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Abstract - The nonlinear diffusion acceleration (NDA) is an effective scheme to increase convergence for
highly diffusive problems. However, for second order transport equations, the scheme is not yet defined in
voids. In this paper we derive modifications to the NDA to handle problems containing void regions. A Fourier
analysis shows that the newly developed modifications accelerates unconditionally for scattering ratios smaller
than one. Numerical test with Reed’s problem showed that the NDA scheme results in a non-constant flux shape
in the void regions. Further investigations revealed that this coarse mesh problem is caused by the interface
coupling between void and material regions.

I. INTRODUCTION

Our application encompasses detailed calculations of
modern nuclear reactors. Current development in modeling
and simulation raised the needs for tools which are able to han-
dle voids or near voids. While this is definitely possible with
the first order transport equation, second order schemes often
show singularities and condition or convergence problems for
(near) zero total cross sections. However, second order forms
of the transport equation offer the advantage of using continu-
ous finite elements (CFEM) as opposed to discontinuous finite
elements (DFEM), which is especially appealing with mesh
frameworks with well-developed support for CFEM, including
Idaho National Laboratory’s multiphysics framework MOOSE
[1].

Least-squares (LS) forms of the transport equation can
circumvent the void problems of other second order forms,
but are non-conservative, which explains why they are not
commonly used in the nuclear community. A newly devel-
oped form of least-squares transport equation is compatible
with voids and standard solution techniques, but is also non-
conservative [2], conservation of particles is only achieved
as the numerical solution converges to the analytical solution.
Introducing a weight function to this LS equation improves
issues with the causality and can render our equation equal
to the Self-Adjoint Angular flux (SAAF) equation [3]. The
conservation issue can be ameliorated by the use of the non-
linear diffusion acceleration. While this acceleration scheme
significantly decreases computational cost, it also ensures con-
servation if a conservative low order equation is used. In order
to achieve conservation of the low order equation, it must be
inconsistent with the high order LS equation. This leads to
identical high order and low order solutions only in the limit
as the spatial mesh is increasingly refined [4].

While the high order LS equation is valid in voids, the
nonlinear diffusion acceleration employs a low order diffusion
equation. This equation does not hold in void due to the
definition of the classical local diffusion coefficient. We solve
this by using a nonlocal formulation of the diffusion coefficient
that is well defined in voids [5, 6]. Additionally, the drift
vector, a correction term in the low-order equation informed

by the high order equation, is also not defined in a void. We
propose in this paper a combination of current formulations,
which we found using a Fourier analysis and that holds in
voids and is stable and efficient.

II. THEORY

1. Weighted Least-Squares Equation

The standard least-squares (LS) form of the transport
equation [7] is not compatible with source iterations. The
Least-Squares Equation derived by Hansen et al. [2] is a
second order transport equation that is compatible with voids.
In contrast to traditional least-squares equations, this equation
is also usable with iterative solutions techniques e.g. source
iterations with or without acceleration.

The weighted least-squares (WLS) transport equation ad-
dresses some issues of the unweighted LS equation on mate-
rial interfaces and in voids. Due to the second order nature
of the LS equation, downstream information can influence
the upstream solution. An optically thick material further
downstream in the current direction reduces the flux in the
unweighted LS. Therefore the LS equation does not have
causality. This is a coarse mesh problem and decreases with
increasing refinement of the mesh. The introduction of a
weight function diminishes this problem significantly.

Consider the transport equation in operator form

Lψ = Sψ + Fψ + Q (1)

with the linear operators

L = Ω · ∇ + σt (2)

and S the scattering operator, F the fission operator and Q
contains all remaining sources. The adjoint of the streaming
and collision operator L under the standard inner product(

· , ·
)
D

=

∫
D

∫
4π

∫ ∞

0
dE dΩ dV (3)

is given by
L† = −Ω · ∇ + σt. (4)
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Multiplying Eq. (1) with a weight functionW and the ad-
joint operator Eq. (4) gives the weighted least-squares equation
compatible with source iteration

L†WLψ = L†WSψ +L†WQ. (5)

The mono-energetic WLS equation hence becomes

−Ω · ∇
[
wΩ · ∇ψ

]
−Ω · ψ∇ [wσt] + wσ2

t ψ

= −Ω · ∇

w L∑
l=0

l∑
p=−l

2l + 1
4π

Yp
l σlφ

p
l + w

ν̄σf

4π
φ + w

q
4π


+ wσt

L∑
l=0

l∑
p=−l

2l + 1
4π

Yp
l σlφ

p
l + w

σtν̄σf

4π
φ + w

qσt

4π
(6a)

where w denotes a weight function. The corresponding bound-
ary condition is

ψ (xb) = f (Ω) , Ω · n < 0, xb ∈ ∂D. (6b)

