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Abstract - In this work, we investigate various thermal upscattering iterative schemes for solving the multigroup
transport equations. Our goal is to efficiently solve massively parallel problems with significant upscattering
in the thermal energy range, for which the traditional iterative methods are converging too slowly. The
presented methods are based on the two-grid diffusion synthetic acceleration (DSA), originally developed
for the Gauss-Seidel scheme, which we extend to the more parallelizable Jacobi iteration. Furthermore,
we propose a new approach which “boosts” the convergence of the within-group iterations by performing
additional group-by-group DSA solves. This removes the need for fully converged within-group iterations,
further reducing the overall number of transport sweeps. We perform Fourier analyses for the proposed
schemes and apply them to several practical problems using the parallel deterministic SN transport solver PDT.
We also discuss how to cope with the increased number of diffusion solves in our “boosted” scheme and their
effect on parallel scalability.

I. INTRODUCTION

The multigroup neutron transport equations form a cou-
pled system of single-group transport equations with scattering
(and fission, if present) events coupling the various groups to-
gether. Oftentimes, iterative techniques are employed to solve
the system of multigroup equations by looping over the energy
groups, one group at a time. At high enough energies, neutrons
only downscatter; the scattering matrix is lower triangular and
only one pass through these fast neutron groups is necessary to
yield the fast flux solution. In the thermal range, upscattering
can be significant and thermal iterations are required. This sit-
uation is exacerbated in low-leakage configurations containing
Graphite and Heavy Water. Indeed, these materials have very
low neutron absorption cross sections and standard iterative
schemes, such as Gauss-Seidel over the thermal groups, are
slowly convergent, with a spectral radius approaching unity.

In [1], Morel et al. proposed a two-grid acceleration for
the Gauss-Seidel iterative scheme. The two-grid aspect of
their scheme is a reference to (spatial) multigrid techniques; in
their work, they collapsed the “fine” energy grid (the thermal
group structure) onto a “coarse” energy grid (a single macro-
group over the entire thermal range), then performed a single
diffusion synthetic acceleration (DSA) on the coarse energy
grid in order to estimate a scalar flux correction which was
then added to the previous Gauss-Seidel iterate. We note that,
in this approach, the within-group scattering iterations must
be converged reasonably well. In Graphite and Heavy Water,
the within-group scattering ratio cg =

σs,gg

σt,g
can be significant,

with several groups for which cg > 0.96, for instance, and thus
many one-group transport solves are required to iteratively
solve the within-group problem. Evans et al. [2] proposed a
modification of Morel’s two-grid scheme whereby (a) a trans-
port synthetic accelerator is employed in lieu of a diffusion
solve and (b) the inner (within-group) iterations need not to
be fully converged. They state that employing a transport
solver avoids some of the difficulties associated with diffusion
synthetic accelerators (as in the case of highly heterogeneous

material configurations); however, the most slowly converg-
ing modes of the Gauss-Seidel thermal iterative scheme are
the diffusion modes. In addition, diffusion solves are signifi-
cantly less expensive than transport solves/sweeps. Hence, in
this work, we only consider synthetic accelerators based on
diffusion theory.

In this work, we present an investigation of various itera-
tive techniques to solve the multigroup equations. In addition
to a Gauss-Seidel method (with or without converging the
within-group iterations), we also analyze a Jacobi approach
(with and without convergence of the inners). A Jacobi method
allows for greater flexibility in parallel computations (Gauss-
Seidel is essentially a sequential approach). The two-grid
technique is applied to both Jacobi and Gauss-Seidel solves.
Converging the within-group iterations may be important to
ensure fast convergence of the thermal upscattering equations;
however, this is costly in terms of transport solves. We analyze
an alternate approach whereby a single one-group transport
solve is performed by group, followed by a within-group DSA
to “boost” the convergence of the inner iterations. Fourier anal-
yses are carried out for each scheme and are compared against
numerical results using the PDT code, a massively parallel
deterministic S n transport solver. PDT uses transport sweeps
and has been scaled efficiently up to 768,000 processors [3].

