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Abstract - Diffusion-synthetic acceleration (DSA) has been widely used for accelerating the source iteration
process for the SN equations. However, challenges arise when treating problems with voids and problems
with large discontinuities in cross section. A non-local tensor diffusion theory was derived by Morel [1, 2]
that provides non-zero diffusion coefficients in voids or near voids. In the current work, we use this theory to
generate diffusion coefficients for linear DSA. The periodical horizontal interface problem is used to test the
effectiveness of DSA with non-local diffusion coefficients. The method is also applied to problem with a void
embedded in material.

I. INTRODUCTION

The main purpose of this paper is to define a linear
diffusion-synthetic acceleration (DSA) scheme for the SN
equations applicable to problems with voids. There are two
difficulties that immediately present themselves in this regard.
The first is that the standard diffusion coefficient is unbounded
in a void. We avoid this difficulty by using a nonlocal tensor
diffusion (NTD) theory originally developed by Morel [1, 2]
for radiative transfer. This theory was later derived for neutron-
ics by Trahan and Larsen [3]. This theory produces a bounded
diffusion tensor at each point in the geometry that depends
upon the entire distribution of cross sections throughout the
geometry rather than the cross section at each point. In prin-
ciple, voids can be treated in DSA schemes simply by using
a very large diffusion coefficient in the void, but it is not at
all clear how large the coefficient should be, and even if they
lead to effective acceleration, unnecessarily large values of the
diffusion coefficient can lead to an ill-conditioned diffusion
matrix.

The second difficulty is that large discontinuities in cross
section can significantly degrade the effectiveness of DSA [4,
5]. However, it is not clear to us that the model problems used
in these references are sufficiently relevant to the problems of
interest to us. In particular, we are interested in problems with
voids embedded in materials with moderate cross sections.
Under these conditions, one can expect to have optically-thin
cells everywhere. Neutronics calculations largely fall into this
category. This is in contrast to radiative transfer problems
in the high energy density regime, which have optically-thin
regions together with optically-thick regions that are too thick
to be resolved on a sub-mean-free-path basis by the spatial
mesh. Thus here we define our own set of model problems
for testing the effectiveness of DSA with embedded voids.
Our preliminary computational results indicate that acceptable
degradation of DSA occurs as long as the cells in the optically-
thick region are optically thin. This is a very encouraging
result.

Schunert, et al., [6] have developed a nonlinear diffusion
acceleration scheme for SN calculations. They similarly used
Morel’s NTD theory in their scheme. Nonetheless, their study
and our present study are complimentary for a variety of rea-
sons.

The remainder of this paper is organized as follows. First
we present the method for generating nonlocal diffusion ten-
sors. Next we describe our model problems. Our computa-
tional results are then presented, followed by conclusions and
recommendations for future work.

II. NONLOCAL DIFFUSION COEFFICIENTS

The NTD theory previously referred to provides a tensor
at each point in a transport domain that depends upon the
cross section distribution throughout the domain rather than
the local cross section at each point [1, 2]. More specifically,
to obtain the diffusion tensor, one first solves the following
transport equation on the spatial domain of interest:

−→

Ω ·
−→

∇ ψ̃ + σtψ̃ =
1

4π
, (1)

where
−→

Ω is the direction of neutron propogation, σt is the
standard macroscopic total cross section associated with the
transport domain, and ψ̃ is the angular flux solution to this
problem, which is in general related to the real problem in
terms of the problem domain and the definition of σt on that
domain. Given the solution to Eq. (1), the diffusion tensor
is simply given by the “pressure” tensor associated with that
solution:

Di j =

∫
4π

−→

Ω i
−→

Ω jψ̃ dΩ . (2)

And the current can be calculated by the following equations:

−→

J = −D ·
−→

∇ φ ,

Ji = −

3∑
j=1

Di j
∂φ

∂x j
.

(3)

The boundary conditions that should be used for Eq. (1)
are not necessarily those of the original problem. The latter
can always be used, but in some instances, it has been found
that improved results can be obtained by replacing the true con-
ditions with reflective conditions. Using reflective conditions
ensures that the standard scalar diffusion coefficient is obtained
in a homogeneous material, but using vacuum conditions en-
sures that the diffusion coefficient is bounded even in a pure
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void. We partially address the question of boundary condi-
tions in our computations. Note that Eq. (1) describes a purely
absorbing medium and thus requires a single transport sweep
(neglecting implicit reflective or periodic boundary conditions)
to be solved. This seems like a reasonable amount of work to
obtain the diffusion tensor relative to the total amount of work
required to solve a general physical problem of interest.

III. COMPUTATIONAL RESULTS

The equations to be solved for the DSA calculations are
given below:

−→

Ω m ·
−→

∇ψ
l+1/2
m + σtψ

l+1/2
m =

σsφ
l

4π
,

φl+1/2 =

M∑
m=1

wmψ
l+1/2
m ,

−
−→

∇ · D ·
−→

∇ δφ
l+1/2+σaδφ

l+1/2 = σs(φl+1/2 − φl) ,

φl+1 = φl+1/2 + δφl+1/2 .

