overlap, which gives us weight
and basis functions that are orthonormal. Our FEDS angular
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Fig. 3: Comparison of absorption attenuation coefficients for
two energy ranges between un-shocked and shocked argon
for the CRASH-like problem. The log of the attenuation
coefficients are plotted against each other for each datapoint.
Each blue dot corresponds to a different photon energy. The
green dashed line indicates where the data would lie if the two
argon states had the same opacities. The solid red line is a
linear best-fit to the data.

intensity solution is defined as a basis function expansion:

I(r, E,Ω, t) =
∑

e

be(r, E, t)Ie(r,Ω, t), (1)

where r is location (cm), E is photon energy (keV), Ω is pho-
ton direction, t is time (s), I is the energy-dependent angular
intensity (erg/cm2-s-ster-keV), Ie is the angular intensity inte-
grated over element e (erg/cm2-s-ster), and the basis functions,
be(r, E, t) (1/keV), often have a spatial and temporal depen-
dence on the local temperature and/or density. Equation (1) is
the only approximation for FEDS applied to NT. For TRT, in
addition to the basis function expansion, we make two, similar
approximations, described below.

We now introduce basis functions that produce flat-,
Planck- and Rosseland-averaged opacities. Unnormalized
examples of the latter weighting functions are given in Fig. 4.

Flat weighting implies be(r, E, t) is constant in energy within
an element. To produce Planck-averaged opacities, we use
a basis function that is the Planckian at the local material
temperature:

be,P(r, E, t) =
B(Tm(r, t), E) we(E)∫ ∞

0 dE B(Tm(r, t), E) we(E)
, (2a)

B(T, E) =
2

h3c2

E3

eE/T − 1
, (2b)

∫
4π

dΩ

∫ ∞

0
dE B(T, E) = acT 4, (2c)

where Tm is the local electron temperature (keV), B(T, E) is
the Planck function (erg/cm2-s-ster-keV), c is the speed of
light (cm/s), h is the Planck constant (keV/Hz), and a is the
radiation constant (erg/cm3-keV4).
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Fig. 4: Energy-dependent weighting functions for each mate-
rial in the CRASH-like problem
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To produce Rosseland-averaged opacities, we use a
Rosseland-equivalent basis function of:

be,R(r, E, t) =

(
∂B
∂T

1
κt

)
we(E)∫ ∞

0 dE
(
∂B
∂T

1
κt

)
we(E)

∣∣∣∣∣∣(
ρm(r,t),Tm(r,t)

), (3a)

∂B
∂T

(T, E) =
2

h3c2

1
T

E3

eE/T − 1
E/T

1 − e−E/T , (3b)

where κt is the total opacity (cm2/g) and depends on the lo-
cal density, ρm (g/cm3), and local electron temperature. The
opacity is related to the absorption attenuation coefficient by
the mass density: σt = ρmκt. Further discussion of Rosseland-
weighted opacities are provided in the first appendix.

Under the assumption of local thermodynamic equilib-
rium (LTE), these averaged opacities depend upon Tm and
ρm directly and r and t only indirectly for single-material
cells. The averaged opacities can be pre-computed on a native
temperature-density grid and interpolated during run-time, as
is typically done with MG opacities.

The continuous TRT equations are, assuming mono-
energetic (Thomson) scattering:(

1
c
∂

∂t
+Ω · ∇ + σt(ρm,Tm, E)

)
I(r, E,Ω, t) =

c
4π
σs(ρm,Tm, E)E(r, E, t) + σa(ρm,Tm, E) B(Tm, E), (4a)

Cv(ρm,Tm)
∂

∂t
T (r, t) =∫ ∞

0
dE σa(ρm,Tm, E)

(
cE(r, E, t) − 4π B(Tm, E)

)
, (4b)

E(r, E, t) ≡
1
c

∫
4π

dΩ I(r, E,Ω, t), (4c)

where E is the radiation energy density (erg/cm3-keV), Cv is
the specific heat4 (erg/cm3-keV), and σt, σa, and σs are the
total, absorption, and scattering attenuation coefficients (1/cm),
respectively.

Applying a backward Euler time discretization, we lin-
earize the Planckian but lag the opacities:(

τ +Ω · ∇ + σt(ρn,T n, E)
)

In+1(r, E,Ω) =

σa(ρn,T n, E)
(
B(T n, E) +

∂B
∂T

(T n, E) (T n+1 − T n)
)
+

c
4π
σs(ρn,T n, E)En+1(r, E) + τIn(r, E,Ω),

(5a)

cτCv(ρn,T n)
(
T n+1(r, t) − T n(r)

)
=∫ ∞

0
dE σa(ρn,T n, E)cEn+1(r, E)−∫ ∞

0
dE 4πσa(ρn,T n, E)

(
B(T n, E) +

∂B
∂T

(T n, E) (T n+1 − T n)
)
,

(5b)

4Cv = ρĈv/kB, where kB is Boltzmann’s constant (8.617×10−8 keV/K)
and Ĉv is the more traditional specific heat in erg/g-K.

where τ = 1/(c∆t) in 1/cm, ρn = ρm(r, tn), and T n = Tm(r, tn).
For economy of notation, we simplify all lagged terms as, e.g.,
σn

a(r, E) = σa(ρn,T n, E).
Defining

χn(r, E) ≡
σn

a(r, E) ∂B
∂T

n
(r, E)∫ ∞

0 dE σn
a(r, E) ∂B

∂T
n
(r, E)

, (6a)

νn(r) ≡

∫ ∞
0 dE 4πσn

a(r, E) ∂B
∂T

n
(r, E)

cτCn
v (r) +

∫ ∞
0 dE 4πσn

a(r, E) ∂B
∂T

n
(r, E)