II. ITERATIVE SCHEMES FOR THERMAL UPSCAT-
TERING

1. Formalism

The multigroup transport equations are written as follows,
using an operator notation:

LgΨg = M
∑

g′
Sgg′Φg′ + Qg, 1 ≤ g ≤ G , (1a)

Φg = DΨg , (1b)

where Lg is the streaming+interaction operator, M is the
moment-to-discrete operator, S is the transfer operator (Sgg′
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represents scattering from group g′ to group g), D is the
discrete-to-moment operator, Q is the external source (which
may contain the previous fission source iterate in the case
of eigenvalue problems). L is a block diagonal operator on
groups. We employ a DFEM S n technique, so each Lg opera-
tor is “inverted” using transport sweeps. Ψ is the multigroup
angular flux vector and Φ is the multigroup flux moment vector.
G is the total number of energy groups.

In the case of a Gauss-Seidel solution technique, where
the inner iterations are fully converged, the iteration is written
as follows:

LgΨ(k+1)
g = M

g′=g∑
g′=1

Sgg′Φ
(k+1)
g′ + M

g′=G∑
g′=g+1

Sgg′Φ
(k)
g′ + Qg . (2)

Introducing L = diag(L1, . . . , LG), SL = lower(S), SD =
diag(S), SU = upper(S), Eq. (1a) can be succinctly written
as

[I − TS] Φ = DL−1Q , (3)

and Eq. (2) as

[I − T(SL + SD)] Φ(k+1) = TSUΦ(k) + DL−1Q , (4)

where we have introduced the transport operator T = DL−1 M.
Different iterative schemes are being analyzed here:

1. Gauss-Seidel with full convergence of the within-group
iterations, (GSfull),

2. Gauss-Seidel with partial convergence of the within-
group iterations using n transport sweeps, (GSpn). Note
that one special case of interest will consists in situations
where only 1 transport sweep is performed (i.e., GSp1).

3. Jacobi with full convergence of the within-group itera-
tions, (Jfull),

4. Jacobi with partial convergence of the within-group it-
erations using n transport sweeps, (Jpn), including the
special case Jp1.

All of these schemes can be formulated as

Φ(k+1) = TΦ(k) + q , (5)

where the various expressions for T are given in Table I (and
q = DL−1Q).

TABLE I. Thermal Upscattering Operator T = (I − A)−1B

for various iterative schemes

Scheme operatorA operator B
GSfull T(SL + SD) TSU

GSp1 TSL T(SD + SU)
Jfull TSD T(SL + SU)
Jp1 0 T(SL + SD + SU)

For the partially converged Gauss-Seidel, GSpn, and Jacobi,
Jpn, schemes, a general expression for T is

T (n) = An +

n−1∑
i=0

AiB .

For GSpn, A = [I − TSL]−1 TSD and B = [I − TSL]−1 TSU ;
for Jpn,A = TSD and B = T(SL + SU). For n large, the above
operator T (n) tends to T . For instance, in the case of the GSpn
scheme, this becomes

(I −A)−1B =
[
I − [I − TSL]−1 TSD

]−1
[I − TSL]−1 TSU

= [I − T(SL + SD)]−1 TSU (6)

which is the operator T for GSfull.

2. The two-grid method

Introducing the multigroup error ε(k+1)
g = Φg − Φ

(k+1)
g , an

error equation can be derived:
[I − TS] ε(k+1) = B(Φ(k+1) − Φ(k)) .

This equation for the error is just as difficult to solve as the orig-
inal transport problem, Eq. (3). Its right-hand-side contains
the lagged thermal upscattering source terms and depends on
the chosen iterative scheme. A low-order synthetic operator
will be employed to obtain an approximate correction ε(k+1).
Rather than using a multigroup synthetic operator, Morel et
al. [1] noted that for the Gauss-Seidel approach (with in-
ners converged), the most poorly attenuated error modes were
nearly constant in space, angle, and energy. The main impli-
cations of these results are that (1) a diffusion operator will
likely perform well as a low-order synthetic accelerator and
(2) the multigroup error can be separated into a spectral shape
(ξg)1≤g≤G and a spatial component θ(r). The spectral shape is
obtained as the dominant eigenmode of the iteration matrix for
the constant-in-space (flat) mode, T∞ξ = ρξ, or, equivalently,