We utilize the S N method and derive the weak form by
multiplying Eq. (6a) with a test function ψ∗m and integrate
over the spatial domain D. Integration by parts of all terms
containing a derivative gives(

wΩm · ∇ψm + wσtψm,Ωm · ∇ψ
∗
m + σtψ

∗
m
)
D

=

w L∑
l=0

l∑
p=−l

2l + 1
4π

σlφ
p
l Yp

l ,Ωm · ∇ψ
∗
m + σtψ

∗
m


D

+

(
w

1
4π
νσfφ + w

1
4π

q,Ωm · ∇ψ
∗
m + σtψ

∗
m

)
D

+
〈
wΩm · ∇ψm + σtψm, (Ωm · n̂)ψ∗m

〉
∂D

−

〈
w

L∑
l=0

l∑
p=−l

2l + 1
4π

σYp
l ,l
φ

p
l , (Ωm · n)ψ∗m

〉
∂D

−

〈
w

1
4π
νσfφ + w

1
4π

q, (Ωm · n)ψ∗m

〉
∂D

, m = 1 . . . M (7)

with the inner product Eq. (3) and〈
· , ·

〉
∂D

=

∮
∂D

∫
4π

∫ ∞

0
dE dΩ dA (8)

the corresponding surface integral with outwards normal n.
Note that if we assume the first-order multi-group S N

transport equation is exactly met on the boundary ∂D, all
of the boundary terms cancel. An additional motivation for
making this assumption is that it renders our Galerkin method
for the second-order least-squares equation equivalent to the
least-squares finite-element method for the first-order form of
the S N equations using the same trial space.

The natural boundary condition Eq. (6b) of Eq. (6) is
a Dirichlet boundary condition. However this is difficult to
implement in numerical codes. We chose to use the optional
weak boundary condition〈

fm
(
ψm − ψ

inc
m

)
,ψ∗m

〉
∂D−

, m = 1 . . . M (9)

instead, where ∂D− is the portion of the boundary for which
Ωm · n < 0.

Based on the SAAF boundary condition [8] we define

fm = σt |Ω · n| . (10)

However, the SAAF boundary conditions are defined over the
whole boundary, while the optional LS boundary condition
is only defined on the incoming boundary. For near void
problems the choice

fm = max
(
σt,

1
h

)
|Ω · n| (11)

gives a more accurate and better conditioned version. Here h
denotes a characteristic length constant of the boundary cell.
Another boundary condition, which often shows better results,
is based on a diffusion limit analysis

fm = 4
|Ω · n|

h
+ σt

(
3 |Ω · n|2 + 2 |Ω · n|

)
. (12)

By adding the boundary condition Eq. (9) to Eq. (7) we
obtain the WLS weak formulation: Given a trial space WD,
consisting of continuous basis functions, the weak form for a
specific direction and group is as follows: Find ψ∗m ∈ WD such
that(

wΩm · ∇ψm + wσtψm,Ωm · ∇ψ
∗
m + σtψ

∗
m
)
D

+
〈
w fm

(
ψm − ψ

inc
)
,ψ∗m

〉
∂D−

=

w G∑
g′=1

L∑
l=0

l∑
p=−l

2l + 1
4π

Yp
l σlφ

p
l ,Ωm · ∇ψ

∗
m + σtψ

∗
m


D

+

(
w

1
4π
νσfφ + w

1
4π

q,Ωm · ∇ψ
∗
m + σtψ

∗
m

)
D

,m = 1 . . . M

(13)

The following weight function improves the thick diffu-
sion limit [9]

w ≡
1
σt

(14)

and makes our equations equivalent to the SAAF equation [3]
if we expand the first derivative terms and neglect the optional
boundary condition Eq. (9). However, the weight function
Eq. (14) is not defined in voids. Introducing a limit

w ≡ min
(

1
σt
,wmax

)
(15)

where wmax denotes a maximum value for the weight function
makes the WLS equation well defined in voids and maintains
the symmetric positive-definite properties of the resulting dis-
cretized matrix, but the WLS equation is comparable to the
SAAF equation only for sufficient large total cross sections
σt. Hence we decided to use Eq. (13) with optional boundary
conditions Eq. (9).
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2. Nonlinear Diffusion Acceleration

We derive our low order diffusion equation from the first
order transport equation as shown by Peterson [4]. This results
in an inconsistent, but conservative form of the NDA. Inte-
grating the mono-energetic transport equation over all angles
gives us the zeroth moment equation