, (6b)

f n+1(r) ≡
∫ ∞

0
dE σn

a(r, E) cEn+1(r, E), (6c)

ξn(r, E,Ω) ≡ τIn(r, E,Ω) + σn
a(r, E)Bn(r, E)−

χn(r, E)νn(r)
∫ ∞

0
dE σn

a(r, E)Bn(r, E), (6d)

the time-discretized TRT equations become:

(
Ω · ∇ +

(
σn

t (r, E) + τ
))

In+1(r, E,Ω) =

c
4π
σn

s(r, E)En+1(r, E) + χn(r, E)νn(r) f n+1(r) + ξn(r, E,Ω),

(7a)

T n+1 = T n + νn(r)
f n+1(r) −

∫ ∞
0 dE σn

a(r, E) 4πBn(r, E)∫ ∞
0 dE σn

a(r, E) 4π ∂B
∂T

n
(r, E)

.

(7b)

To derive the FEDS transport equation, (i) we take the
time-discretized continuous-energy transport and material in-
ternal energy equations (Eq. (5)), (ii) expand the angular inten-
sity and its integrals into their basis function expansions using
Eq. (1), (iii) multiply the transport equation by the weight
functions, and (iv) integrate over all energies. After some
algebra, we arrive at an energy-discretized transport equation
that is distinguishable from the MG transport equation only
in the definition of the opacities, which are basis-function
weighted, and the source, which now involves an integral over
the discontiguous element. For further details, see below or
[1].

The FEDS discretization of the time-discretized TRT
equations becomes:

(
Ω · ∇ +

(
σn

t,e(r) + τ
))

In+1
e (r,Ω) =

c
4π
σn

s,e(r)En+1
e (r) + χn

e(r)νn(r) f n+1(r) + ξn
e (r,Ω), (8a)

T n+1 = T n + νn(r)
f n+1(r) −

∑
e σ

n
a,e(r) 4πBn

e(r)∑
e σ

n
a,e(r) 4π ∂Bn

e
∂T (r)

, (8b)

where σa,e is the basis-function-weighted absorption attenua-
tion coefficient (1/cm; see above for definition of basis func-
tions), and Be is the Planck source integrated over an energy
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element (erg/cm2-s-ster). Specifically,

σn
x,e(r) =

∫ ∞

0
dE be(r, E, t)σx(ρn,T n, E)

=

∫
∆Ee

dE be(r, E, t)σx(ρn,T n, E)∫
∆Ee

dE be(r, E, t)
, (9a)

Bn
e(r) =

∫ ∞

0
dE we(E) B(T n, E)

=

∫
∆Ee

dE B(T n, E), (9b)

∂Bn
e

∂T
(r) =

∫ ∞

0
dE we(E)

∂B
∂T

(T n, E)

=

∫
∆Ee

dE
∂B
∂T

(T n, E), (9c)

χn
e(r) =

σn
a,e(r) ∂Bn

e
∂T (r)∑

k σ
n
a,k(r) ∂Bn

k
∂T (r)

, (9d)

νn(r) ≡
4π

∑
e σ

n
a,e(r) ∂Bn

e
∂T (r)

cτCn
v (r) + 4π

∑
e σ

n
a,e(r) ∂Bn

e
∂T (r)

, (9e)

f n+1(r) ≡
∑

e

σn
a,e(r) cEn+1

e (r), (9f)

ξn
e (r,Ω) ≡ τIn

e (r,Ω) + σn
a,e(r)Bn

e(r)−

χn
e(r)νn(r)

∑
k

σn
a,k(r)Bn

k(r). (9g)

Our two additional approximations for FEDS applied TRT
are to equate∫ ∞

0
dE we(E)σa(ρ,T, E) B(T, E) ' σa,e(ρ,T ) Be(T ),

(10a)∫ ∞

0
dE we(E)σa(ρ,T, E)

∂B
∂T

(T, E) ' σa,e(ρ,T )
∂Be

∂T
(T ),

(10b)

using basis-function weighting for the opacities instead of
weighting with B or ∂B/∂T . These approximations are often
used with MG as well. The former approximation becomes
exact if the basis functions are the Planck distribution at the
local material temperature.

A primary difference from MG is that, for FEDS, ∆Ee
is a discontiguous range of energies. Consequences of this
difference are explored in the second appendix. We discuss
how to generate this energy mesh in the next section.

3. Generating the Energy Mesh

The energy mesh describes the support of the weight and
basis functions, with a function being nonzero for energies
within an energy element and zero for energies outside an
energy element. We assume we are given a library of spectra

and then solve a minimization problem by applying a clus-
tering algorithm to these spectra. The output clusters define
the energy mesh. We will describe one inexpensive way to
generate approximate spectra.

When generating energy meshes, our MG implementation
uses the typical even logarithmic spacing in energy between
groups. FEDS first splits the entire energy range into multiple
coarse groups, and then applies clustering to define elements
separately in each coarse group. We use an equal number of
elements per coarse group and fixed coarse group boundaries
of 3.00×10−5, 1.00×10−3, 3.04×10−3, 9.27×10−3, 2.82×10−2,
8.60×10−2, 2.62×10−1, 7.98×10−1, 2.43, 7.40, and 20.0 keV.
These boundaries are drawn in Figures 1 and 4.

Given spectra, we formulate and solve a minimization
problem, so-named because its solution has minimized vari-
ance of the spectra within each energy element. The final
energy mesh is defined so as to minimize the projection error
of the spectra from their original resolved grid to this coarser
grid. Our FEDS method, built on this energy mesh, can locally
adapt to the true spectral behavior of the solution if the spectra
well represent the solution and a sufficient number of DOFs
are used. For more details on the solving the minimization
problem with clustering, see [1].

