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Abstract - This work verifies the cause of slow convergence for optically thick coarse mesh cell sizes when 
coarse mesh based acceleration is applied to the neutron transport criticality calculation. To overcome the 
limitation, the present paper introduces two two-level iterative schemes to speedup coarse mesh based 
acceleration. In the schemes, a fine mesh based acceleration with the fixed source is augmented in a coarse 
mesh based acceleration with the fission source. These techniques are applied to the partial current-based 
coarse mesh finite difference (p-CMFD) method, that is a more stable acceleration method than other 
coarse mesh based acceleration methods. Simple analyses of numerical problems show that the techniques 
enhance the convergence speed of p-CMFD, especially for optically thick coarse mesh cells. 

 
I. INTRODUCTION 

 
To reduce the computational burden in neutron 

transport calculation, various acceleration methods have 
been developed [1]. Among them, coarse mesh based 
acceleration methods [2–8] are widely used, because they 
are easily applied to the original transport calculation with 
various geometries. However, a drawback of coarse mesh 
based acceleration methods is that they exhibit slow 
convergence or divergent behavior for optically thick coarse 
mesh cells. This drawback limits the size of coarse mesh 
cells. In eigenvalue problems, they incur non-negligible 
computational burden per iteration. 

The present paper investigates the cause of such slow 
convergence or divergent behavior. To overcome the 
limitation, two two-level iterative schemes are introduced in 
this paper to speedup coarse mesh based acceleration. These 
techniques are applied to the partial current-based coarse 
mesh finite difference (p-CMFD) method [5–8], that is a 
more stable acceleration method than other coarse mesh 
based acceleration methods. Simple analyses of numerical 
problems show that the techniques enhance the convergence 
speed of p-CMFD, especially for optically thick coarse 
mesh cells. 

 
II. COARSE MESH BASED ACCELERATION 

 
This section discusses the nonlinear acceleration 

methods currently in use, especially the p-CMFD method. 
 

1. Coarse Mesh Based Acceleration 
 
Coarse mesh based acceleration methods usually 

consist of two parts: a high-order calculation and a low-
order calculation. The high-order calculation employs 
transport methods with fixed fission source. The low-order 
calculation uses the balance equation, in which the high-
order calculation provides parameters over each coarse 
mesh cell. The low-order calculation gives the 

multiplication factor and the coarse mesh cell averaged 
scalar flux. The coarse mesh cell averaged scalar fluxes are 
then “modulated” to be used in the fission source of the 
high-order equation for the next iteration. 

 
2. Description of p-CMFD Acceleration 

 
The p-CMFD acceleration is a modification of the 

CMFD acceleration, in that p-CMFD is based on the use of 
partial currents instead of net currents used in CMFD, 
resulting in i) p-CMFD is unconditionally stable and ii) p-
CMFD provides additional information, that is transport 
partial currents (instead of net current) on the interface of 
two coarse mesh cells. This subsection presents the formula 
of p-CMFD acceleration.  

Let us first consider a neutron transport equation. For 
the sake of simplicity, steady-state one-dimensional planar 
problem with one-group, isotropic scattering is considered. 
The discrete ordinate transport sweep procedure with single 
scattering source iteration is as follows: 
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where 1 ,  1n N k K≤ ≤ ≤ ≤ are the indices of discretized 
angles and fine mesh cells, respectively, DD means the 
diamond difference scheme, and SC means the step 
characteristic scheme. The remaining notations are standard. 

The p-CMFD equation is obtained after the transport 
sweep. The coarse mesh surface partial currents are obtained 
as:  
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where 0 ,j J≤ ≤ 1/ 2j + is an index for surfaces of coarse 
mesh cells, 1 / 2k + is an index for surfaces of fine mesh 
cells satisfying that fine mesh cell k belongs to coarse mesh 
cell j and fine mesh cell 1k + belongs to coarse mesh 
cell 1j +  ( ,  1 1k j k j∈ + ∈ + ). The coarse mesh averaged 
flux is also obtained as: 
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where 1 ,j J≤ ≤ j is an index for coarse mesh cells and j∆  
is the size of coarse mesh cell j . The coarse mesh 
homogenized cross sections are also defined as: 
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At the surface 1/ 2j + between coarse-mesh cells j  and 

1j + , the outgoing and incoming partial currents are related 
with the corresponding cell-averaged scalar fluxes, 
respectively, as: 
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where ( 1/2)

1/2
l

jD +
+
 is an arbitrary constant (usually chosen as the 

coupling coefficient determined in the ordinary finite 

difference method). Two correction factors are defined to 
preserve the respective partial currents as: 
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CMFD uses one correction coefficient to preserve the 

surface net current. On the other hand, p-CMFD uses two 
correction coefficients to preserve the surface partial 
currents. The surface net current is automatically preserved 
by the two surface partial currents. 