[I −A∞] ξ = ρBξ

where ρ is the spectral radius and the subscript ∞ denotes
the homogeneous infinite medium operator (i.e., without
spatial derivatives present; that is to say that the stream-
ing+interaction transport operator L only contains the total
cross section). Without neutron absorption, the spectral shape
would be exactly the Maxwellian distribution. The spectral
shape ξ is computed once for all for each material present in
the configuration. Then, the low-order error multigroup equa-
tions are summed up to yield a one-group diffusion equation
for the spatial component of the error

−∇·〈D〉∇θ + 〈σa〉θ = 1TB(Φ(k+1) − Φ(k)) , (7)

where 1 is a unit column vector of length G, and the spectrally
averaged coefficients are

〈D〉 =
∑

g

(3σtr,g)−1ξg and 〈σa〉 =
∑

g

σt,gξg −
∑

g′
σs0,gg′ξg′

 .
Finally, the iterative process is:
Loop over thermal groups (g ∈ Gth) and obtain a new flux
iterate from transport:

Φ(k+1/2) = TΦ(k) + q , (8a)

Perform a two-grid acceleration:
−∇·〈D〉∇θ + 〈σa〉θ = 1TB(Φ(k+1/2) − Φ(k)) , (8b)

Update the transport iterate:
Φ(k+1)

g = Φ(k+1/2)
g + θξg ∀g ∈ Gth . (8c)
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3. Within-group acceleration

The success of the two-grid method hinges upon the dom-
inant error mode being distinct from the other persistent error
modes. When this is the case, employing a two-grid approach
(as opposed to a fully multigrid technique) is sufficient for
practical purposes. However, as will be shown in the Results
section, not converging the inner (within-group) scattering
iterations can seriously degrade the effectiveness of the two-
grid method. Requiring reasonable convergence of the inner
iterations is costly in terms of transport sweeps. Rather, we
propose to perform only one transport sweep per group (for
computational efficiency) but to accelerate the new flux iterate
in each group with one DSA step per group. Then, the iterative
process is changed as follows:
Transport sweeps:

Φ(k+1/3) = TΦ(k) + q , (9a)

Within-group DSA error solve (∀g ∈ Gth):

−∇·Dg∇δΦg + σa,gδΦg = σs0,gg(Φ(k+1/3)
g − Φ(k)

g ) , (9b)

Within-group flux update:

Φ(k+2/3)
g = Φ(k+1/3)

g + δΦg ∀g ∈ Gth . (9c)

Two-grid DSA error solve:

−∇·〈D〉∇θ + 〈σa〉θ = 1TB(Φ(k+2/3) − Φ(k)) , (9d)

Transport update:

Φ(k+1)
g = Φ(k+2/3)

g + θξg ∀g ∈ Gth . (9e)

4. GMRes formulation

Instead of employing an accelerated Richardson tech-
nique, one can recast Eq. (9) as a preconditioned GMRes
solve. Recalling the operator notation for transport sweeps,

Φ(k+1/3) = TΦ(k) + q , (10)

and introducing the following for the DSA error solve and the
two-grid DSA:

Φ(k+2/3) = Φ(k+1/3) +D−1SD(Φ(k+1/3) − Φ(k)) (11)

Φ(k+1) = Φ(k+2/3) + G−1
(
Φ(k+2/3) − Φ(k)

)
(12)

whereD is the DSA error operator andG the two-grid operator,
we can finally obtain an expression for the entire iteration:

Φ(k+1) = (I −W)Φ(k) + w (13)

where
W = (I + G−1)(I +D−1SD)(I − T ) (14a)

w = (I + G−1)(I +D−1SD)DL−1Q . (14b)

The preconditoned GMRes equivalent for Eq. (13) is

WΦ = w . (15)

This equation is solved using GMRes. The action of the DSA
and two-grid preconditioners is apparent in the expression for
W.