We use the equilibrium diffusion limit (EDL) to moti-
vate our spectra choice. In this limit, I(E) ' B(T, E) −

1
σt(ρ,T,E)

∂B
∂T (T, E) Ω · ∇T . Both B and ∂B/∂T are slowly vary-

ing in energy. We can either resolve them using the coarse
group structure, or add B(T, E) to the set of spectra we use.
σt(ρ,T, E) has both rapidly varying components from the
lines and edges, and slowly varying components: free-free
and bound-free (after the edge) interactions both scale as
E−3, while scattering off free electrons depends on the Klein-
Nishina formula.

Assuming the slowly varying components in energy are
resolved, we use spectra proportional to 1/σt(Tm, ρm, E) on a
user-defined grid of temperatures, Tm, and densities, ρm. For
TRT problems, the densities and materials are known ahead
of time. For this paper, we assume the temperatures are also
known ahead of time. Relaxing these limitations would be
important for applying FEDS to realistic TRT problems.

Our minimization solver is not designed to handle spectra
that vary by orders of magnitude. Instead, we take a logarithm
of our spectra and use those. This means using σt or 1/σt for
our spectra have the same result.

Figure 5 shows an example spectrum. For each coarse
group, a separate application of a clustering algorithm on the
spectra produces the FEDS energy mesh within that coarse
group. In Fig. 5, colors are used to specify this full mesh,
with each element corresponding to a different color. Energy
elements may be discontiguous but are restricted to lie within
one coarse group.

III. RESULTS AND ANALYSIS

We present a simplified CRASH-like [4] problem that con-
sists of a single intensity characteristic in a time-independent
setting. We fix the temperatures and densities, which lin-
earizes the problem, and use a blackbody radiation source.
The problem is meant to simulate experiments where laser
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Fig. 5: Example spectrum from which the FEDS energy mesh
is constructed. Markers with the same color correspond to
energies that belong to the same energy element. Dotted lines
correspond to coarse-group boundaries.

energy drives a shock through a fill gas within a tube. In these
types of problems, radiation-driven wall-heating of the tube
is an important phenomenon. We ignore the scattering cross
section for these results.

Our spatially analytic characteristic begins with zero in-
tensity in shocked argon5 of thickness 0.0277 cm at a density
of 0.030 g/cc and temperature of 0.1 keV. The ray then passes
through un-shocked (also called pre-shocked) argon of thick-
ness 0.00416 cm, density of 0.0020 g/cc and temperature of
0.07 keV. It finally passes through polyimide plastic to a thick-
ness of 0.0000361 cm at a density of 1.43 g/cc and a temper-
ature of 0.025 keV. Figure 6 gives a graphical representation
of this setup. The temperatures were chosen as representative
from a time-dependent run with 20 groups [4]. The average
number of bound electrons per ion for the shocked argon, un-
shocked argon, and plastic are 5.8, 6.0, and 2.7, respectively.
Despite their similar average ionizations, the opacities of the
two argon states are only moderately correlated (cf. Fig. 3).

We use a highly-resolved energy group structure with
MG as the reference calculation. Our continuous-energy —
often called "monochromatic" to denote a lack of averaging
or interpolation — opacities were defined on a piecewise-
uniform 14,900-point temperature-dependent energy grid [5].
We extrapolated these onto a thinned union grid using methods
presented in [1]. Extrapolation was necessary because the orig-
inal grid was based on E/T , meaning different temperatures
had different minimum and maximum energies. While not
fully spectroscopically resolved, the monochromatic energy
grid was developed to ensure accuracy of integral metrics,
such as reaction rates.

Figure 7 shows the reference absorption rate densities
(ARDs, defined below) for the ray at the terminus of each
material. The dotted lines show the ARDs for infinite material
thicknesses. Figure 8 shows the reference intensity for the ray

5While the CRASH experiments used xenon, opacity availability forces
us to use number-density-equivalent argon.

Shocked
Argon

Un-shocked
Argon

Plastic

Fig. 6: Cartoon of our CRASH-like problem. We compute
the intensity along a ray that begins in the shocked argon and
ends in the plastic. Relative thicknesses are to scale. Gray
dots indicate locations where the heating and absorption rate
densities are computed, with the location of the dot in plastic
at exaggerated depth.

at the terminus of each material with the dotted lines indicating
the corresponding infinite-medium Planck distributions. Short
optical depths at high energies in the plastic lead to imprinting
of argon line structure on plastic ARD and intensity. Figure 8
(b) highlights this imprinting of upstream line structure on
downstream intensities.
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Fig. 7: Energy-dependent ARD as the ray exits each material
in the CRASH-like problem (solid) and the infinite-medium
values (dashed)

Our CRASH-like problem has thick and thin regions. Fig-
ure 9 shows that the optical depth (in mean-free-paths) of each
material for our ray varies by orders of magnitude based on
photon energy. Energy-independent depths were computed by
averaging the optical depths in Fig. 9 using various weight-
ing functions, including the reference intensity leaving the
region, the most equilibrated of the intensities within the re-
gion. The different estimates of optical depth, given in Table I,
differ radically due to the large range of magnitudes in the
attenuation coefficients and the disparities among the various
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Fig. 8: Energy-dependent intensities as the ray exits each
material in the CRASH-like problem (solid) and the infinite-
medium Planck distributions (dashed)

weighting functions. The thickest estimate of the thickest ma-
terial, shocked argon, had an average optical depth of 7 mfp
along the direction of the ray, making our problem relatively
thin compared to many high-energy-density physics appli-
cations that have orders of magnitude larger optical depths.
The flat weighting emphasizes the contribution from the high-
energy opacities and produces smaller averaged optical depths.
The Planck weighting is known to be accurate for emission-
dominated problems, while the Rosseland weighting performs
well for wave-like problems near the EDL. The large percent
differences in Table I show our CRASH-like problem fits nei-
ther of these regimes.

