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Abstract - In this work, we extend the Implicit Filtered PN method to energy-dependent problems in the context
of Thermal Radiation Transport. First, we derive temperature-dependent multigroup opacities using a power
regression of the model opacity from [1]. Second, we propose a methodology to adjust the group-dependent
filter strengths relying on Planck-weighting. Several spatial filtering strategies are then studied in terms of
accuracy and computational cost. Spatially local strategies tend to be preferable though determining the
spatial dependency of the filter may require more tuning than for uniform strategies. Overall, filtering improves
the conditioning of the linear system.

I. INTRODUCTION

A great deal of effort has been dedicated towards the
development of numerical methods to simulate the thermal
radiation transport (TRT) equations, which govern the propa-
gation of photons and their interaction with the surrounding
material. An option for the angular discretization is to use
the spherical harmonics – or PN – approximation to express
the photon angular intensity Ψ using a spherical harmonics
expansion, truncated up to a given order N.

While this method spectrally converges to the analytical
solution and ensures rotational invariance, a major issue is its
proneness to approximate rapidly varying functions in angle
with highly oscillatory solutions. Typically, this may even
induce regions where Ψ reaches negative values, which is –
of course – nonphysical. Worse yet, the material temperature
T can then suffer from that same problem, in which case the
planckian re-emission terms become nonsensical.

The Filtered PN (FPN) method aims at mitigating this
very flaw. It was first proposed by McClarren and Hauck [2]
as a conservative fix penalizing the higher derivatives in an-
gle while preserving the rotational invariance of the solution.
Other formulations were later developed to further reduce the
impact of the Gibbs phenomena on the solution [3]. A signifi-
cant step forward was achieved in [4] showing a convenient
way to recast this filtering approach through an additional col-
lision operator directly in the transport equation. While all
these methods require the user to choose the strength of the
filter, this last formulation no longer requires to adjust it as the
spatial and temporal meshes are refined, thus allowing to tune
it on coarse meshes. In [5], this method was studied in the
context of time-implicit discretization schemes, so crucial for
TRT applications given that the photons travel at the speed of
light and therefore that the Courant-Friedrich-Lewy condition
imposes to use minuscule times steps for explicit schemes. It
was in particular found that the implicit filter improves the
conditioning of the linear system in the streaming limit. This
implies that the computational cost of the method tends to be
reduced by the filter. It was also found that allowing the filter
strength to be spatially dependent may yield a more accurate
solution for a given N.

The study however was limited to the energy-integrated
form of the TRT equations. In this work, we wish to study

this method in the context of multigroup calculations with
temperature dependent opacities. We study how the energy-
dependent filter strength may be chosen and how it affects the
computational cost of the method.

II. THEORY

In this paper, we consider the TRT equations which con-
sists of the linear Boltzmann equation coupled with the ma-
terial energy equation. We first briefly detail these equations
and then describe the model opacity that we choose for the
material.

1. Multigroup Thermal Radiation Transport

The energy structure is decomposed into G groups,
the g-th corresponding to the energy interval [Eg−1, Eg] =
[hνg−1, hνg], where h is the Planck constant and ν is the photon
frequency. The multigroup TRT equations are obtained upon
integration of the linear Boltzmann equation over each energy
group. It then states that for all energy group g, 1 ≤ g ≤ G:

1
c
∂Ψg

∂t
+Ω · ∇Ψg + σt,g(r,T )Ψg(r,T )

= σg(r,T )Bg(T ) +

∫
4π
σs,g(r,Ω′ ·Ω)Ψg(r,Ω′) dΩ′ + S g,

(1a)

and

Cv
∂T
∂t

=

G∑
g=1

σg(r,T )
(
Φg − 4πBg(T )

)
. (1b)

In these equations, Ψg represent the photon angular intensity,
S g the volumetric source; σt,g, σg and σs,g are respectively
the total, absorption and scattering multigroup opacities; Cv is
the material heat capacity and T is the material temperature.
Also, Φg designates the scalar intensity defined as:

Φg ≡

∫
4π

ΨgdΩ. (2)

Furthermore, the Planckian is:

Bg(T ) ≡
∫ νg

νg−1

Bν(ν,T ) dν, (3)
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where the frequency-dependent Planckian Bν is defined as:

Bν(ν,T ) ≡
2hν3

c2

1

exp
(

hν
kT

)
− 1

, (4)

c and k being respectively the speed of light in vacuum and
the Boltzmann constant.