5. PDT’s Handling of Energy Groups

PDT uses transport sweeps to solve the transport equa-
tions and has been scaled efficiently up to 768,000 processors
(and 1.536 million processes by over-committing the cores
on ANL’s leadership class supercomputer Mira). To maintain
efficiency at such core counts, the transport sweep tasks are ag-
gregated in space (cells), in angle, and energy groups, and are
scheduled in a provably optimal fashion (on logically Carte-
sian grids). In PDT, the concept of group sets (a set of several
energy groups) is employed to enhance data locality. Energy
groups that are solved concurrently during transport sweeps
form the within-group set (WGS). The number of transport
sweeps and/or the point-wise relative error can be set to exit
a given WGS and tackle the next WGS. For instance, solv-
ing a WGS with one transport sweep was described as Jp1 in
Table I.

III. RESULTS

In this section, we discuss the main results from a Fourier
analysis performed for the various iterative techniques (Gauss-
Seidel/Jacobi), with or without two-grid acceleration, with
fully converged inner iterations/no inner iteration convergence
(n transport sweeps)/one transport sweep followed by a within-
group DSA acceleration boost. We then compare the Fourier
spectral radius results with the numerical spectral radii ob-
tained using the PDT code which implements the various
methods described above. PDT solves the transport equation
using an S n technique in angle and the Discontinuous Finite
Element Method (DFEM) in space [4]. The diffusion acceler-
ation schemes also employ a DFEM discretization in space,
based on the Symmetric Interior Penalty technique for elliptic
operators [5, 6, 7]. We use 99-group cross sections for graphite
(57 thermal groups).

1. Fourier analyses

Fourier analyses are carried out in 3-D to determine
the spectral radius of the various proposed schemes. The
standard Fourier ansatz exp( Λ · r) is used in the govern-
ing equations to remove the spatial operators. 2 = −1.
Λ = [λx, λy, λz] ∈ (−∞,+∞)3 is the Fourier wave number
(the flat mode corresponds to Λ = 0). In Fig. 1, the eigenval-
ues of the iteration matrix for the GSfull, Jfull, GSp1, and Jp1
schemes, with and without two-grid (TG) acceleration, are
plotted in the complex plane for the flat (diffusive) mode. We
clearly note that: (1) when the inner iterations are converged,
the slowest converging mode (eigenvalue close to 1) is well
separated from the other modes and that the TG acceleration
is effective (with TG, the spectral radius for GSfull is about
0.4 and for Jfull, it is about 0.65); (2) when the inner iterations
are not converged, the effectiveness of the TG acceleration is
severely reduced.

The eigenvalues for various Jacobi-type schemes are
shown in Fig. 2. Without converging the inner iterations (Jp1),
the spectral radius (largest eigenvalue) tends to 0.999 (with-
out TG) or 0.961 (with TG). When the within-group are fully
converged (Jfull), the spectral radii are 0.994 (without TG)
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Fig. 1. Plot of the eigenvalues in the complex plane for the
GSfull, Jfull, GSp1, and Jp1 schemes, with and without two-
grid (TG) acceleration.

and 0.646 (with TG). If the inners are not converged (only one
transport sweep) but accelerated with a within-group DSA,
the spectral radii are 0.994 (without TG) and 0.646 (with TG),
that is identical to the fully converged case. This represents
a tremendous savings in terms of transport sweeps. Table II

Fig. 2. Eigenvalue for the Jfull, Jp1, Jp1 with within-group
DSA (wgDSA) schemes, with or without two-grid (TG) accel-
eration.

provides the spectral radii for various schemes (TG=two-grid
acceleration, wgDSA=within-group DSA). The Fourier and
PDT results are in excellent agreement.

TABLE II. Spectral Radii for various iterative schemes

Scheme Fourier PDT
GSfull 0.988336 0.988292

GSfull+TG 0.408389 0.408380
GSp1+TG 0.960420 0.960416

GSp1+TG+wgDSA 0.408389 0.408379
Jfull 0.994144 0.994121

Jfull+TG 0.646230 0.646221
Jp1+TG 0.961350 0.961346

Jp1+TG+wgDSA 0.646230 0.646221

2. PDT results

The last column of Table II shows the numerical spectral
radii computed using PDT when solving the following prob-
lem: A graphite block of width 106 cm with vacuum boundary
conditions, zero source, and an initial flux sampled randomly
in (0, 1), and the same 99-group cross-section data as in the
Fourier analysis. The exact solution for this problem is a zero
flux. Hence, we can compare the various iterative methods
by their ability to drive the initial random guess to zero and
numerically evaluate the spectral radius as

ρ(k+1) =

∥∥∥Φ(k+1)
∥∥∥
∞∥∥∥Φ(k)

∥∥∥
∞

, where ‖Φ‖∞ = max
g,i

∣∣∣Φg,i

∣∣∣
and i denotes the spatial index.