By substituting the above equations into the neutron 
balance equation over each coarse mesh cell, the result is a 
finite difference form of low-order diffusion-type equation 
called p-CMFD equation, that can be easily solved: 
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The solution of Eqs. (17)–(18) is then “modulated” to be 
used in the right hand side of Eq. (1) for the next iteration: 
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The above p-CMFD equations can be described in 

symbolic expression as: 
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III. LIMITATIONS OF COARSE MESH BASED 
ACCELERATION 

 
This section discusses the stability of coarse mesh 

based acceleration methods, the D  optimized p-CMFD, and 
the limitations of coarse mesh based acceleration methods. 
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1. Fourier Stability Analysis of Coarse Mesh Based 
Accelerations 

 
To study the efficiency of such an acceleration, Fourier 

convergence analysis was performed on coarse mesh 
rebalance (CMR) [4,8], coarse mesh finite difference 
(CMFD) [8,9], and p-CMFD [5–9]. Figure 1 shows that p-
CMFD is always stable and more stable than the other 
methods. In Figure 1, the number of fine mesh cells in a 
coarse mesh cell, called granularity, is set to 20. CMR 
shows divergent behavior for optically thin coarse mesh 
cells. p-CMFD and CMFD are efficient for optically thin 
coarse mesh cells but not efficient for optically thick coarse 
mesh cells. (CMFD even diverges for optically thick coarse 
mesh cells). 

 

Fig. 1. Results of Fourier stability analysis of CMR, CMFD, 
and p-CMFD with SC and S16 for the eigenvalue problem 
(number of scattering iterations = 1, granularity = 20). 

 
2. Optimization of Diffusion Coefficient 

 
CMFD and p-CMFD use the diffusion coefficient D  

which comes from the standard diffusion theory. (The 
results of spectral radius designated as p-CMFD throughout 
the figures in this paper are those of “standard” p-CMFD). 
In theory, the diffusion coefficient can be chosen arbitrarily. 
Refs. 10 and 11 adjusted the diffusion coefficient in CMFD 
to improve the convergence speed. Ref. 12 used a modified 
parameter related to the diffusion coefficient in the 
nonlinear diffusion acceleration (NDA) so that the 
acceleration was stabilized. We adjust the diffusion 
coefficient D  in p-CMFD to optimize the spectral radius. 
The golden section search method is used to find the 
optimized diffusion coefficient. Figure 2 shows that the D  
optimized p-CMFD leads to a slightly reduced spectral 
radius. 

 
3. Lower Bound of the Rate of Convergence 

 
Even with the optimizing D , p-CMFD shows slow 

convergence in optically thick coarse mesh cells. This is a 
common property for all coarse mesh based acceleration 
methods; see Ref. 11. It comes from the disagreement 

between the coarse-mesh level convergence and the fine-
mesh level convergence. In the sense of error reduction, 
there are errors which cannot be reduced by coarse-mesh 
based low-order calculation (these errors are not zeros in 
fine-mesh level, although the average value over each 
coarse mesh cell is zero). Thus, the reduction rate of these 
errors depends only on the high-order transport calculation. 
These errors give the lower limit of the spectral radius for 
coarse mesh based accelerations.  

Figure 2 displays the theoretical lower bound of coarse 
mesh based acceleration methods and the spectral radius of 
the fine mesh limit with the optimizing diffusion 
coefficient D . Optimized p-CMFD is very close to the fine 
mesh limit for optically thin coarse mesh cells and to the 
lower bound for optically thick coarse mesh cells. 
Optimized CMFD obtained in Ref. 11 is also shown in Fig. 
2. Both methods with optimized D improve the 
convergence rates in optically thin coarse mesh cells, that 
are already very fast. However, because the lower bound of 
the spectral radius of coarse mesh based acceleration 
methods is close to unity for optically thick coarse mesh 
cells, any coarse mesh based acceleration method will 
exhibit slow convergence for optically thick coarse mesh 
cells. 
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Fig. 2. Spectral radius of the D  optimized p-CMFD and the 
lower bound of coarse mesh based acceleration. 

