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Abstract - In this work, we document and study two variants of upstream corner balance (UCB) spatial
discretizations for the linear Boltzmann equation. The first variant of UCB was published in 1997 by Adams.
The second variant corrects a flaw, discovered in 2005, inherent in the 1997 variant. The second (2005) variant
has not previously been published. Computational results are presented to: demonstrate the equivalence of the
two UCB methods in slab geometry, verify that the second variant of UCB corrects the multi-dimensional flaw
of the original UCB, and explore the accuracy of UCB relative to the more widely known and used bilinear
discontinuous finite element spatial discretizations. Each UCB method studied here performs well in some
limits but poorly in other limits.

I. INTRODUCTION

The original upstream corner balance (UCB) spatial dis-
cretization was published by Adams in [1]. We refer to this
variant of UCB as UCB97. In 2005, a flaw was found with
UCB97 for problems in multiple spatial dimensions given un-
equal incident angular fluxes on adjacent faces of a given zone.
(In this paper, “zone” and “spatial cell” are synonymous.) To
correct this flaw, a new variant of UCB was derived which
we refer to as UCB05. To the best collective knowledge of
this paper’s authors and our collaborators [2] who have also
studied UCB, UCB05 has never been documented within the
radiation transport literature.

In this work, we more clearly re-state the UCB97 spatial
discretization originally given in [1]. We demonstrate how
UCB05 can be derived from UCB97 and show the equivalence
of UCB97 to UCB05 in slab-geometry problems. The ray-
propagation problem of Mathews [3] is then used to demon-
strate the instability of UCB97 and the stability of UCB05.
Finally, the UCB05 and UCB97 spatial discretizations are stud-
ied and compared to an unlumped bilinear discontinuous finite
element discretization (UBLD) and a fully lumped bilinear dis-
continuous finite element (FLBLD) discretization for the ray-
propagation problem and problems devised using the method
of manufactured solutions (MMS) [4]. This study considers
two different interpretations of the UCB unknowns—that they
are centered at vertices or centered in subcell volumes—and
illustrates that the interpretation one chooses can significantly
affect the accuracy one observes.

II. DERIVATIONS

1. Upstream Corner Balance Methods

UCB spatial discretizations are most easily defined for the
steady-state, mono-energetic, mono-directional linear Boltz-
mann equation,

~Ω · ~∇ψ + σtψ = Q . (1)

In Eq. (1), ~Ω is particle direction, ψ(~x, ~Ω) is the angular flux,
σt(~x) is the total interaction cross section, Q(~x, ~Ω) is the direc-
tionally dependent total source (which may include scattering,

fission, emission, etc., in addition to the fixed source), and ~x is
position.

All corner balance methods, UCB included, are defined
by enforcing particle balance within each individual “corner,”
which is a sub-cell of a spatial mesh cell (zone). A corner
is a half-cell in slab geometry, a quadrilateral in 2-D, and a
polyhedron in 3-D. Corner balance methods differ in their
approximations for how exiting-surface-averaged fluxes relate
to volume-averaged and incident-surface-averaged fluxes. In
this paper, we examine UCB schemes for slab cells and 2-D
polygons, deferring the more complicated 3-D discussion to
a later communication. As shown in Fig. 1, the quadrilateral
corner “c” of the larger arbitrary-polygon spatial mesh zone “z”
has a total of four faces: two zone-interior faces shared with
corners c− and c+, respectively, and two zone-surface faces
shared with corners of adjacent zones. See [5] for further clar-
ification on the relationship between zones and their corners.
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Fig. 1. A portion of a spatial zone (cell) showing the quadri-
lateral corner c, its surface area vectors, and its zone-interior
neighboring corners (c+ and c−). A corner in 2-D is a quadri-
lateral defined by a zone vertex, the midpoints of the two
connected edges, and the zone center point. The N corners
in a polygonal zone with N vertices fill the zone and do not
overlap.
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All corner balance schemes impose particle conservation
within each corner:

~Ω ·
[
~A−ψz−1/2 + ~A+ψz+1/2 + ~B+ψc+1/2 + ~B−ψc−1/2

]
+ Vcσt,cψc = VcQc . (2)

In Eq. (2), ~A± and ~B± are the area face normals, the area of
the face multiplied by the outward direct normal of that face,
as shown in Fig. 1; Vc is the volume of corner c (= area in
2D); and σt,c is the corner-averaged total cross section. In
this paper we consider only problems with zone-wise constant
cross sections and henceforth omit the c subscript on σt. In
Eq. (2), there are five angular flux quantities,

1. ψc, the volumetric average angular flux within corner c,

2. ψz±1/2, the average angular fluxes along the zone inter-
faces of corner c, and

3. ψc±1/2, the average angular fluxes along the zone-interior
interfaces of corner c.