We compute three measures of error. The first is the
relative error of the total heating rate density at the end of
each material. The total heating rate density is defined as∑

e σa,e(s)[Ie(s) − Be(s)], with s is the distance along our ray.
The attenuation coefficient and Planckian are constant within a
material region because temperature and density are constant.
This metric relates to the internal energy deposition rate den-
sity, or heating, from the radiation to the material. The second
relative error, taken at the same locations, is of the absorp-
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Fig. 9: Energy-dependent optical depths for each material in
the CRASH-like problem

tion rate density (ARD), which is defined as
∑

e σa,e(s)Ie(s).
This metric does not have subtractive cancellation for ener-
gies and locations where the intensity is near equilibrium,
making it more sensitive to accurate discretization of the opac-
ity. This metric loosely relates to the momentum deposition
rate density, which in the absence of scattering has a similar
form in energy6, if not in angle. The final error is the opacity
averaging error, which is a measure of the variation of the
opacity within an element. The log of this error is defined as√∑

e
∑

f∈e | log10 σref., f − log10 σe|
2/Nref., where f is the fine-

group index of the reference opacity and Nref. is the number of
reference groups.7 The hierarchical agglomerative clustering
algorithm used to compute the FEDS energy grid minimizes
the L2 norm of this error metric over all materials. Our opacity
error is computed for each material separately.

Tables II - IV show three errors for various energy un-
known counts using either FEDS or MG for our CRASH-like
problem. For each result, the ten coarse groups listed above
were used, with an equal number of energy unknowns per
coarse group. Three quantities are given in these tables. The
first are errors in the metrics for MG and FEDS. The second,
in parentheses, gives the reduction in error compared to ten
energy unknowns, with larger values denoting higher error
reduction. These columns quantify convergence and, for N
energy unknowns, would be equal to N/10 for first-order con-
vergence in energy. The last, in square brackets, gives the
ratio of MG error to FEDS error. Values greater than unity
correspond to FEDS attaining lower error than MG.

Different basis functions tended to produce similar errors,
with some notable exceptions. Errors using flat and Planck
weightings were highly similar, with Planck weighting attain-
ing lower errors for ARD in shocked argon (Table II) and flat
weighting attaining lower errors in heating and ARD for plas-
tic (Table IV). Figures 7 and 8 show the shocked argon to be

6The ARD is a relevant proxy for momentum rate density only when
away from equilibrium. In the EDL, the radiation energy flux is proportional
1/σt(E), dividing out the σt(E) used the momentum deposition rate.

7The first coarse group was not included in the opacity averaging error
because, although the ratio of maximum to minimum opacity in that coarse
group was large, the first coarse group also had the highest relative energy
width and had negligible contribution to the solution or reaction rates.
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TABLE I: Measures of thickness in optical depth for materials in the CRASH-like problem with various opacity weightings.
Relative differences to intensity weighting are given in parentheses.

Material Planck weighting Rosseland weighting Flat weighting Intensity weighting

Shocked Ar 5.30 (-26%) 1.113 (-84%) 0.428 (-94%) 7.16
Un-shocked Ar 0.41 (6.5%) 0.022 (-94%) 0.042 (-89%) 0.38
Plastic 2.47 (370%) 0.666 (26%) 0.045 (-91%) 0.53

near equilibrium, where Planck weighting would be accurate.
The plastic was sufficiently far from equilibrium that it was
more accurate to assume no information in the weighting than
to use the local Planckian. Rosseland-equivalent weighting
attained low errors in heating rates and opacity variance but
not ARD — except in the plastic, which had a smooth opacity.
The ARD error from Rosseland weighting converges but is
between 5 and 160 times larger for the argons than from flat or
Planck weighting. As described above, ARD requires accurate
treatment of large opacities, while heating is insensitive to
large opacities because they equilibrate over small depths and
cease to contribute to the heating. Rosseland weights against
large opacities because of the opacity in its denominator.

MG was uneven in its error magnitudes and convergence
rates. In the shocked argon (Table II), MG was able to achieve
5% heating errors with all three weightings and 160 unknowns.
ARD errors of less than 5% were attainable using 20 elements
with flat or Planck weighting. In the thin un-shocked argon,
with its increased presence of lines, MG fared worse (Ta-
ble III), obtaining 18% and 9.5% errors for heating and ARD
with 320 groups for Planck or flat weighting. Opacity aver-
aging errors were around a factor of two worse than for the
shocked argon. While MG produced low opacity averaging er-
rors in the plastic due to its smooth opacity (Table IV), heating
and ARD errors were higher because they relied on accuracy
in the upstream argons. Aside from Rosseland weighting at
low unknown count, MG attained at best 10% error in heating
and ARD in the plastic. These errors did not converge for the
numbers of energy unknowns studied.

For the same number of unknowns, FEDS achieved lower
errors than MG with few exceptions. The exceptions were at
the lowest number of unknowns — where FEDS and MG both
used elements equal to the coarse groups — for some cases
at low unknown counts — where MG fortuitously achieved
lower errors than at higher unknown counts — and for the
opacity averaging error in plastic — whose opacity was less
efficiently captured by the FEDS element structure that ded-
icated some unknowns to resolving the line structure in the
argons. FEDS tended to converge at a faster rate than MG, do-
ing better compared to MG at higher unknown counts, though
for the shocked argon FEDS had the best error ratios around
40 - 80 groups for flat or Planck weighting. FEDS was able to
achieve 5.7% error in heating using flat or Planck weighting
in the shocked argon (Table II) with 40 elements, and 1.3%
error in ARD with 20 elements. In the un-shocked argon (Ta-
ble III), FEDS achieved 10% error in heating and ARD with
flat or Planck weighting and 80 elements, with continuing
convergence at higher unknown counts. In the plastic (Ta-
ble IV), FEDS achieved 1.6% error in heating and ARD with

flat weighting and 40 groups, and 4.7% errors with Planck
weighting and 80 groups, again with continuing convergence
at higher unknown counts.