This physics is very relevant to the study of Filtered
PN methods because if T reaches negative values, Bν is not
integrable over [0,∞).

2. Model Opacity

We consider a pure absorber problem – without loss of
generality – and choose the following energy-dependent and
temperature-dependent model opacity used in [1] (Eq. (69) of
that work):

σ(r, ν,T ) = σ0(r)
1 − exp (−hν/kT )

(hν)3 , (5)

the profile for σ0(r) being later chosen as illustrated in Fig. 1.
As explained in [1], this model presents two realistic features:
the value for hν � kT is much larger than for hν > kT and
it decreases as T increases for fixed hν. We construct the
multigroup opacities by taking its Rosseland-average:

σg(r,T ) ≡

∫ νg

νg−1

∂Bν
∂T

dν∫ νg

νg−1

1
σ

∂Bν
∂T

dν
. (6)

3. Implicit Filtered PN

Using the PN approximation, we have:

Ψg(r,Ω) ≈ RT (Ω)Φg(r) =

N∑
`=0

∑̀
m=−`

Φm
`,g(r) Rm

` (Ω), (7)

where the real-form spherical harmonics are defined as:

Rm
` (Ω) =


√

2 Cm
` Pm

` (µ) cos(mϕ), 0 < m ≤ ` ≤ N
C0
`

P0
`
(µ), 0 ≤ ` ≤ N

√
2 C |m|

`
P|m|
`

(µ) sin(|m|ϕ), 0 < −m ≤ ` ≤ N
,

(8)
Pm
` designating the associated Legendre polynomial of degree

` and order m and Cm
` =

√
(2`+1)

4π
(`−m)!
(`+m)! being a normaliza-

tion constant chosen such that the spherical harmonics are
orthonormal to each other.

The PN equations are obtained by multiplying Eq. (1a)
with the vector of the spherical harmonics R and integrating
over the unit sphere. We choose the Backward Euler time-
integration scheme, without loss of generality. Adding the fil-
tering operator to the equation then yields, for all g ∈ {1, ...,G}:

Φg −Φ
n
g

c∆t
+D·∇Φg+σt,gΦg+σf,gFΦg = σgBg(T )+σs,gΦg+Sg.

(9)

In this equation, the superscript n designates the time step
index, the absence thereof implying an implicit evaluation
(i.e. at tn+1). Besides, the term in red is the filtering term. We
have also defined:

D =
∑

u∈{x,y,z}

Dueu , Du =

∫
4π

Ωu R(Ω)RT (Ω) dΩ, (10)

ex, ey and ez being the (Cartesian) unit vectors and:

Bg =

∫
4π

R Bg(T )dΩ, (11)

σs,g = diag
{
σs,g,` , m = −`, ..., ` ; ` = 0, ...,N

}
, (12)

σg = diag
{
σg δ`,0 , m = −`, ..., ` ; ` = 0, ...,N

}
, (13)

σs,g,` =

∫
4π
σs,g P0

` dΩ. (14)

The expression of F is given by:

F = diag
{
f (`,N) , m = −`, ..., ` ; ` = 0, ...,N

}
, (15)

with the filter function f being:

f (`,N) ≡ − log ρfilterType

(
`

N + 1

)
. (16)

Although several filter types have been proposed in the past
[4, 6], we only consider the following in this work:

ρLanczos(ζ) ≡
sin ζ
ζ

. (17)

The main question addressed in this paper is how to choose
the value of σf,g as a function g.