∇ · J + σtφ = σsφ + q. (16)

To close Eq. (16), we consider the first moment equation

M∑
m=1

ωmΩm

(
Ωm · ∇ψm,g

)
+ σt J = σ1 J (17)

with gives the current

J = −
1
σtr

M∑
m=1

ωmΩm (Ωm · ∇ψm) (18)

with the transport cross section

σtr ≡ σt − σ1. (19)

We use Eq. (18) to construct an additive correction to Fick’s
law

J = − D∇φ + D∇φ −
1
σtr

M∑
m=1

ωmΩmΩm · ∇ψm

= − D∇φ − D̂φ (20)

with the drift vector

D̂ ≡
1
φ

 1
σtr

M∑
m=1

ωmΩm (Ωm · ∇ψm) − D∇φ

 (21)

and the diffusion coefficient is defined as

D ≡
1

3σtr
. (22)

Substituting Eq. (20) into Eq. (16) gives a drift-diffusion equa-
tion

−∇ ·
[
D∇φ

]
− ∇ ·

[
D̂φ

]
+ σaφ = q. (23)

Multiplying Eq. (16) by a test function φ∗ and integrating
over the domain gives the corresponding weak form

(∇ · J, φ∗)D + (σaφ, φ
∗)D = (q, φ∗)D . (24)

Applying integration by parts on the current term and substi-
tuting Eq. (20) gives

− (D∇φ,∇φ∗)D −
(
D̂φ,∇φ∗

)
D

+ 〈n · J, φ∗〉∂D
+ (σaφ, φ

∗)D = (q, φ∗)D . (25)

The boundary term 〈n · J, φ∗〉∂D still needs to be evalu-
ated. While the reflective boundary condition is natural to the

diffusion equation, the vacuum condition is more challenging.
Using the partial currents we can define

〈n · J, φ∗〉∂D =
〈
J out − J in, φ∗

〉
∂D

=

〈
1
4
κφ − J in, φ∗

〉
∂D

(26)

with the vacuum boundary coefficient as

κ ≡ 4
J out

φ

=
4
φ

∑
n·Ωm>0

ωm |n ·Ωm|ψm (27)

and substitute this into the boundary term. Note that we
changed the vacuum boundary coefficient from the one de-
scribed in [4] to Eq. (27) to be consistent with the SAAF
implementation in Rattlesnake.

For a given iteration k the NDA scheme is defined as
follows:

1. Solve the WLS transport equation(
wΩm · ∇ψ

k+ 1
2

m + wσtψ
k+ 1

2
m ,Ωm · ∇ψ

∗
m + σtψ

∗
m

)
D

+

〈
w fm

(
ψ

k+ 1
2

m − ψinc
)
,ψ∗m

〉
∂D−

=

w G∑
g′=1

L∑
l=0

l∑
p=−l

2l + 1
4π

Yp
l σlφ

p,k
l ,Ωm · ∇ψ

∗
m + σtψ

∗
m


D

+

(
w

1
4π
νσfφ

k + w
1

4π
q,Ωm · ∇ψ

∗
m + σtψ

∗
m

)
D

,m = 1 . . . M

(28a)

2. Calculate the correction terms for the diffusion equation

κk+ 1
2 =

4
φ

∑
n·Ωm>0

ωm |n ·Ωm|ψ
k+ 1

2
m (28b)

D̂k+ 1
2 =

1

φk+ 1
2

 1
σtr

M∑
m=1

ωmΩm

(
Ωm · ∇ψ

k+ 1
2

m

)
− D∇φk+ 1

2


(28c)

3. Solve the diffusion equation

−
(
D∇φk+1,∇φ∗

)
D
−

(
D̂k+ 1

2 φk+1,∇φ∗
)
D

+

〈
κk+ 1

2

4
φk+1 − Jin, φ∗

〉
∂D

+
(
σaφ

k+1, φ∗
)
D

= (q, φ∗)D

(28d)

4. Check convergence and update the scattering source
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The iteration scheme for the NDA starts with a low order
solve of Eq. (28d) assuming D̂

1
2 = 0 and κ

1
2 = 1. The scalar

flux is transferred to the high order system and used for the
scattering and fission source. The new angular flux is obtained
and the drift vector and boundary coefficient calculated. These
are then used for the next low order diffusion solve. This
iteration continues until convergence of the low order and high
order solutions.