A schematic of the locations of the interface fluxes and the
corner-average fluxes is given in Fig. 2.
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Fig. 2. Location of interface fluxes, ψc±1/2 and ψz±1/2, relative
to the corner average fluxes, ψc and ψc± of zone z. Solid black
lines denote zone boundaries, and dashed lines indicate corner
boundaries within a zone. The crosshairs denote the zone
center.

Though all corner balance schemes enforce the same equa-
tion [Eq. (2)], each corner balance scheme has unique accu-
racy, performance, and other characteristics based on how that
scheme defines the various interface fluxes. Both UCB97 and
UCB05 use upwinding at zone interfaces, defining

ψz±1/2 =

 ψc ~Ω · ~A± > 0
ψz± ~Ω · ~A± < 0

. (3)

Here the ψz± quantities are given from neighboring cells or
boundary conditions. The performance of UCB depends on
its definition of the zone-interior inter-corner interface fluxes.
The UCB interface flux definitions allow for

1. solving corner by corner for all corner-average and
corner-exiting fluxes of a given zone without explicitly
building and solving a system of linear algebraic equa-
tions for the entire zone,

2. reasonable accuracy in the thick diffusion limit [6, 7, 8],
and

3. minimizing 1-D truncation error [1].

The first point is the origin of the “upstream” designation for
UCB: for a given direction ~Ω, the “upstreaming” nature of
UCB defines a system of linear equations that is strictly lower
triangular and can be solved corner by corner within each
zone.

All UCB schemes define the inter-corner interface flux
from the point of view of the “upstream” corner—the corner
for which the inter-corner interface is an outflow face. Using
Fig. 2 as an example where ~Ω · ~B+ > 0, UCB97 defines the
outgoing flux ψc+1/2 as:

ψc+1/2 = ψc +
Qc+ − Qc

2σt
+ f (τc+1/2)[ψc − ψz−1/2] , (4)

where τc+/1/2 is an effective optical depth of corner c with
respect to the c+1/2 face, for the direction (~Ω) for which the
equation is being solved:

τc±1/2 = σt
Vc

~Ω · ~B±
, ~Ω · ~B± > 0 , (5)

where V is the volume of the corner, ~B is the outward directed
area normal, and σt and ~Ω are as defined previously. From [1],
the f (τ) of Eq. (4) is defined as

f (τ) =
3 + 4τ + 4ατ2

2τ + 2τ2 + 4τ3 . (6)

(Our notation differs from that of [1]. Our α is the “α0” from
[1], and our f (τ) equals α(τ)/τ from [1].) The f (τ) form was
chosen because it leads to satisfactory results in the thick dif-
fusion limit and provides small truncation error in the outflow
angular flux in a slab-geometry source-free pure absorber. The
α constant in Eq. (6) is a free parameter. As originally detailed
in [1], this constant is set to 0.455 in UCB97 to maximize ac-
curacy in the presence of unresolved boundary layers in the
thick diffusion limit.

2. A Lurking Problem

UCB97 can be used without apparent issue in a variety of
practical problems. However, the method contains a serious
flaw that leads to unacceptable performance in some problems.
Observe that in the limit as τ → 0, from Eq. (6) f (τ) → 3

2τ ,
which becomes unbounded as the optical depth, τ, approaches
zero. This flaw is hidden if the term multiplied by f (τ), ψc −

ψz−1/2, approaches zero at a rate greater than or equal to the
rate f (τ) goes to infinity. In slab geometry UCB97 is a stable,
well behaved discretization, because (as we show below) the
product f (τ)[ψc − ψz−1/2] is well behaved as τ→ 0. In multi-
dimensional problems with relatively smooth solutions this is
also the case, but in some multi-dimensional problems ψc −