IV. CONCLUSIONS

In this research we have extended the Finite Element with
Discontiguous Support (FEDS) method to thermal radiation
transport (TRT) and tested it on a simplified high-energy den-
sity physics problem where wall heating is important. While
TRT is challenging due to high-dimensional temperature-,
density-, and material-dependences in the fine structure of the
opacities, we were able to apply FEDS to this regime and
our test showed convergence and low errors using 10 coarse
groups and between 1 and 32 elements per coarse group. One
interesting result is that resolving wall heating in our CRASH-
like problem without relying on error cancellation required
around 80 or more energy unknowns. This raises the question
of required energy fidelity for TRT problems more generally,
especially in regions far from material-radiation equilibrium.

Our CRASH-like problem, while not representative of
all TRT problems, showed improved convergence and lower
errors for FEDS compared to MG with the same number of
unknowns in energy. With 160 unknowns and FEDS, we
were able to achieve between 0.32% and 3.1% relative errors
in heating rate and ARD in the plastic, depending on the
weighting scheme used. For the same number of unknowns,
MG had errors that were between 9.6% and 11%, a factor
of 3 - 30 higher. For the same number of energy unknowns,
opacity averaging errors, a measure of the unresolved variation
of the opacity within an element, were between a factor of
1.9 and 2.1 lower for FEDS than MG in the shocked argon
with its moderate line coverage, and between a factor of 3.3
and 3.8 lower in the un-shocked argon with its significant line
coverage (cf. Figs. 1 and 2). For materials downstream of the
line-blanketed un-shocked argon, FEDS continued to converge
out to 320 elements, while MG stagnated for the reaction-rate
metrics.

Overall, we found the advantage of FEDS over MG was
associated with being downwind of a thin region that had both
heavy line structure in its opacity and a temperature whose
corresponding Planck overlapped with these lines. While
further and more realistic tests are needed, these preliminary
results indicate FEDS may provide both enhanced convergence
and lowered error for the same amount of work as MG for
problems with opacities that are line-dominated.
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TABLE II: Errors in shocked argon using various basis functions to weight the opacities. Values in parentheses are ratios of
errors of fewer to more energy unknowns. Values in brackets are ratios of MG error to FEDS error.

Weighting Energy MG MG FEDS FEDS Ratio
Unknowns Error Convg. Error Convg. (MG/FEDS)

Heating Error
Flat 10 0.296 (1.00) 0.296 (1.00) [1.00]

20 0.351 (0.85) 0.0415 (7.14) [8.44]
40 0.104 (2.84) 0.0574 (5.16) [1.82]
80 0.109 (2.72) 0.00846 (35.03) [12.86]

160 0.0412 (7.20) 0.0134 (22.14) [3.07]
320 0.0388 (7.65) 0.0128 (23.17) [3.03]

Planck 10 0.308 (1.00) 0.308 (1.00) [1.00]
20 0.396 (0.78) 0.145 (2.12) [2.73]
40 0.119 (2.58) 0.0493 (6.25) [2.42]
80 0.111 (2.78) 0.0226 (13.67) [4.92]

160 0.0419 (7.36) 0.0174 (17.75) [2.41]
320 0.0388 (7.94) 0.0164 (18.83) [2.37]

Rosseland 10 0.929 (1.00) 0.929 (1.00) [1.00]
20 0.447 (2.08) 0.486 (1.91) [0.92]
40 0.0324 (28.70) 0.1 (9.29) [0.32]
80 0.0244 (38.05) 0.0185 (50.35) [1.32]

160 0.0124 (75.16) 0.018 (51.63) [0.69]
320 0.00596 (155.85) 0.00539 (172.52) [1.11]

ARD Error
Flat 10 0.0866 (1.00) 0.0866 (1.00) [1.00]

20 0.0493 (1.76) 0.0134 (6.48) [3.69]
40 0.0224 (3.87) 0.00352 (24.57) [6.35]
80 0.00479 (18.09) 0.00138 (62.66) [3.46]

160 0.00401 (21.61) 0.00205 (42.30) [1.96]
320 0.0028 (30.95) 0.00189 (45.71) [1.48]

Planck 10 0.0107 (1.00) 0.0107 (1.00) [1.00]
20 0.0138 (0.78) 0.00504 (2.12) [2.73]
40 0.00415 (2.58) 0.00171 (6.25) [2.42]
80 0.00386 (2.78) 0.000784 (13.67) [4.92]

160 0.00146 (7.36) 0.000604 (17.75) [2.41]
320 0.00135 (7.94) 0.000569 (18.83) [2.37]

Rosseland 10 0.845 (1.00) 0.845 (1.00) [1.00]
20 0.706 (1.20) 0.452 (1.87) [1.56]
40 0.533 (1.59) 0.277 (3.06) [1.93]
80 0.334 (2.53) 0.22 (3.85) [1.52]

160 0.284 (2.98) 0.115 (7.37) [2.47]
320 0.249 (3.39) 0.0897 (9.43) [2.78]

Opacity Averaging Error
Flat 10 2.26 (1.00) 2.26 (1.00) [1.00]