Table III summarizes the amount of work each method re-
quired to obtain Φ(k) such that

∥∥∥Φ(k)
∥∥∥
∞
< 10−100. The amount

of work is measured in terms of the number of one-group
transport sweeps needed in the thermal energy range and the
number of iterations of the one-group diffusion solver (we use
the PCG solver from the Hypre library [8] with the Boomer-
AMG preconditioner [9]). Note that the number of sweeps in
the fast range was the same for all methods (69,608), such that
the fast flux is fully resolved in that range to within machine
underflow precision (∼ 10−308).

TABLE III. PDT work cost for various iterative schemes
(† = not converged to 10−100)

Scheme # sweeps # diff. sln. # upscat. it.
GSfull 6,703,426 0 400†

GSfull+TG 5,306,465 1,036 259
GSp1+TG 323,589 22,708 5,677

GSp1+TG+wgDSA 14,763 60,965 259
Jfull 29,192,607 0 800†

Jfull+TG 33,679,590 2,132 533
Jp1+TG 330,600 23,200 5,800

Jp1+TG+wgDSA 30,381 126,398 533

The unaccelerated methods (GSfull, Jfull) were only able to
reduce the initial norm of the solution to only ∼ 10−3 – the
large number of sweeps required for that emphasizes the well-
known need for a thermal up-scattering acceleration scheme
for such kinds of problems. While the two-grid acceleration
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reduces the norm of the flux much faster using a comparable
number of sweeps (GSfull+TG, Jfull+TG), we can see that
we can obtain the solution of same quality using significantly
fewer transport sweeps by limiting the number of within-group
iterations to one (GSp1+TG, Jp1+TG). Of course, this in-
creases the number of up-scattering iterations, and, hence, the
number of two-grid DSA solves, as is clear from comparing
the values in the third and fourth column of Table III. However,
rows GSp1+TG+wgDSA and Jp1+TG+wgDSA confirm our
Fourier analysis, i.e., we can nearly recover the spectral radius
of a particular iterative method with fully converged inner
iterations by performing the within-group DSA solve for each
thermal group. This leads to the smallest overall number of
transport sweeps, but at the same time to the largest number of
diffusion solves. Nevertheless, the total number of sweeps and
diffusion solver iterations is still much lower for the methods
involving the within-group DSA boost than for those without.
Balancing the cost of transport sweeps and diffusion solves is
therefore crucial to make the proposed schemes meaningful to
use for practical calculations and we will focus on that matter
in the following sections.

3. Reducing the cost of DSA

The purpose of this section is to assess the effect of the
acceleration on overall solution time. To this end, we con-
sider a homogeneous graphite block using the same 99-group
cross-section data as in the previous tests, vacuum boundary
conditions and distributed unit isotropic source. As we are
ultimately interested in solving increasingly larger problems
using increasingly larger computing power available, we as-
sess parallelism using a weak scaling study, in which the size
of the problem grows as the CPU core count increase. The
largest number of CPU cores used is 128, 000. The cell width
is kept fixed at 2 cm (approximately 10 mean free paths of an
average thermal neutron).

When designing the scaling study, we need to decide on
the 3D partitioning of the available processors. PDT typically
uses the KBA-like decomposition for transport sweeps [10],
in which one dimension is assigned to two processors and
the other two dimensions to the remaining processors in a
square fashion. However, this decomposition is likely less
suitable for the parallel AMG-PCG solver used in the (dif-
fusion) acceleration phase, which would favor a volumetric
domain decomposition. For the numerical results presented
in this paper, we have chosen a partitioning that is closer to
a volumetric decomposition, see in Table IV; as such, we
should expect transport sweeps to scale in a slightly less than
optimal manner. All parallel calculations were done on the
Vulcan supercomputer at the Lawrence Livermore National
Laboratory.

TABLE IV. Parallel partitioning.