The derivation of the multi-group equations is similar and
we leave it to the reader to do so. The only thing to be consider
are the cross group scattering terms in the drift vector

D̂k+ 1
2

g ≡
1

φ
k+ 1

2
g

 1
σtr,g

M∑
m=1

ωmΩm

(
Ωm · ∇ψ

k+ 1
2

m,g

)

−
1
σtr,g

G∑
g′=1
g′,g

σ1,g′→g Jk+ 1
2

g′ − Dg∇φ
k+ 1

2
g

 . (29)

3. Modifications for void

The classical formulation of the diffusion coefficient
(Eq. (22)) does not hold in voids. However, if we consider
Eq. (20) we see that in the case of spatial and iterative con-
vergence, the diffusion terms cancel. Therefore, the diffusion
coefficient is a free parameter in the NDA calculation. We
chose to use a nonlocal definition of a diffusion coefficient.
The derivation was first proposed by Morel [10, 11] and later
studied by Larsen and Trahan [5, 6]. This approach gives us a
diffusion tensor D with

Di j ≡

∫
4π

(Ω · ei)
(
Ω · e j

)
f (Ω) dΩ (30)

where f (Ω) is the solution to

Ω · ∇ f + σt f =
1

4π
(31)

f (xb,Ω) = 0. xb ∈ ∂D,Ω · n < 0. (32)

This equation can be easily solved using any technique to solve
a transport equation. In the case of an infinite homogeneous
medium the nonlocal diffusion coefficient reduces to the classi-
cal local diffusion coefficient Eq. (22). In this study we obtain
the nonlocal diffusion tensor from a WLS solve. Note that that
the calculation does not require a scattering source, therefore
no source iterations are necessary. The result is well defined
in finite voids. Schunert at el. [12] showed that this diffusion
coefficient can improve convergence properties of the NDA in
problems with discontinuity of material properties.

In addition to the diffusion coefficient, the Eddington form
of the current in the drift vector formulation Eq. (21) becomes
singular in voids. We can also write the drift vector as

D̂ = −J − D∇φ. (33)

The Eddington or pressure formulation for the current used in
Eq. (21)

J = −
1
σtr

M∑
m=1

ωmΩm(Ωm · ∇ψm) (34)

can be replaced by the alternative of the direct or first moment
representation

J =

M∑
m=1

ωmΩm · ψm,g. (35)
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Fig. 1. Spectral radius for c = 1 as function of the cell thick-
ness for the two formulations of the current and the combined
formulation in a homogeneous material.

A Fourier analysis (Fig. 1) showed that the direct formu-
lation shows convergence issues for optical thick cells. The
reason for this is that the classical formulation results in a
finite difference discretization scheme, skipping the center
node. For high frequencies, this cannot resolve the first deriva-
tive correctly. However, voids are optically thin, therefore we
choose to use

J ≡


− 1
σtr

M∑
m=1

ωmΩ (Ωm · ∇ψm) , σtrh ≥ ζ̂
M∑

m=1
ωmΩm · ψm , σtrh < ζ̂

(36)

where ζ̂ is a threshold value for the optical thickness to switch
between the two formulations and h is a characteristic length
of the cell. Taking Fig. 1 into account ζ̂ = 0.01 should provide
good convergence for all optical thicknesses. It is verified
numerically that this combined formulation Eq. (36) has the
same convergence properties for a homogeneous material as
the pressure formulation of the current.
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Fig. 2. Spectral radius for the combined drift vector formula-
tion (Eq. (36)) as function of the cell thickness in a heteroge-
neous problem with a void and a material region with 2 cells
each.
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TABLE I. Maximal spectral radii for the combined drift vector
formulation in a two material problem with a void

Scattering ratio Spectral radius
c ρ

1 1.0000
0.9999 0.9603

0.99 0.7936
0.9 0.6080

Figure 2 shows the result for a Fourier analysis using a
two region periodic problem. The problem consists of a void
and a highly diffusive material. It can be seen in the plot that
the spectral radius for the scattering ratio c = 1 still goes to
one, even though we use the combined formulation for the
current (Eq. (36)) for the drift vector. However, for c < 1
we see, that the spectral radius does not approach one and
the scheme converges unconditionally. Table I shows that for
c < 1 the NDA void scheme accelerates the convergence.
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Fig. 3. Influence of different levels of feathering of the inter-
face cell on the spectral radius for the combined drift vector
formulation (Eq. (36)) with c = 1 in a heterogeneous problem
with a void and a material region.