ψz±1/2 does not go to zero quickly enough to keep the product
well-behaved.
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We now demonstrate that in slab geometry,

lim
τ→0

{
f (τ)

[
ψc − ψz−1/2

] }
= 0 . (7)

In slab geometry, the corner c balance equation is:

ψc+1/2 − ψz−1/2 + τψc = τ
Qc

σt
, (8)

where he have defined τ = σt∆xc/µ, ∆xc is the width of
corners c and c+, and µ is the cosine of ~Ω with respect to the
x−axis. This equation and Eq. (4) are the two equations that
determine ψc and ψc+1/2 when ψz−1/2 is incoming. Algebraic
manipulation of these two equations leads to:

f (τ)
[
ψc − ψz−1/2

]
=

f (τ)
1 + τ + f (τ)

[
3Qc − Qc+

2σt
− τψz−1/2

]
, (9)

It is easy to see that

lim
τ→0

{
f (τ)

[
ψc − ψz−1/2

] }
=

3Qc − Qc+

2σt
, (10)

verifying that f (τ)[ψc − ψz−1/2] is a bounded quantity in slab
geometry.

3. UCB05 from UCB97

Equation (9) can be thought of as a UCB97 slab-geometry
identity. Using Eq. (9), Eq. (4) can alternatively be expressed
as

ψc+1/2 = ψc +
Qc+ − Qc

2σt

+
f (τ)

1 + τ + f (τ)

[
3Qc − Qc+

2σt
− τψz−1/2

]
. (11)

Defining ψc+1/2 as in Eq. (11) is equivalent to defining it as in
Eq. (4), in slab geometry. However, Eq. (11) differs from Eq.
(4) in that it does contain the product of a function that→ ∞
times a function that→ 0 in the limit of τ→ 0.

Equation (11) is the UCB05 inter-corner interface flux
definition. It produces the same solution as UCB97 in slab ge-
ometry but different solutions in multi-dimensional geometries
in general. We rewrite this UCB05 equation as

ψc+1/2 = ψc +
Qc+ − Qc

2σt

[
1 − g(τ)

]
+ g(τ)

[
Qc

σt
− τψz−1/2

]
, (12)

where
g(τ) ≡

τ f (τ)
τ f (τ) + τ + τ2 . (13)

The g and (1− g) functions are well-behaved, with g monoton-
ically decreasing from 1 at τ = 0 to 0 as τ→ ∞. The product
τg(τ) also decreases to 0 as τ→ ∞. Thus, the coefficients of
the driving terms (sources and incident fluxes) in the UCB05
equation are all well-behaved.

Since Eq. (12) is derived from UCB97 in slab geometry,
UCB05 will yield identical results as UCB97 in slab geometry.
However, since all terms in Eq. (12) are finite as τ approaches
zero, we expect UCB05 to remain stable in multi-dimensional
geometry in cases where UCB97 becomes unstable.

III. COMPUTATIONAL RESULTS

1. Slab Geometry Equivalence

In Fig. 3, we plot the inflow-normalized corner-c average
flux, ψc/ψz−1/2, for a source-free, purely absorbing medium
as a function of corner effective optical thickness, τ. Fig-
ure 3 demonstrates that UCB05 is equivalent to UCB97 in
slab geometry, and shows that UCB97 yields strictly positive
solutions in a source-free pure absorber.

We plot the UCB97 and UCB05 corner-c normalized so-
lutions, ψc/

(
Qc
σt

)
, for a source-driven problem with vacuum

boundary conditions for the three different ratios of source
skew, Qc+/Qc, as a function of τ in Fig. 4. Again, Fig. 4
confirms that UCB05 is equivalent to UCB97 in slab geome-
try. Additionally, Fig. 4 shows an interesting artifact of UCB
and discontinuous finite element spatial discretizations of the
linear Boltzmann equation: strong sources, in particular ge-
ometrically skewed source distributions that are largest near
cell outflows, can result in negative angular flux solutions
near zone inflows, despite yielding positive outflow angular
fluxes. The magnitude of the negativity in Fig. 4 is magnified
by our choice of normalization. If instead of plotting ψc/