#cores 1 8 64 512 4k 32k 128k
Px 1 1 2 4 8 16 32
Py 1 2 4 8 16 32 64
Pz 1 4 8 16 32 64 64

The piecewise linear discontinuous finite element approxi-
mation is used to discretize both the transport and the diffusion
operators in space. With a fixed number of 128 cells per core,
this results in 1024 spatial degrees of freedom per core. The
Gauss-Legendre-Chebyshev product quadrature is used to dis-
cretize the angular domain with 1024 total angles, aggregated
into 256 angle sets.

Although Fourier results show the superior convergence
rate of the two-grid method with a Gauss-Seidel splitting, it
is inherently sequential and lacks the scaling potential of the
block Jacobi splitting. Moreover, it does not fit well into the
aggregation framework of PDT (which has been shown to
be essential for efficient parallel execution, [11]), because it
forces each groupset to consist of just a single group. For these
reasons, we will henceforth consider only the block Jacobi
schemes, in particular the one with the inner iteration boost
(Jp1+TG+wgDSA).

A. Effect of the diffusion solver parameters

The first set of calculations was performed with the
Hypre/BoomerAMG settings that are generally recommended
for 3D diffusion problems (e.g., [12, 13]). We summarize the
parameters that are different from Hypre defaults below (see
[12] for more details):

• AMG strength threshold 0.8,

• HMIS coarsening,

• 1 level of aggressive coarsening,

• hybrid symmetric Gauss-Seidel relaxation,

• extended+i interpolation, multipass interpolation on lev-
els of aggressive coarsening,

• maximal number of elements per row for interpolation 5.

We used the same parameters for both diffusion solvers (two-
grid and within-group DSA), as well as the same stopping
criterion (relative PCG residual threshold 10−6). To monitor
convergence of the transport solver, we used the maximum
relative pointwise change:

τp =

∥∥∥∥∥∥ Φ(k+1) − Φ(k)

max{Φ(k+1),Φ(k)}

∥∥∥∥∥∥
∞

with the stopping criterion τp = 10−6 for the fast group sets
and τp = 10−4 for the thermal group set.

The left bars in Figure 3 show the total solve time for this
parameter setup, decomposed by its main components.We can
see that both the DSA setup phase (construction of the AMG
preconditioner) and the solve phase (PCG iterations) scale
poorly relatively to the transport sweeps 1. The last column of
Table V contains the ratios of the acceleration time to the total
solve time for this parameter setup – at higher core counts, the
acceleration time becomes dominant and destroys any benefits
from the reduced number of transport sweeps.

1 The Hypre times cover both the two-grid and the within-group DSA boost
phases, but we note that the small number of the two-grid solver invocations
as compared to the within-group DSA solver makes the contribution of the
former to the total acceleration time negligible.
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TABLE V. DSA performance – default param. (XY = X×10Y ).
#cores PCG Setup PCG Solve PCG it DSA/Solve

1 12613.2 33186.0 5557 0.0510273
8 68450.3 86654.0 8047 0.0794613

64 666937.0 895490.0 11092 0.293499
512 2.331746 2.216976 12311 0.496209

4k 4.616886 2.855786 12555 0.587829
32k 5.803736 3.13166 12658 0.596342

128k 6.055126 3.0936 12708 0.569176

Before discussing the approaches to improve the perfor-
mance of the AMG solver through variation of selected Hypre
parameters, let us note the relative improvement of the per-
formance from 32k cores to 128k. This is the consequence
of the more volumetric decomposition of the 128k processors
(see Table IV) and the results corroborate the remark made at
the beginning of Section 3. Investigation of how the optimal
parallel partitioning for sweeps with DSA preconditioning
differs from that for the sweeps alone is one of the directions
of our future work.

Fig. 3. Comparison of the weak scaling performance with
standard and modified Hypre parameter sets.

Poor scalability of AMG with Galerkin coarsening has
been recently addressed in several papers (e.g., [14, 15, 16]).
Based on the results and recommendations from these pa-
pers, we performed the same calculations with the following
changes

• Non-Galerkin drop tolerances [0.0, 0.1],

• 10 levels of aggressive coarsening.