 
IV. TWO-LEVEL p-CMFD ACCELERATIONS 

 
To overcome the limitations of coarse mesh based 

acceleration methods, we should reduce the corresponding 
errors which cannot be reduced by coarse mesh based 
calculation. This section describes two-level p-CMFD 
techniques to speedup p-CMFD acceleration, particularly in 
optically thick coarse mesh cells. A simple one-dimensional 
problem (1000 cm, homogeneous problem with vacuum 
boundary condition on both ends) is used to test the 
efficiency of the techniques. The computational conditions 
are as follows: Fine mesh size is 0.01 cm, granularity is 100, 
and S16 calculations with the step characteristic scheme are 
performed. We change the value of the total cross section to 
estimate the spectral radius for any coarse mesh optical 
thickness. 
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1. p-FMFD Augmented Two-Level p-CMFD 
 
This subsection describes the procedure of p-FMFD 

augmented two-level p-CMFD. Let us consider a partial 
current-based fine mesh finite difference acceleration with 
fixed fission source (denoted as p-FMFD) before or after p-
CMFD eigenvalue calculation. 

To describe the p-FMFD equation, we start from the 
transport sweep: 
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Before the usual p-CMFD eigenvalue equation, we 
construct a p-FMFD equation, which is a p-CMFD type 
equation on each fine mesh cells with fixed fission source: 
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There is no spatial homogenization to construct p-FMFD 
equation. Compared to the usual p-CMFD acceleration, p-
FMFD with fixed fission source incurs small additional 
computational burden. When the p-FMFD calculation is 
performed before the p-CMFD eigenvalue calculation, 
whole-core p-FMFD calculation is used for the stability. 

After whole-core p-FMFD calculation, the usual p-
CMFD is computed using the result of whole-core p-FMFD: 
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After whole-core p-CMFD eigenvalue calculation, p-
FMFD can be performed under the updated fission source: 
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where the two-correction factors are computed as in the 
previous whole-core p-FMFD. 

When the p-FMFD calculation is performed after the p-
CMFD calculation, local p-FMFD calculations over coarse 
mesh cells are used. Each p-FMFD calculation over a coarse 
mesh cell is performed independently of p-FMFD 
calculations over other coarse mesh cells. To set up the 
boundary conditions for each p-FMFD, the incoming partial 
currents are necessary, and that is why we use the p-CMFD 
framework, which provides the transport corrected partial 
currents: 
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Figure 3 compares the p-FMFD augmented two-level p-

CMFD techniques with the usual p-CMFD. Note that the 
spectral radii of two-level p-CMFD accelerations are 
smaller than the lower bound for optically thick coarse mesh 
cells in Figure 2. Three cases show similar convergence 
rates. 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.01 0.10 1.00 10.00 100.00

Sp
ec

tra
l r

ad
iu

s 
(ρ

)

Coarse-mesh cell optical thickness (σtΔ)

Prior
Post
TL(1)/p-CMFD
p-CMFD

 

Fig. 3. Spectral radius of two-level p-CMFD augmented 
with p-FMFD (Prior: p-FMFD before p-CMFD calculation, 
Post: p-FMFD after p-CMFD calculation, TL(1)/p-CMFD: 
one p-FMFD before and after p-CMFD calculation). 
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2. Local/Global Iterations in Two-Level p-CMFD 

 
Even though we add p-FMFD procedures, it still gives 

slow convergence for optically thick coarse mesh cells. To 
reduce the spectral radius further, we introduce the 
local/global iterative framework to the low-order calculation 
in a two-level p-CMFD. Figure 4 is the flow chart of such a 
two-level p-CMFD. Modifying the p-FMFD doubly 
augmented two-level p-CMFD in the previous subsection, a 
local/global iteration procedure is introduced between the 
whole-core p-CMFD eigenvalue calculation and the local p-
FMFD fixed fission source calculations. 
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Fig. 4. Flow chart of local/global iterative framework in 
two-level p-CMFD. 

 
 
Figure 5 is the result of local/global iterations in a two-

level p-CMFD. As the number of local/global iterations 
increases, the spectral radius for optically thick coarse mesh 
cells reduces drastically approaching that of fine mesh limit. 
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Fig. 5. Spectral radius of local/global iteration in a two-level 
p-CMFD (TL(N)/p-CMFD: a two-level p-CMFD with N 
local/global iterations). 