(4)

1. Characterizations of the Problems

There are two geometric configurations for our calcula-
tions given in Figs. 1 and 2: one is similar to the periodic
horizontal interface (PHI) configuration [4] and the other is a
configuration with a single embedded void.
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Fig. 1: The PHI-like configuration
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Fig. 2: The configuration with an embedded void

The PHI configuration is often used in the literature to

test the effectiveness of the acceleration for heterogeneous
configurations. The original PHI configuration consists of
horizontal stripes of alternating materials with σt2 = 1/σt1
[4]. It has been found that the effectiveness of DSA degrades
as σt1 approaches zero [4, 5]. Our PHI-like configuration,
shown in Fig. 1, consists of alternating 2-cm-thick layers. The
dimensions of the whole geometry are 21 cm × 21 cm. The
left and bottom boundary conditions are reflective, and the
top and right boundary conditions are vacuum for Eq. (4).
For Eq. (1) either the same boundary conditions are used or
reflective conditions are used everywhere. The value of σt1 is
given as 10 cm−1, while σt2 = τσt1 with the values of τ chosen
as 10−1, 10−2, 10−3, 10−4, 10−5, respectively. The scattering
ratios c are chosen as 1 and 0.99, respectively.

We also have a test configuration with a void embedded
in a thick material. The same dimensions and boundary condi-
tions as the PHI-like configuration are employed here. There is
a 1-cm-thick void channel in the center. The total cross section
of the material is given as 10 cm−1. The scattering ratios are
chosen as 0.9, 0.99, 0.999, 0.9999 and 1, respectively.

The diamond difference scheme is used to spatially dis-
cretize the Eq. (4). A weighted-diamond difference scheme
is used to solve Eq. (1). This latter scheme is equivalent to
the step characteristics method in 1D slabs. Gauss-Chebyshev
S 8 quadratures are used for all calculations. The cell thick-
nesses throughout each problem (Eqs. (1) and (4)) are chosen
as 10, 1 and 0.1 mean free paths (mfp) measured with re-
spect to the cross section in the thick materials. The algebraic
multigrid [7] method is used to solve the diamond-difference-
consistent DSA diffusion equations. Calculations are per-
formed for Eq. (4) with random values for the initial scalar
fluxes. The spectral radius is calculated as ρ = ||φl+1||/||φl||.
The iteration process is terminated when |ρl+1 − ρl| ≤ 10−5.
The same boundary conditions are used to solve Eqs. (1) and
(4) unless otherwise stated.

2. Results for the PHI-like Configuration

A. Diffusion Tensor Plots

The diffusion tensor elements Dxx, Dyy, and Dxy, obtained
with a cell thickness of 1 mfp and τ = 10−3, are plotted in
Fig. 3. For comparison, the diagonal elements Dxx, Dyy at
x = 10.5 cm are also plotted with different cell thicknesses
in Fig. 4. It is expected that the values of Dxx are larger than
Dyy in the thin materials. The values of Dxy are almost 0
everywhere except on the material interfaces. We set Dxy to
zero in all our calculations for Eq. (4), which yields a diagonal
diffusion tensor.

B. Vacuum and Reflective Conditions for Eq. (1)

This set of calculation has reflective conditions on the left
and bottom boundaries, and vacuum conditions on the right
and top boundaries for both Eqs. (1) and (4). The calculated
spectral radii for DSA using either the local diffusion coeffi-
cients (LDC) or the diagonal NTD with c = 1 are listed in
Table I, along with the spectral radii from source iteration
(SI). From the results, we find that when increasing the hetero-
geneity, the spectral radii are essentially constant for SI but
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Fig. 3: The diffusion tensor calculated for the PHI-like config-
uration with a cell thickness of 1 mfp and τ = 10−3.
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Fig. 4: The diagonal elements of the diffusion tensor calculated
for the PHI-like configuration with different cell thicknesses
and τ = 10−3.

increase for DSA. For SI, the spectral radii are close to 0.999,
and the results change slightly with the cell thicknesses ≤ 1
mfp. For LDC, the spectral radius is roughly around 0.793
with a cell thickness of 10 mfp and σt2 = 10−1. Decreasing
the cell thicknesses to 1 mfp gives spectral radius to 0.689.
Further decreasing the cell thicknesses yields stagnation in
spectra radii. For more heterogeneous cases, reducing the cell
thicknesses can slightly reduce the spectral radii. However, in
those cases, the spectral radii are about 0.95. For NDT, DSA
goes on unstable with a cell thickness of 10 mfp. However,
with the cell thicknesses ≤ 1 mfp, NTD gives much better
results compared to LDC. As mentioned before, in neutronics
calculations, all cells can usually be made thin. In contrast to
LDC, there is slight increase in the spectral radii for NTD with

decrease in the cell thicknesses from 1 mfp to 0.1 mfp. Further
increasing the heterogeneity, there is negligible increase in the
spectra radii. Similar results are observed in Table II with a
cell thickness of 1 mfp and c = 0.99.