20 2.3 (0.98) 1.26 (1.79) [1.82]
40 1.14 (1.97) 0.71 (3.18) [1.61]
80 0.874 (2.58) 0.511 (4.42) [1.71]

160 0.71 (3.18) 0.381 (5.93) [1.87]
320 0.611 (3.69) 0.292 (7.73) [2.09]

Planck 10 2.36 (1.00) 2.36 (1.00) [1.00]
20 2.28 (1.04) 1.43 (1.66) [1.60]
40 1.18 (2.00) 0.709 (3.34) [1.66]
80 0.848 (2.79) 0.509 (4.65) [1.67]

160 0.727 (3.25) 0.381 (6.20) [1.91]
320 0.609 (3.88) 0.292 (8.09) [2.08]

Rosseland 10 4.72 (1.00) 4.72 (1.00) [1.00]
20 4.46 (1.06) 1.74 (2.72) [2.57]
40 1.62 (2.91) 0.76 (6.21) [2.13]
80 1.11 (4.26) 0.53 (8.90) [2.09]

160 0.796 (5.93) 0.383 (12.32) [2.08]
320 0.667 (7.07) 0.298 (15.81) [2.24]
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TABLE III: Errors in un-shocked argon using various basis functions to weight the opacities.

Weighting Energy MG MG FEDS FEDS Ratio
Unknowns Error Convg. Error Convg. (MG/FEDS)

Heating Error
Flat 10 0.942 (1.00) 0.942 (1.00) [1.00]

20 0.835 (1.13) 0.212 (4.44) [3.94]
40 0.217 (4.34) 0.146 (6.45) [1.49]
80 0.239 (3.95) 0.104 (9.07) [2.30]

160 0.181 (5.21) 0.0519 (18.14) [3.48]
320 0.181 (5.20) 0.0221 (42.56) [8.18]

Planck 10 0.996 (1.00) 0.996 (1.00) [1.00]
20 0.955 (1.04) 0.174 (5.71) [5.47]
40 0.283 (3.52) 0.107 (9.31) [2.65]
80 0.252 (3.95) 0.0862 (11.55) [2.92]

160 0.188 (5.29) 0.0506 (19.68) [3.72]
320 0.184 (5.43) 0.0235 (42.44) [7.82]

Rosseland 10 0.85 (1.00) 0.85 (1.00) [1.00]
20 0.369 (2.30) 0.274 (3.10) [1.35]
40 0.0377 (22.52) 0.153 (5.56) [0.25]
80 0.031 (27.38) 0.0427 (19.92) [0.73]

160 0.0793 (10.72) 0.00181 (468.66) [43.73]
320 0.0888 (9.57) 0.00753 (112.78) [11.79]

ARD Error
Flat 10 0.463 (1.00) 0.463 (1.00) [1.00]

20 0.572 (0.81) 0.118 (3.93) [4.86]
40 0.142 (3.26) 0.0873 (5.31) [1.63]
80 0.128 (3.63) 0.0506 (9.15) [2.52]

160 0.0995 (4.66) 0.0259 (17.88) [3.84]
320 0.0951 (4.87) 0.0108 (42.82) [8.79]

Planck 10 0.511 (1.00) 0.511 (1.00) [1.00]
20 0.489 (1.04) 0.0894 (5.71) [5.47]
40 0.145 (3.52) 0.0549 (9.31) [2.65]
80 0.129 (3.95) 0.0442 (11.55) [2.92]

160 0.0965 (5.29) 0.026 (19.68) [3.72]
320 0.0941 (5.43) 0.012 (42.43) [7.82]

Rosseland 10 0.894 (1.00) 0.894 (1.00) [1.00]
20 0.613 (1.46) 0.479 (1.87) [1.28]
40 0.397 (2.25) 0.273 (3.27) [1.45]
80 0.334 (2.68) 0.197 (4.55) [1.70]

160 0.294 (3.04) 0.0942 (9.49) [3.12]
320 0.277 (3.23) 0.0663 (13.48) [4.18]

Opacity Averaging Error
Flat 10 3.3 (1.00) 3.3 (1.00) [1.00]

20 3.44 (0.96) 2.1 (1.57) [1.64]
40 1.98 (1.66) 0.963 (3.42) [2.06]
80 1.85 (1.78) 0.759 (4.35) [2.44]

160 1.71 (1.93) 0.513 (6.43) [3.33]
320 1.56 (2.11) 0.351 (9.40) [4.46]

Planck 10 3.39 (1.00) 3.39 (1.00) [1.00]
20 3.22 (1.05) 2.29 (1.48) [1.40]
40 1.98 (1.71) 0.96 (3.54) [2.07]
80 1.83 (1.85) 0.787 (4.31) [2.33]

160 1.74 (1.96) 0.52 (6.52) [3.33]
320 1.57 (2.16) 0.353 (9.62) [4.45]

Rosseland 10 15.8 (1.00) 15.8 (1.00) [1.00]
20 9.63 (1.64) 5.2 (3.04) [1.85]
40 2.84 (5.58) 1.13 (13.97) [2.51]
80 2.39 (6.63) 0.793 (19.96) [3.01]

160 2.02 (7.82) 0.537 (29.48) [3.77]
320 1.85 (8.58) 0.355 (44.56) [5.19]
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TABLE IV: Errors in plastic using various basis functions to weight the opacities.