III. RESULTS AND ANALYSIS

1. Crooked Pipe Test Problem

We consider a common and challenging test problem for
TRT applications, known as the Crooked Pipe test problem
[7]. Fig. 1 describes the geometry. Initially, the entire domain
is at equilibrium Tinit = 0.05 keV. At t = 0, we start applying
an incoming source Tinc = 0.3 keV at the left boundary for
0 ≤ y ≤ 0.5 cm. The bottom boundary y = 0 is reflecting and
all other boundaries are vacuum.

The implementation was performed within Rattlesnake,
the Idaho National Laboratory transport solver based on
the Multiphysics Object Oriented Simulation Environment
(MOOSE) finite element framework [8].
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Fig. 1: Geometry of the Crooked Pipe test problem: the value
for σ0 is chosen such that the opacity σg=3(T = 0.05 keV) is
equal to 200 cm−1 and 0.2 cm−1 in the red and blue regions,
respectively. In addition, the heat capacity respectively is 0.5
and 5×10−4 GJ/cm4/keV. The 20106-element mesh is also
displayed. Results along the straight line x = 2.75 cm in
yellow will be presented in Fig. 3 and Table III.

2. Energy Structure

Because the study of that problem for gray FPN calcula-
tions has been studied in detail in [5], we wish to create an
energy structure that will induce a different behavior in each
group, so that we can study how to adjust σf,g when the need
for filtering is group-dependent.

A 4-group energy structure is proposed in Table I and
is believed to be relevant because the incoming source emits
mostly in the fast groups (g = 3, 4) while the Planckian re-
emission – at least at early times – mostly occurs in the thermal
groups (g = 1, 2). Since the negative regions typically appear
when strong variations in angle are present in the solution, it
is therefore expected to need a stronger filter in the fast groups
(the re-emission being isotropic and thus smooth in angle).

The number of groups G = 4 is chosen such that it would
be inconvenient to adjust the filter strength in each group
individually but is kept fairly low because of our model opacity,
which would cause some groups to be essentially optically
transparent if we were to choose more groups. Note however
that the methodology presented below is not restricted to low
values of G.

T (keV) g = 1 g = 2 g = 3 g = 4

Tinit = 0.05 18.11% 67.90% 13.98% 0.01%
Tinc = 0.3 0.17% 3.29% 43.00% 53.54%

TABLE I: Proportion of the radiation emitted in each group
for different temperatures. The bounds for the energy group
are 0.001, 0.1, 0.3, 1 and 10 keV.

3. Multigroup Opacities

We compute the Rosseland-averaged opacities for the
aforementioned 4-group energy structure. We choose σ0 (cf
Eq. (5)) such that the opacity for g = 1 and g = 4 is not
excessively thick and thin, respectively. The actual choice is
described in Fig. 1.

Table II then gives the opacities for the different energy
groups in the thin region for various values of the temperature.
The opacities in the thick region are 1,000 times higher (for a
given group).

A power regression on the data from Table II gives:

σg=1(T ) = 2.905 T−0.7197, (18)

σg=2(T ) = 0.3210 T−0.4857, (19)

σg=3(T ) = 0.006617 T−1.0502, (20)

σg=4(T ) = 0.0006914 T−1.0550, (21)

with the coefficients of determination for each group being
equal to R2

g=1 = 0.994, R2
g=2 = 0.996, R2

g=3 = 0.949, R2
g=4 =

0.920 respectively, where T is expressed in keV and σ in
cm−1. In practice, the temperature is lagged for the evaluation
of these opacities (to accelerate the solver convergence).

4. Filter Strength

A. Filtering Strategy: Planck-weighted Filter Strength

We propose the following method to determine σf,g as a
function of the energy group, which essentially requires as
much work as its determination in the gray case:

• Run an unfiltered calculation to see where the negative
regions appear – typically the edge of shadows.

• Determine the filter strength in the group that has the
strongest negativity. In our case, it would be g̃ = 4. A
good value is σf,4 = 100 cm−1. Note that this is twice as
large as what we chose in the gray case; this is because
the problem tend to be more ’negative’, as explained
above.

• Determine the filter strengths in the other groups using:

σf,g ≡ Tref
Bg(Tref)
Bg̃(Tref)

σf,g̃, (22)

where Tref is a reference temperature characterizing the
intensity of the driving source causing the negativity.
In our case, Tref = 0.3 keV seems to be an appropriate
choice.