C. Reflective Conditions for Eq. (1)

This set of calculation has reflective boundary conditions
on all boundaries for Eq. (1) but still has the same boundary
conditions used in the previous section for Eq. (4). In the
previous calculation, we used the same boundary conditions
for Eqs. (1) and (4). However in the derivation of non-local
tensor diffusion theory, we have assumed infinite medium and
neglected the boundary term. Here we also explored the effect
of boundary conditions used for generating the diffusion tensor.
The spectral radii, obtained with the diagonal NTD generated
from reflective boundary conditions and a cell thickness of 1
mfp, are listed in Table III. Slight increase in the spectral radii
is observed compared to the results in the previous section.

3. Results for the Configuration with an Embedded Void

A. Diffusion Tensor Plots

The diffusion tensor elements Dxx, Dyy, Dxy, obtained
with a cell thickness of 1 mfp for the configuration with an
embedded void, are plotted in Fig. 5. It is observed that the
values of the diagonal elements in the void are about half of
the values in the thin materials in Fig. 3. This is related to the
fact that the diffusion coefficients in a void surrounded by the
thick material are related to the dimensions of the void.
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Fig. 5: The diffusion tensor calculated for the configuration
with an embedded void with 1-mfp-thick cells.
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τ SI LDC NTD

10 mfp 1 mfp 0.1 mfp 10 mfp 1 mfp 0.1 mfp 10 mfp 1 mfp 0.1 mfp

1.0E-02 0.99894 0.99927 0.99927 0.79309 0.68851 0.68852 1.16897 0.65821 0.67484
1.0E-03 0.99882 0.99918 0.99918 0.92481 0.92091 0.87093 1.48523 0.68945 0.70348
1.0E-04 0.99883 0.99918 0.99917 0.97110 0.95197 0.92088 1.52010 0.69251 0.71330
1.0E-05 0.99883 0.99918 0.99917 0.97692 0.95517 0.95196 1.52402 0.69282 0.71359
1.0E-06 0.99883 0.99918 0.99997 0.97751 0.95549 0.95547 1.52441 0.69285 0.71363

TABLE I: Spectral radii for the PHI-like configuration with different cell thicknesses and c = 1.

τ SI LDC NTD

1.0E-02 0.98927 0.59833 0.64425
1.0E-03 0.98919 0.76762 0.67572
1.0E-04 0.98918 0.83640 0.67895
1.0E-05 0.98918 0.84530 0.67928
1.0E-06 0.98918 0.84621 0.67931

TABLE II: Spectral radii for the PHI-like configuration with a
cell thickness of 1 mfp and c = 0.99.

τ NTD
c=0.99 c=1

1.0E-02 0.64427 0.65845
1.0E-03 0.67617 0.69034
1.0E-04 0.67947 0.69362
1.0E-05 0.67980 0.69395
1.0E-06 0.67984 0.69398

TABLE III: Spectral radii for the PHI-like configuration using
diagonal NTD generated from reflective boundary conditions
with a cell thickness of 1 mfp.

B. Calculated Set for Spectral Radii

The spectral radii, obtained with different scattering ratios
and cell thicknesses for SI and DSA with NTD, are given in
Table IV.

As expected, the spectral radii increase with the scattering
ratios. For SI, the same results are observed as for the PHI-like
problem: the spectral radii are essentially stable and close to
c with different cell thicknesses. For NTD, one encouraging
result is that it works with thick cells. For cases c = 0.9
and 0.99, the spectral radii decrease with cell thicknesses,
while further increasing c, the spectral radii first decrease then
increase with cell thicknesses. Although the reason for such
behavior seems unclear, the point here is that NTD works
well for the configuration with a single embedded void, giving
spectral radii far less than c.

IV. CONCLUSIONS

In this paper, we used a PHI-like configuration and an
embedded void configuration to test the use of NTD theory
for linear DSA. In the PHI-like configuration, NTD yields
instability with thick cells, but performs better than LDC with

good mesh resolution. The performance of NTD in the void
configuration is better than it is for the PHI-configuration,
and remains stable with thick cells. Our result suggests that
NTD will be effective in typical neutronics applications with
near-voids or voids. Finally, our results suggests that using the
vacuum boundary conditions for NTD generation is a better
option than the reflective conditions.

V. FUTURE WORK

In the future, we would like to apply this method to prac-
tical problems. We would also like to investigate using a more
refined mesh for calculating the diffusion tensor and mapping
it to the problem mesh. A further detailed analysis should
be performed to understand why NTD fails for the PHI-like
configuration with thick cells. Finally it would be useful to test
the use of NTD for DSA preconditioning in conjunction with
a Krylov solver, particularly for cases where it is unstable.
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