Weighting Energy MG MG FEDS FEDS Ratio
Unknowns Error Convg. Error Convg. (MG/FEDS)

Heating Error
Flat 10 0.197 (1.00) 0.197 (1.00) [1.00]

20 0.0426 (4.63) 0.135 (1.46) [0.31]
40 0.107 (1.84) 0.0128 (15.42) [8.36]
80 0.102 (1.94) 0.0156 (12.68) [6.54]

160 0.103 (1.91) 0.00321 (61.53) [32.21]
320 0.108 (1.83) 0.000705 (279.87) [153.02]

Planck 10 0.237 (1.00) 0.237 (1.00) [1.00]
20 0.14 (1.69) 0.227 (1.04) [0.62]
40 0.0839 (2.82) 0.137 (1.73) [0.61]
80 0.0938 (2.53) 0.0474 (5.00) [1.98]

160 0.102 (2.33) 0.0147 (16.08) [6.92]
320 0.107 (2.22) 0.00938 (25.24) [11.37]

Rosseland 10 0.0296 (1.00) 0.0296 (1.00) [1.00]
20 0.0632 (0.47) 0.00422 (7.02) [14.98]
40 0.197 (0.15) 0.194 (0.15) [1.02]
80 0.145 (0.20) 0.0993 (0.30) [1.46]

160 0.11 (0.27) 0.0312 (0.95) [3.53]
320 0.0971 (0.31) 0.0155 (1.91) [6.25]

ARD Error
Flat 10 0.183 (1.00) 0.183 (1.00) [1.00]

20 0.0393 (4.66) 0.128 (1.43) [0.31]
40 0.101 (1.82) 0.0128 (14.25) [7.83]
80 0.0956 (1.92) 0.0143 (12.79) [6.68]

160 0.097 (1.89) 0.00339 (53.98) [28.58]
320 0.101 (1.81) 0.000785 (233.25) [129.00]

Planck 10 0.222 (1.00) 0.222 (1.00) [1.00]
20 0.131 (1.69) 0.213 (1.04) [0.62]
40 0.0788 (2.82) 0.128 (1.73) [0.61]
80 0.088 (2.53) 0.0445 (5.00) [1.98]

160 0.0956 (2.33) 0.0138 (16.08) [6.92]
320 0.1 (2.22) 0.00881 (25.24) [11.37]

Rosseland 10 0.0147 (1.00) 0.0147 (1.00) [1.00]
20 0.0544 (0.27) 0.0141 (1.04) [3.86]
40 0.183 (0.08) 0.177 (0.08) [1.04]
80 0.136 (0.11) 0.0912 (0.16) [1.49]

160 0.103 (0.14) 0.028 (0.53) [3.69]
320 0.0911 (0.16) 0.0141 (1.04) [6.48]

Opacity Averaging Error
Flat 10 0.623 (1.00) 0.623 (1.00) [1.00]

20 0.378 (1.65) 0.501 (1.24) [0.75]
40 0.27 (2.31) 0.437 (1.43) [0.62]
80 0.203 (3.07) 0.243 (2.56) [0.83]

160 0.152 (4.10) 0.154 (4.04) [0.99]
320 0.0852 (7.31) 0.108 (5.78) [0.79]

Planck 10 0.698 (1.00) 0.698 (1.00) [1.00]
20 0.49 (1.43) 0.547 (1.28) [0.90]
40 0.299 (2.34) 0.618 (1.13) [0.48]
80 0.218 (3.20) 0.307 (2.27) [0.71]

160 0.159 (4.40) 0.177 (3.95) [0.90]
320 0.0847 (8.25) 0.12 (5.82) [0.71]

Rosseland 10 1.19 (1.00) 1.19 (1.00) [1.00]
20 0.934 (1.28) 0.812 (1.47) [1.15]
40 0.413 (2.89) 0.629 (1.90) [0.66]
80 0.208 (5.73) 0.292 (4.09) [0.71]

160 0.131 (9.09) 0.168 (7.12) [0.78]
320 0.0721 (16.55) 0.117 (10.17) [0.61]
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V. FUTURE WORK

The current work showed first steps toward TRT using
FEDS. Further studies are needed to quantify performance
on a wider range of problems, especially for thick, diffusive
problems and problems that involve many temperature and
density states. When studying these problems, the involved
researchers may wish to employ more metrics than heating,
absorption rate densities, total intensities, and within-element
opacity variances.

There are two important hurdles to be overcome before
FEDS can be used with TRT or radiation hydrodynamics (RH)
generally. First, it is unlikely that we will be able to compute
efficient global energy element definitions in the general case
of many temperature and density states. This can be seen by
extrapolating Fig. 3, which compares two temperature-density
points, to the full temperature-density space for one material,
then for several materials. The line structure is insufficiently
correlated to allow efficient discretization using few energy
unknowns. MG shares this challenge of efficiently discretizing
in energy with few unknowns, especially when resolution of
line structure in part or all of the energy domain is required.
One path forward would be to define several independent sets
of element boundaries. Temperatures, densities, and materials
with different line structure would have different element defi-
nitions. Discrete-ordinate sweeping or Monte Carlo particle
tracking could still be used, but intensities/particles within a
coarse group ought to be remapped when they travel to a cell
with a different element structure.

The other major challenge is material motion. Opaci-
ties are defined in the co-moving frame, a non-inertial frame
where the material is locally at rest. Advection is simple in
the laboratory frame, but opacities in this frame depend on
material velocity and particle direction. For our MG, in which
we used groups equally spaced over the log of photon energy,
the opacity discrepancy is less important because the relative
group widths are often wide compared to the velocity-induced
relative shifts in energy between lab and co-moving frame.
FEDS has energy elements that are composed of contiguous
subelements, which are on the order of line widths. Even small
velocity-induced shifts are large relative to line widths: for
this CRASH-like problem, 10% of the FEDS subelements in
the energy grid had relative spacings of less than ∼3-4 ×10−5.
Material motion with speed ∼ 3 × 10−5c, which is around 106

cm/s or 10 km/s (µm/ns), will induce red-/blue-shifts of this
magnitude. This implies FEDS intensities will see intensity
smearing of elements whose subelements resolve line widths
when the physical problem has velocity gradients larger than
total attenuation coefficients multiplied a few 10−5c or so. It
will be important to quantify the effect of this smearing for
realistic problems. We are developing methods to handle mate-
rial motion while still allowing SN sweeping by using intensity
mappings that couple all groups and account for red- and blue-
shifts between cells. When particle tracking is used in Monte
Carlo methods, sampling of columns of this map can be used
to Doppler shift the particles.