The first item specifies a non-zero drop tolerance for spar-
sifying the standard Galerkin coarse grid matrix on the second
and higher levels of the multigrid hierarchy. As the problem
size and the number of coarse grid levels increase, the sten-
cil size (number of non-zeros) of the Galerkin coarse matrix
grows, leading to increased communication and decreased par-
allel performance. Replacing the Galerkin coarse grid matrix
by its sparser approximation on higher levels should mitigate

this problem. We refer to papers [15, 14] for more details
about coarse grid sparsification in AMG.

Increasing the number of levels of aggressive coarsening
is another way of reducing the stencil size and communication
and we use the setting that was shown to be the most robust
for diffusion problems in [13].

TABLE VI. DSA performance – adjusted parameters.

#cores PCG Setup PCG Solve PCG it DSA/Solve
1 12312.9 32771.0 5616 0.0506192
8 60242.6 71042.0 8083 0.0727121

64 491451.0 432728.0 11361 0.208914
512 1.211846 877960.0 12890 0.323851
4k 1.798226 1.163556 12977 0.370976

32k 2.213536 1.281376 12928 0.381719
128k 2.23466 1.234186 12923 0.350893

The right bars in Figure 3 and Table VI show a significant
improvement in the parallel performance of the DSA, com-
paring to the original parameter setup. Note that while the
total number of PCG iterations increased slightly as a conse-
quence of less powerful AMG preconditioner, the PCG solve
times decreased since applying the preconditioner has become
cheaper.

B. Reusing the preconditioner in the within-group boost

From the results of the previous section, we can see that
the PCG setup time, taken up from the most part by the con-
struction of the AMG preconditioner, dominates the PCG
solve time. This is because the setup is repeated for every
group at the beginning of each within-group DSA boost 2. It
is reasonable to assume that the material properties do not
change significantly from group to group in the thermal range.
Then it should be possible to re-use the AMG preconditioner
for multiple groups.

Noting that the two-grid DSA operator, built using the
spectrally averaged cross sections, encodes the information
about all thermal groups, we first attempted to use the AMG
preconditioner for the two-grid operator for all the within-
group DSA solves. However, this turned out to be a too drasti-
cal change, resulting in a significant increase of the number of
iterations needed to converge the within-group DSA problems
and only a slight improvement of the relative total acceleration
time. This is shown in the second row of Table VII, which
contains the performance results from the 128k-core runs with
the adjusted Hypre settings described in the previous section
(Table VI).

A better performing alternative is to re-use the precondi-
tioner from the first (fastest) group in the thermal group set
for all the subsequent within-group DSA solves. The corre-
sponding results in the third row of Table VII clearly show the
benefits as compared to the original version (first row).

Figure 4 shows the increase of PCG iteration counts for

2As far as we know, there is no direct way to store the AMG operators
constructed by Hypre, and doing that might also be prohibitive in terms of
memory requirements for large thermal group sets.
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TABLE VII. Performance of various preconditioner reuse
schemes.

Reuse PCG Setup PCG Solve PCG it DSA/Sol
no reuse 2.23466 1.234186 12923 0.350893
two-grid 3272.6 3.126256 40315 0.328588

first 3239.0 1.556136 17671 0.209827
first+last 82129.0 1.453646 16407 0.207503

Fig. 4. Number of PCG iterations for each wgDSA solve.

each within-group DSA solve for the first up-scattering iter-
ation (the wgDSA iteration counts almost don’t change in
subsequent up-scattering iterations). Note the sharp increase
in the last thermal group, caused by the large change in mate-
rial properties (the total cross-section changes by no more than
30% between the thermal groups, but decreases ∼ 15× from
the second-to-last to the last group). To capture this change,
we used a scheme whereby the preconditioner from the first
wgDSA solve is reused for all wgDSA solves until the last
one, for which the preconditioner is re-built again (last row in
Table VII).

From the results of this section, we conclude that while
re-using the preconditioner can bring significant savings in
the total acceleration time, the optimal reuse scheme is very
problem-dependent and finding it may become more difficult
in highly heterogeneous problems.