Qc
σt

,
we had plotted ψc/

Qc+

σt
, the negativity would be much smaller,

as Qc+/Qc = 10 for the UCB solutions that yielded negative
ψc. It is important to recognize that although ψc can be < 0
for corners adjacent to “inflow” surfaces, the zone-averaged
and zone-exiting fluxes in these test problems are all > 0.
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Fig. 3. UCB97 and UCB05 normalized value of ψc for a
source-free, pure absorber.
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Fig. 4. UCB97 and UCB05 normalized solutions for a source
driven problem.
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2. Ray Propagation Problem

The instability of UCB97 arises when incident angular
fluxes on adjacent zone-surfaces in a given corner do not be-
come equal as τ→ 0. The effects are exacerbated by optically
thin zones and zones with large aspect ratios. To demonstrate
this instability, we consider the ray-propagation problem of
Mathews [3]. As described in [3], the problem consists of a
(x, y) ∈ [0, 25] × [0, 25] homogenous, source free pure absorb-
ing medium, with σt = 1. Vacuum boundary conditions exist
on all faces for all directions, except for angular flux in the
direction of µ = 0.3500212, η = 0.8688903 incident along
the bottom edge of the domain for x ∈ [0, 0.5].

In Fig. 5, we compare the normalized angular flux solu-
tion, ψ̂(x),

ψ̂(x) =
ψnum(x, 25)∫ 25

0 ψnum(x, 25) dx
, (14)

of UCB97, UCB05, UBLD, and FLBLD, to the analytic solu-
tion for the nominal case of uniform zones with ∆x = ∆y = 0.5.
As noted by Mathews, nearly all spatial discretizations will
broaden the incident beam of radiation and possibly translate
the beam position artificially, phenomena that every method
in Fig. 5 exhibit.
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Fig. 5. Normalized angular flux, ψ̂(x), at y = 25, with ∆x =

∆y = 0.5 for Mathews’ ray propagation test problem.

The original motivation for the development of 2-D “sim-
ple” corner balance (SCB) was to obtain FLBLD-like solu-
tions on polygonal cells with more than four vertices [1]. The
original motivation for UCB was to obtain similar solutions
without building and inverting matrices for each cell, and to
improve on those solutions if possible [1]. We see from Fig. 5
that UCB97 is arguably better than FLBLD and comparable
to UBLD, for this problem, and UCB05 is comparable to
FLBLD.

In Fig. 6, we plot the UCB97 solution at different mesh
refinements, with ∆y = 2∆x. Though some oscillation near the
expected beam location could be tolerated, UCB97 is unstable
in this regime, with oscillations that grow with refinement and
with distance from the beam. This is a direct result of the
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Fig. 6. ψ̂(x) for UCB97 at y = 25, with 2∆x = ∆y = 0.5
for the ray propagation problem at different levels of mesh
refinement.

“flaw” identified above.
For comparison, consider the UBLD and UCB05 solutions,
given in Fig. 7 and Fig. 8, respectively. The UBLD solution is
clearly more accurate than UCB05, which exhibits significant
spreading and shifting of the beam. However, UCB05:

• remains stable,

• yields non-negative solutions for this test problem,

• becomes more accurate with mesh refinement, and

• can be applied to polygonal zones, whereas UBLD and
FLBLD cannot.
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Fig. 7. ψ̂(x) for UBLD at y = 25, with 2∆x = ∆y = 0.5
for the ray propagation problem at different levels of mesh
refinement.
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Fig. 8. ψ̂(x) for UCB05 at y = 25, with 2∆x = ∆y = 0.5
for the ray propagation problem at different levels of mesh
refinement.

For radiative transfer applications, UBLD is more prone to
negativities than is FLBLD. As such, and given the original
goals of UCB development, a fair comparison is the accuracy
of UCB05 to the accuracy of FLBLD. Returning to the case
of uniform zones, we compare the normalized angular flux
outflow from the top of the domain for FLBLD in Fig. 9 to that
of UCB05 given in Fig. 10 for various mesh refinements. The
FLBLD scheme broadens and translates the beam less than
UCB05 for an equal number of unknowns. That is, UCB05 is
more “diffusive” than FLBLD for this problem. The FLBLD
solution contains negativities that, while mitigated with mesh
refinement, cannot be eliminated entirely, whereas the UCB05
outflow is strictly positive.