The intuition behind this formula is that, looking
at Table I, we will need less filtering for the thermal
groups since very little of the incoming radiation takes
place in these groups.

For the problem presented above, choosing σf,4 = 100 cm−1

removes most of the negativity in that group. The filter strength
in each group is then given by (using Eq. (22)):

σf,1 = 0.3 cm−1 , σf,2 = 6.1 cm−1 (23)

σf,3 = 80 cm−1 , σf,4 = 100 cm−1 (24)

It is noted that these values are not as huge as they may a
priori seem, compared to the opacities in Table II. Indeed, in
Eq. (9), σf,g f (`,N) plays the role of an opacity (not just σf,g):
for instance, the contribution in the equations corresponding
to ` = 1 in a P3 calculation is f (1, 3)σf,g ≈ 0.01σf,g and it
further decreases as N increases.
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Temperature T (keV) g = 1 g = 2 g = 3 g = 4
0.05 2.316E+1 1.383E+0 2.000E-1 1.135E-2
0.06 2.114E+1 1.233E+0 1.546E-1 1.082E-2
0.07 1.944E+1 1.140E+0 1.206E-1 1.029E-2
0.08 1.799E+1 1.073E+0 9.638E-2 9.744E-3
0.09 1.673E+1 1.022E+0 7.940E-2 9.199E-3
0.1 1.562E+1 9.788E-1 6.749E-2 8.656E-3

0.11 1.465E+1 9.415E-1 5.899E-2 8.121E-3
0.12 1.379E+1 9.081E-1 5.279E-2 7.596E-3
0.13 1.302E+1 8.775E-1 4.817E-2 7.086E-3
0.14 1.233E+1 8.493E-1 4.463E-2 6.595E-3
0.15 1.171E+1 8.229E-1 4.186E-2 6.125E-3
0.16 1.115E+1 7.982E-1 3.965E-2 5.679E-3
0.17 1.064E+1 7.748E-1 3.785E-2 5.257E-3
0.18 1.017E+1 7.528E-1 3.636E-2 4.861E-3
0.19 9.742E+0 7.319E-1 3.510E-2 4.490E-3
0.2 9.347E+0 7.120E-1 3.403E-2 4.145E-3

0.21 8.983E+0 6.932E-1 3.310E-2 3.826E-3
0.22 8.646E+0 6.752E-1 3.228E-2 3.530E-3
0.23 8.333E+0 6.582E-1 3.155E-2 3.257E-3
0.24 8.041E+0 6.419E-1 3.090E-2 3.006E-3
0.25 7.769E+0 6.263E-1 3.031E-2 2.776E-3
0.26 7.515E+0 6.114E-1 2.978E-2 2.565E-3
0.27 7.277E+0 5.972E-1 2.928E-2 2.371E-3
0.28 7.053E+0 5.836E-1 2.882E-2 2.194E-3
0.29 6.843E+0 5.706E-1 2.839E-2 2.031E-3
0.3 6.645E+0 5.581E-1 2.798E-2 1.882E-3

TABLE II: Temperature-dependent opacities for the 4-group Crooked Pipe in cm−1 in the thin region. The opacities in the thick
region are 1,000 times larger.

B. Spatial Strategy: Uniform vs Local Filtering

We have shown in [5] for gray calculations that having
a spatially dependent filter can help converge faster to the
reference solution by only turning the filter on where it is
needed. Practically, it need be activated where negative regions
for unfiltered calculations appear along with upstream regions
of a comparable size [5]. Fig. 2 shows what such a profile
looks like for the Crooked Pipe test problem.

Admittedly, it would be ideal to come up with an efficient
way to determine this filter spatial dependency automatically.
Unfortunately – and that is probably the main flaw of the
method, attempts to do so have resulted in much more com-
putationally expensive methods. This is in particular due to
the fact that activating the filter only in regions where the
scalar flux tends to become negative is typically not enough
(as we mentioned, upstream regions of a comparable size need
usually be included, too). That being said, it is believed that
the guidelines presented above are fairly general. For more
detailed directions, the interested reader may refer to [5] and
also keep in mind that the filter strength may be adjusted on
coarse meshes.