4. Using the acceleration as a preconditioner for GMRES.

In our final set of numerical experiments, we evaluate the
efficiency of the two-grid acceleration with the within-group
DSA boost as a preconditioner for the GMRES solver for the
multigroup SN equations. To this end, we solved the same
problem as in Section 3., using 32, 768 cores. We prescribed
both the residual convergence criterion: τr < 10−6, where
τr = ‖r̃‖2 /‖b̃‖2 and r̃, b̃ are, respectively, the preconditioned
residual and preconditioned right hand side of the linear sys-
tem solved by the GMRES method, as well as the pointwise

convergence criterion τp < 10−4. The latter was also used for
the Jp1+TG+wgDSA run that we performed for comparison
purposes. We used the adjusted Hypre parameters from Sec-
tion 3. for both the two-grid and within-group DSA solves, and
PCG residual threshold of 10−8 for the convergence of both
diffusion solvers. We also re-used the AMG preconditioner
from the first thermal group and re-built it in the last thermal
group, as described in the previous section. The GMRES
restart value was set to 5.

Table VIII shows the iteration numbers for the
Jp1+TG+wgDSA iteration and for GMRES preconditioned
with the same combination of operators (two-grid and within-
group DSA)3. As expected, the preconditioning had a signifi-
cant effect on lowering the GMRES iteration counts. However,
when compared to the Jp1+TG+wgDSA iteration, the use
of GMRES for this particular problem doesn’t bring much
benefit. In addition to the group set sweep per every GM-
RES iteration (when computing the matrix-vector product),
there are additional sweeps involved in the restarted GMRES
method as it is currently implemented in PDT (when com-
puting the initial residual and right hand side, when checking
convergence before restarting and when computing the final
solution). Therefore, even though the number of GMRES itera-
tions for the thermal group set is lower than the corresponding
number for the Jp1+TG+wgDSA iteration (i.e., the number
of up-scattering iterations), the number of thermal group set
sweeps is actually higher and so is the number of two-grid and
DSA solves. Note that the total number of sweeps is lower for
the GMRES method thanks to the more efficient solution in the
fast energy range, leading to the better overall solution time
(see Table IX). Nonetheless, our current observations indi-
cate that the preconditioned GMRES method is important for
solving highly heterogeneous problems and hence the efficient
application of the TG-wgDSA preconditioner for GMRES is
the main topic of our ongoing work.

IV. CONCLUSIONS AND OUTLOOK

We have extended the two-grid thermal acceleration tech-
nique of Morel et al. based on a Gauss-Seidel approach [1] as
follows:

1. Acceleration of Jacobi over thermal groups was carried
out. The two-grid technique performs extremely well
(spectral radius of ∼ 0.65 for Jacobi over groups, versus
∼ 0.40 for Gauss-Seidel).

2. We have analyzed the impact of not converging the in-
ner iterations. The two-grid acceleration is severely
degraded when the inners are not converged (for both
the Gauss-Seidel and the Jacobi approaches). However,
we proposed to limit the number of transport solve to a
minimum (one) per group but accelerate each transport
sweeps with a within-group DSA. The iterative properties
of the schemes with the inners fully converged were re-
covered. This is a significant savings in terms of transport
sweeps.

3The unpreconditioned GMRES didn’t converge in the alloted time (8hrs.)
– the final iteration number of the thermal-groupset GMRES was 186 and the
corresponding residual 0.003.
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TABLE VIII. Iteration counts for the preconditioned GMRES and Jp1+TG+wgDSA methods
method # sweeps # th. sweeps # PCG it. # GMRES/upscat. it.

GMRES+TG+wgDSA 235 28 25877 20
Jp1+TG+wgDSA 358 25 22863 25

TABLE IX. Timing of the preconditioned GMRES and Jp1+TG+wgDSA methods.
method Overall Sweep PCG Setup PCG Solve DSA/Sol

GMRES+TG+wgDSA 8.8986 5.7656 91397.0 2.4296 0.31528
Jp1+TG+wgDSA 9.6226 6.7556 81586.0 2.1266 0.25668

3. For massively parallel transport simulations, enhancing
parallel concurrency is necessary. A Jacobi approach
over thermal group is preferred and we now have an
efficient algorithm to accelerate the thermal upscattering
iterations. The methods have been implemented in our
massively parallel transport code, PDT. The diffusion
solves are based on the DFEM MIP-DSA discretization.
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