In summary, for beam propagation UCB97 can produce
unacceptable oscillations, whereas UCB05 produces solutions
that resist negativities and oscillations but exhibit more numer-
ical diffusion than FLBLD or UBLD.
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Fig. 9. ψ̂(x) for FLBLD at y = 25, with ∆x = ∆y at varying
levels of mesh refinement.
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Fig. 10. ψ̂(x) for UCB05 at y = 25, with ∆x = ∆y at varying
levels of mesh refinement.

3. Bilinear MMS Comparison

Here we consider a simple test problem with a bilinear
analytic solution and explore how well the UCB methods
achieve their goal of approximating such a solution. We use
the Method of Manufactured Solutions (MMS) to define an
angular flux solution of the form ψ(x, y) = 1 + x(3 − y), with
x ∈ [0, 1], y ∈ [0, 1], µ = 0.3500212 and η = 0.8688903,
σt = 1, and no scattering within the medium, on a single-
zone mesh, ∆x = ∆y = 1. Our error metric assesses the
difference between the numerical and analytic zone-averaged
fluxes. This is the one-zone limit of the following more general
metric, which we will use below in more complicated MMS
problems:

EA =

√√√ Nz∑
z=1

∆x∆y
(
ψA − ψ̃A

)2

z
, (15)

where ψA,z and ψ̃A,z are the exact and numerical zone-averaged
angular fluxes, respectively, within zone “z.”

Before we apply the numerical methods to the MMS test
problem, a discussion of the UCB unknowns is in order. As
noted by Adams, the FLBLD equations are identical to the
simple corner balance (SCB) equations for rectangular zones
with zone-wise constant cross section [7]. However, while
the equations are identical, the unknowns in the respective
systems of equations could be interpreted differently. The
FLBLD unknowns are vertex values of a bilinear interpolatory
function, whereas the SCB solution unknowns could be viewed
as either those same vertex values or as average angular fluxes
over the corner subcells of the zone. UCB unknowns also have
these two plausible interpretations.

The relation between vertex and corner-averaged quan-
tities is easy to find for bilinear functions. Consider Fig. 11,
which depicts vertex and corner indices for a rectangular cell.
Let ψ̂ j be the value at the j-th vertex and ψ j be the value
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averaged over the adjacent corner subcell. Then
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Fig. 11. Vertex and corner numbering pattern for rectangular
cell.

The average of the four ψ̂ j quantities equals the average
of the four ψ j quantities. Thus, given a set of four UCB
angular fluxes for a rectangular cell, both interpretations of the
UCB unknowns produce the same value of the cell-averaged
angular flux. However, in problems that have fixed sources,
the interpretation does affect cell-averaged solutions, as we
discuss and demonstrate below.

In any transport spatial discretization the σtψ and Q terms
must be treated consistently: the two quantities in a given dis-
crete equation must represent values at the same spatial point
or values resulting from the same spatial integration. It fol-
lows that in problems with fixed sources, including our MMS
problems, one must choose an interpretation for the UCB un-
knowns and define the associated Qc values accordingly. In
what follows we explore the accuracy of the UCB methods for
our MMS problems for both the vertex and corner-averaged
interpretation of their unknowns.

For our exploration we will need three different kinds of
Q values. In all cases we begin by projecting the MMS source
onto bilinear basis functions in each cell, producing a function
that we call QBL

MMS . Then for UBLD, the value that appears in
the i-th equation is a weighted integral:

Qmom
i =

∫
V

QBL
MMS (x, y)bi(x, y) dV (17)

We shall call this the “moment” value. For FLBLD, and for the
vertex-centered interpretation of UCB unknowns, the value
that appears in the i-th equation is the value at the i-th vertex:

Qvert
i = QBL

MMS (xi, yi) (18)

We shall call this the “vertex” value. For the corner-averaged
interpretation of UCB unknowns, the value that appears in the
i-th equation is the average over the i-th corner subcell:

Qavg
i =

∫
Vi

QBL
MMS (x, y) dV (19)

The UBLD and FLBLD methods should be exact for the
bilinear MMS problem, because the solution resides in the
space spanned by their basis functions. We have verified this

Q values used UBLD FLBLD
Moment 0 0.0076
Vertex 0.012 0

TABLE I. EA for bilinear MMS problem for DFEM spatial
discretizations with different source values.

for our implementation, as Table I shows. Table I also shows
the errors that are introduced by using the “wrong” source
values (moment values in FLBLD and vertex in UBLD).