Fig. 2: Filter strength σf,g (in cm−1) for g = 4 as a function of
space for the local filtering strategy.

5. Results

Fig. 3 shows the results for Φ0
0,g=4 for the different filtering

strategies along the straight line x = 2.75 cm at t = 0.035 sh,
time around which the unfiltered solution reaches its most neg-
ative values. The uniformly filtered P39 is used as a reference.
The negative values and oscillatory behavior of the unfiltered
solution clearly appear in Fig. 3a. While the uniform filtering
strategy indeed removes the negativity from the solution, as
shown in Fig. 3b, convergence to the reference solution is
attained faster with local filtering (Fig. 3c).

Quantitative results showing the L2-error for each filtering
strategy as a function of N are presented in Table III.
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Fig. 3: Scalar flux Φ0
0,g=4 along the straight line x = 2.75 cm at t = 0.035 sh for different filtering strategies. The values for σf,g

are given by Eqs. (23) and (24). For the local filtering, the spatial dependency in each group is given by Fig. 2.

Unfiltered Uniform Local

P1 4.278E-3 6.155E-3 4.139E-3
P3 3.809E-3 5.440E-3 1.637E-3
P5 1.103E-3 4.324E-3 1.286E-3
P7 1.305E-3 3.351E-3 8.520E-4

TABLE III: L2-error of Φ0
0,g=4 in GJ-cm−3/2-sh−1 along x =

2.75 cm at t = 0.035 sh. This is computed by computing
the L2-error of each curve on Fig. 3 with respect to the P39
solution.

6. Computational Cost

In this section, we are interested in the computational
cost of the method as a function of the filter strength and the
spatial filtering strategy. Fig. 4 displays the number of linear
iterations required by the GMRES solver for the first time step
– which is also the most expensive – as a function of the filter
strength. It in particular exhibits a behavior very similar to that
found for gray calculations: for uniform filtering the number
of linear iterations decreases as σf,g̃ increases and converges
to a number independent of N. For a local filtering strategy,
the number first decreases before increasing and converging
to a constant value. In both cases, the computational cost
is noticeably reduced for the practical value of σf,g̃ used (by
more than 40% and 25% respectively, for N ≥ 3).

IV. CONCLUSIONS

In summary, we have presented an extension of the Im-
plicit Filtered PN method to multigroup calculations for TRT
applications which can be successfully used to reduce the os-
cillations and negativity induced by the PN approximation.
While the filter strengths a priori need be adjusted in each

10-1 100 101 102 103 104 105 106 107 108 109 1010
σf,g=4

0

200

400

600

800

1000

1200

1400

1600

Nu
m
be

r o
f G

M
RE

S 
ite

ra
tio

ns

P1

P3

P5

P7

10-1 100 101 102 103 104 105 106 107 108 109 1010
σf,g=4

0

200

400

600

800

1000

1200

1400

1600

Nu
m
be

r o
f G

M
RE

S 
ite

ra
tio

ns

P1

P3

P5

P7

Fig. 4: Number of linear iterations for the first time step as
a function of N and the filter strength σf,g̃ (in cm−1). As
a reference, the value of σf,g̃ for this test problem was in
practice chosen to be 100 cm−1 (vertical dotted line). For the
local filter, σf,g̃ designates the maximum value.
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group individually, we have suggested a method relying on
weighting them using the planckian distribution evaluated at
the driving temperature responsible for the negativity. Though
this approach may not be universally suited to more compli-
cated problems, where determining such a temperature may
not be straightforward, it allows for a simple method, practi-
cally requiring no more work than for gray calculations. Only
one filter strength then has to be adjusted, which can be done
on coarse meshes. Furthermore, similarly to what was ob-
served for energy-independent filtering, the computational
cost of the method tends to be reduced by the filter. This
constitutes an additional advantage compared to an unfiltered
PN approach.
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