APPENDIX: ROSSELAND WEIGHTING AND MIX-
TURES

In this appendix, we discuss the properties of Rosseland-
equivalent basis functions, defined in Eq. (3a). The total atten-
uation coefficient weighted with be,R is indeed the Rosseland
average over the element:

σt,R,e(r, t) =

∫ ∞
0 dE be,R(r, E, t)σt

(
Tm(r, t), ρm(r, t), E

)∫ ∞
0 dE be,R(r, E, t)

=

∫
∆Ee

∂B
∂T∫

∆Ee

dE ∂B
∂T

1
σt

. (A.1)

Further, this definition of the Rosseland-equivalent weight-
ing naturally extends to produce consistently weighted
partial attenuation coefficients. These partial inverse
mean-free paths obey σt,R,e = σa,R,e + σs,R,e. This re-
lationship would not hold were σa,e to be defined as∫

∆Ee
dE (∂B/∂T )/

∫
∆Ee

dE (∂B/∂T )(1/σa).
In practice, the Rosseland-equivalent basis function in

Eq. (3a) is not used for atomic mixtures8 of multiple materials
because the opacity in Eq. (3a) would be the energy-dependent
opacity for the mixture, viz. κt(E) =

∑
i f M

i κi(ρi,T, E), with i
the index of materials within the cell, f M

i the mass fractions,
and ρi the partial densities.9 It is infeasible to store the MG
or FEDS mixture opacity for all possible combinations of
constituents (i.e., all combinations of ρi and T ). It is also
infeasible to store the temperature- and density-dependent,
energy-dependent opacities for each material and mix them
on-the-fly to produce the proper Rosseland-weighted average
of the mixture. Notice this latter problem does not arise for
Planck- and flat-weighted opacities because the weighting
functions do not depend on the opacity, so each material may
be preprocessed independently and the discretized opacities
mixed arithmetically at run-time.

The work-around for Rosseland-weighted opacities of
atomic mixtures is to preprocess MG or FEDS opacities for
pure materials and approximate the MG / FEDS opacity of the
mixture as the arithmetic or harmonic mean of the constituent
MG / FEDS opacities weighted by their mass fractions. See
[6] for further discussion of opacity mixing.

This work-around leads to two undesired consequences.
The first is that the wrong weighting is used, with the single-
material energy-dependent opacities instead of the mixture
opacity used in the weighting functions. This can be significant
because the former does not take self-shielding of opacities
into account, where one large opacity can shield the weighting
function from the line structure of another opacity.

The other difficulty is that using multiple weighting func-
tions within a cell leads to undefined I(E), though Ie and hence
reaction rates are still well-defined because κe is well defined
for each mixture. Multi-material problems are beyond the
scope of this paper and all of our spatial regions contain single
materials. All of the challenges associated with multi-material
problems occur for both MG and FEDS.

8Other types of mixtures may require different treatments.
9For atomic mixtures, ρi = f M

i ρ. This does not hold if components occupy
disparate volumes.
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APPENDIX: SIMILARITIES AND DIFFERENCES BE-
TWEEN THE FEDS AND MG TRT EQUATIONS

In this appendix, we discuss differences between the
FEDS and MG methods related to their implementation in
TRT codes. The FEDS time-discretized TRT equations in
Eq. (8a) are indistinguishable from the MG time-discretized
TRT equations apart from one important difference. With
FEDS, integrals of B and ∂B/∂T are over ∆Ee, which is a
discontiguous set of energy intervals. Each individual interval
comprises a subelement and is contiguous. The number of
these intervals is often proportional to the number of lines
within an element, so exact calculations of Be and ∂Be/∂T ,
while straightforward, may be expensive. For our CRASH-
like problem, the ratio of the number of intervals to elements
for FEDS ranged from 13 to 30, with higher ratios for lower
numbers of elements. In many codes, these integrals are com-
puted only once per cell per timestep and so the cost may be
amortized if many transport/diffusion iterations or particles are
used within the timestep. Cheaper, approximate alternatives
are also possible.

It is straightforward to include energy-altering Compton
scattering in the TRT equations and solvers with FEDS. The
scattering kernel, stored for each incident element, exiting
element, and Legendre moment, can be precomputed over the
elements and subsequently used in an identical manner to the
scattering kernel in NT [1].

While FEDS can produce elements with large opacities
that correspond to line peaks, the 1/E3 energy dependence of
the free-free opacity at low-to-mid photon energies (cf. Fig. 1)
ensures MG will also produce groups with large opacities. It
is therefore expected that FEDS can use the same spatial /
temporal / angular discretization resolutions as MG.

The right-hand side of the time-discretized FEDS TRT
equation can become negative for some elements for suffi-
ciently large timesteps and fine elements. This occurs because
the energy shape of B(E) is not the same as that of ∂B/∂T (E).
While this can occur for both FEDS and MG, one may expect
it to occur more easily for FEDS, as some elements cover
small energy widths and the maximum pointwise difference
between the normalized Planckian and its temperature deriva-
tive will always be larger than differences of integrals. It is
unclear how often these negativities might occur or what their
effect would be when they do occur.
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