Table II provides results from the two UCB methods for
the bilinear MMS problem. For this problem, the “vertex”
and “average” interpretations of the UCB97 unknowns lead to
similar errors, but the “average” interpretation of the UCB05
unknowns produces a more accurate result than does the “ver-
tex” value. We shall keep this in mind as we continue the
exploration of MMS problems.

Q values used UCB97 UCB05
Average 0.058 0.016
Vertex 0.050 0.140

TABLE II. EA for bilinear MMS problem for UCB spatial
discretizations with different source interpretations.

4. MMS for Order of Convergence

We consider a second set of MMS problems with solu-
tions of the form:

ψ(x, y, ~Ω) = 10 + 5 sin
(
πx
3

)
sin

(
πy
3

)
, (20)

for x ∈ [0, 3], y ∈ [0, 3] and ~Ω = 〈0.3500212, 0.8688903〉.
The problems have no scattering. We can vary σt to study
optically thin, thick, and intermediate problems. Here we
present results with σt = 1 and σt = 106, with ∆x = ∆y. We
vary the number is cells along each axis, Nz,x = Nz,y, and study
solution convergence in the EA metric as the number of cells
varies from 1 × 1 to 1024 × 1024. We observe the behavior
of the UCB methods with both the “vertex” and “average”
interpretations of their unknowns.

Recall that UCB methods were designed to mimic
FLBLD in problems with optically thick cells in which the
total source dominates the streaming term. Let us consider
an optically thick problem, with σt = 106, and let us adopt
the interpretation that UCB unknowns are vertex values, like
the FLBLD unknowns. The results are shown in Fig. 12. We
observe that for the coarsest meshes in this optically thick prob-
lem, both UCB methods provide essentially the same solutions
as both DFEMs. These nearly identical solutions exhibit the
second-order convergence in this mesh-resolution range. This
is as expected, given that the UCB methods were designed for
this optically thick, total-source-dominated limit. For the two
most highly refined meshes (512 × 512 and 1024 × 1024), the
two UCB methods become noticeably less accurate than the
two DFEMs, and UCB05 becomes slightly less accurate than
UCB97.

We consider next the same optically thick problem but
choose the interpretation that UCB unknowns are spatial aver-
ages over corner subcells. The results are provided in Fig. 13,
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Fig. 12. Convergence of EA for smooth MMS problem with
σt = 106, interpreting UCB unknowns as vertex values. All
four methods produce essentially identical results except for
the two most refined meshes, where the UCB methods become
less accurate.

with the DFEM results repeated for easy reference. The differ-
ence from the “vertex” interpretation is dramatic. UCB97 and
UCB05 produce roughly identical results, but under the “aver-
age” interpretation these results are substantially worse than
they were under the “vertex” interpretation. We see that, at
least with optically spatial cells with strong total sources, UCB
unknowns are best interpreted as vertex values. In this kind
of problem, interpreting UCB unknowns as corner-averaged
values leads to terribly inaccurate solutions.
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Fig. 13. Convergence of EA for smooth MMS problem with
σt = 106, interpreting UCB unknowns as spatial averages over
corner subcells. The two DFEM solutions are indistinguish-
able and the two UCB solutions are indistinguishable.

We turn next to problems with spatial cells with interme-
diate and small optical thickness, which we obtain by setting
σt = 1. Fig. 14 presents EA as function of the number of
zones in the x direction for the four methods studied here,

interpreting the UCB unknowns as vertex values. We observe
that in this problem: the UBLD EA is proportional to ∆x3,
the FLBLD and UCB97 EA values are proportional to ∆x2,
the UCB05 EA values are relatively large and proportional to
∆x, and the UCB97 solution closely approximates the FLBLD
solution. We see that in this smooth test problem, UCB97
achieves in the thin-cell limit the goal that it achieved in the
thick-cell limit, namely that it achieves a good approximation
of the FLBLD solution. The first-order convergence of UCB05
is consistent with the behavior observed in the ray-propagation
problem.
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Fig. 14. Convergence of EA for smooth MMS problem with
σt = 1, interpreting the UCB unknowns as vertex values. The
UCB97 curve is partially hidden by the second-order trendline.