 
V. NUMERICAL RESULTS 

 
To test the two-level p-CMFD for a heterogeneous 

problem, the following test problem is considered. The test 
problem is a modified C5G7 OECD/NEA benchmark 
problem [13] with 17 assemblies, which is shown in Figure 
6.  

 

(a) Core configuration

: Reflector: UO2 assembly : MOX assembly

vacuum vacuum

21.42 cm

UO2 assembly:

MOX assembly:

Reflector:

: UO2 Fuel : 7.0% MOX Fuel : Guide Tube

: 4.3% MOX Fuel : 8.7% MOX Fuel : Fission Chamber

: Moderator
(b) Assembly configuration

1.26 cm

Moderator Fuel-clad mixture Moderator

0.252 cm 0.756 cm 0.252 cm

(c) Pin configuration
 

Fig. 6. Geometry of test problem. 
 
This problem is a one-dimensional problem with the 

seven-group cross section data that are specified in the 
C5G7 benchmark report [13]. The computational conditions 
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are as follows: Fine mesh size is 0.042 cm, and S32 
calculations with the diamond difference scheme are 
performed. Each assembly forms a coarse mesh cell in p-
CMFD calculation. Error criteria are 10-7 for maximum 
relative error of neutron flux and multiplication factor. We 
perform the usual p-CMFD and two-level p-CMFD 
calculations to test the computing efficiency. 

Table I shows the computing performance of usual p-
CMFD and two-level p-CMFD acceleration methods. All 
methods give the same multiplication factor as expected. 
Note that the usual p-CMFD with assembly coarse mesh 
cell size reduces the number of iterations in SN calculation. 
But it still requires hundreds of iterations to converge. Two-
level p-CMFD reduces the number of iterations further: 
TL(1)/p-CMFD is about 11 times faster than the usual p-
CMFD. TL(4)/p-CMFD is about 2 times faster than 
TL(1)/p-CMFD. 

Figure 7 shows the calculation times for various 
granularity values. When the p-CMFD with one granularity 
is used, calculation time exceeds 10.0 sec, the top of the 
range shown in Figure 7. Note that the usual p-CMFD 
achieves the best computing performance for half-pin coarse 
mesh cell size. But the efficiency of the usual p-CMFD 
drops dramatically when the sizes of coarse mesh cells are 
far from the optimal case. On the other hand, two-level p-
CMFD calculations show the best computing performance 
for sub-assembly or assembly sizes of coarse mesh cells. 
Moreover, the calculation in two-level p-CMFD is less 
sensitive to the granularity than that in the usual p-CMFD. 

 
Table I. Computing performance on test problem of Fig. 6 

 

 No Acc p-CMFD TL(1)/ 
p-CMFD 

TL(4)/ 
p-CMFD 

keff 1.25846 1.25846 1.25846 1.25846 

Number of 
iterations 6050 743 53 15 

Transport 
calculation 
time (sec)a 

152.18 18.90 1.49 0.44 

Acceleration 
calculation 
time (sec)a 

0 4.28 0.62 0.61 

Total 
calculation 
time (sec) 

153.13 23.30 2.11 1.06 

Speedup 1 6.57 72.57 144.46 

a Computation with a single thread of a CPU (Intel Core i7-
3770K) 
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Fig. 7. Calculation times for various granularity values in p-
CMFD. 

 
VI. CONCLUSIONS 

 
This paper presents the speedup techniques for p-

CMFD acceleration in neutron transport calculation. We 
introduce two techniques that are more effective than the 
optimized p-CMFD (with optimized diffusion coefficient) 
for optically thick coarse mesh cells. In the first technique, 
the p-FMFD with the fixed source is augmented in a usual 
p-CMFD with the fission source. The spectral radius of the 
first technique is smaller than the lower bound of spectral 
radius of coarse mesh based acceleration methods. However, 
the first technique is still slow for optically thick coarse 
mesh cells. 

To improve this situation, we also consider the 
local/global iterations of local p-FMFD and global p-CMFD. 
The results of this second technique show that we obtain 
fast convergence (even for large coarse-mesh cells) if we 
use a sufficient number of local/global iterations. Hence, it 
has the potential to overcome the limitation of coarse mesh 
based acceleration. 

There are some problems still remaining for future 
work. For example, the number of local/global iterations 
should be controlled adaptively to reduce the unnecessary 
waste of computational time. The application and 
performance of the techniques to two-dimensional and 
three-dimensional realistic problems remain to be studied. 
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