We reconsider theσt = 1 problem under the interpretation
that UCB unknowns are spatial averages over corner subcells.
Fig. 15 presents the results, with the DFEM results repeated
for easy reference. We observe that in this problem the UCB05
EA values are an order of magnitude smaller than they were
under the “vertex” interpretation, but they remain proportional
to ∆x. The UCB97 results are not substantially different than
they were under the “vertex” interpretation.

IV. CONCLUSIONS

Corner-balance (CB) methods were originally developed
to extend the performance of rectangle-cell FLBLD to arbi-
trary polygonal cells, especially for problems with optically
thick, diffusive spatial cells. The first step in CB development
was the recognition that each FLBLD unknown satisfies a
conservation equation on a “corner” subcell. In this conser-
vation equation, the FLBLD vertex-centered unknown also
plays the role of the corner-averaged flux, and the fluxes on
intra-zone corner surfaces are simple averages of the neigh-
boring vertex values. The “Simple” corner balance (SCB)
method generalized this directly to polygonal cells, and the
“Upstream” corner balance (UCB) methods have attempted to
obtain approximately the same solutions without inverting the
within-cell matrices that DFEMs or SCB require.

UCB97 and UCB05 are two examples of upstream cor-
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Fig. 15. Convergence of EA for smooth MMS problem with
σt = 1.

ner balance spatial discretizations. UCB97 has an implicit
requirement that the difference between the “corner” angular
flux and any incident angular fluxes on the immediately ad-
jacent zone surfaces tend to zero as spatial zones are refined.
This is because it multiplies this flux differences by a coef-
ficient that becomes unbounded for optically thin cells. In
multi-dimensional calculations, this condition is not always
satisfied. UCB97 can exhibit instability, with oscillations that
grow in magnitude, as the spatial mesh is refined in prob-
lems without smooth solutions, as we have illustrated using a
ray-propagation problem. UCB05 is equivalent to UCB97 in
slab geometry, but it relates outgoing, incoming, and corner-
averaged fluxes using an equation whose coefficients are well
behaved. UCB05 remains stable as the spatial mesh is refined
even in the presence of zones with high aspect ratios, but
this comes at the cost of increased numerical diffusion and a
reduced order of accuracy for smooth problems.

We have demonstrated that in problems with optically
thick spatial cells and strong total sources, both UCB97 and
UCB05 do obtain the FLBLD solution, as they were designed
to do. This is true only if the “corner” unknowns are inter-
preted as vertex values, as they are in FLBLD.

Our test problems also indicate that if cells are not suffi-
ciently thick, the UCB results can become less accurate than
the FLBLD results. On the finest meshes for problems with
smooth solutions, UCB97 again reproduces very nearly the
FLBLD results, but UCB05 is significantly less accurate.

In summary, each UCB methods studied here has a flaw
for some class of problems. Both methods perform well in the
thick diffusion limit. UCB97 performs well for most problems
but can produce unacceptable oscillations in some fine-mesh
problems with solutions that lack smoothness. UCB05 re-
sists oscillations but is only first-order accurate and exhibits
significant numerical diffusion.

When the CB methods were originally developed there
were at most a few options for obtaining FLBLD-quality solu-
tions on polygonal cells. Since that time the PieceWise Linear
Discontinuous (PWLD) method has been developed to fill this
gap [9, 10, 11, 12]. PWLD has been shown to maintain the

thick diffusion limit and to converge angular flux errors second
order in space in both the optically thick and thin limits. But,
PWLD requires the inversion of an N × N matrix to calcu-
late the angular fluxes on an N-vertex polygon, whereas UCB
methods obtain their solutions by marching across the polygon
one corner at a time and thus may be computationally faster.
In light of the results present here, however, for some classes
of problems the solid performance of a DFEM such as PWLD
may be worth its additional cost relative to UCB. Further, the
computational performance of PWLD implementations has
yet to be studied fully and optimized, and as we move towards
more advanced, heterogeneous computing architectures, the
additional cost of the matrix inversion may be diminishingly
small when compared with sweeping the corners of a spatial
zone.
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