Figure 2 shows that for optical thick cells and high scatter-
ing ratios the acceleration scheme looses effectiveness. This
is caused by an interface between an optically very thick cell
and a very thin cell. To improve convergence we studied the
effect of introducing cells of intermediate optical thickness.
The last interface cells in the material are increasingly refined
towards the void, creating a series of cells with decreasing
optical thickness towards the void region. Every level of feath-
ering means that the cells next to the void is divided by two,
hence a level three feathering produces an interface with cells
of h

2 , h
4 and two with h

8 thickness. Figure 3 shows that this
procedure moves the practical optical thickness, for which the
scheme looses effectiveness to optically thicker cells. This,
however, comes with the price of having more spatial cells in
the problem. The implemented feathering scheme was only
intended for a test and is by no means optimal.

4. SAAF Transport Equation with void treatment

The standard SAAF equation is not defined in voids.
Wang et al.[13] proposed a modified version of the SAAF
equation that is well defined in voids. Here we shall give a

short derivation of the self-adjoint angular-flux equation with
void treatment (SAAFτ). Further details are described in the
paper by Wang.

Consider for the one group, isotropic case the first order
transport equation. Solving for the angular flux gives

ψ =
1
σt

(
−Ω · ∇ψ +

σs

4π
φ +

q
4π

)
. (37)

We define the stabilization parameter τ as a function of a cell’s
optical thickness

τ ≡

 1
σt
, σth ≥ ζ

h
ζ
, σth < ζ

(38)

with ζ the stabilization threshold, normally set to 0.5. First we
subtract and add τσt,ψ to ψ to obtain

ψ = (1 − τσt)ψ + τσtψ (39a)

Next we substitute Eq. (37) into the last term of Eq. (39a) to
get

ψ = (1 − τσt)ψ + τ
(
σs

4π
φ +

q
4π
−Ω · ∇ψ

)
(39b)

Substituting from Eq. (39b) into the streaming term of the
transport equation Eq. (1) we get the SAAFτ equation

−Ω · ∇
[
τΩ · ∇ψ

]
+Ω · ∇

[
(1 − σtτ)ψ

]
+ σtψ

= −Ω · ∇

[
τ
(
σs

4π
φ +

q
4π

)]
+
σs

4π
φ +

q
4π

(40)

This equation are compatible with voids, however the system
matrix is not symmetric anymore due to the first derivative.

The NDA for the SAAFτ equation is consistent. It is
derived from the P0 projection of Eq. (40). The resulting low
order equation is equal to Eq. (23) and the boundary condition
is Eq. (26). The drift for the correction is

D̂ ≡
1

φk+ 1
2

τ M∑
m=1

Ωm ·Ωm · ∇ψm

− [(1 − τσt)J] − D∇φ
)

(41)

For a given iteration k the SAAFτ NDA scheme is defined as
follows:

1. Solve the SAAFτ transport equation(
τΩ · ∇ψ

k+ 1
2

m ,Ω · ∇ψ∗
)
D

+

(
(1 − σtτ)ψk+ 1

2
m ,Ω · ∇

)
D

+

(
σtψ

k+ 1
2

m ,ψ∗
)
D

+

〈
ψ

k+ 1
2

m , (Ω · n)ψ∗
〉
∂D

=

 L∑
l=0

l∑
p=−l

2l + 1
4π

Yp
l σlφ

p,k
l , τΩ · ∇ψ∗ + ψ∗


D

+

(
1

4π
ν̄σfφ

k +
q

4π
, τΩ · ∇ψ∗ + ψ∗

)
D

,m = 1 . . . M

(42a)
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2. Calculate the correction terms for the diffusion equation

κk+ 1
2 =

4
φ

∑
n·Ωm>0

ωm |n ·Ωm|ψ
k+ 1

2
m (42b)

D̂k+ 1
2 ≡

1

φk+ 1
2

τ M∑
m=1

Ωm ·Ωm · ∇ψ
k+ 1

2
m

−
[
(1 − τσt)Jk+ 1

2

]
− D∇φk+ 1

2

)
(42c)

3. Solve the diffusion equation

−
(
D∇φk+1,∇φ∗

)
D
−

(
D̂k+ 1

2 φk+1,∇φ∗
)
D

+

〈
κk+ 1

2

4
φk+1 − Jin, φ∗

〉
∂D

+
(
σaφ

k+1, φ∗
)
D

= (q, φ∗)D

(42d)

4. Check convergence and update the scattering source

With the nonlocal diffusion coefficient Eq. (30) this NDA
scheme is also well defined in voids. We will use this NDA
scheme to compare to our newly developed WLS NDA algo-
rithm Eq. (28).

III. RESULTS AND ANALYSIS

1. Material Interface with Weighted Least-Squares

To test the WLS equation, consider a one dimensional
problem with two material regions. The left region contains
a weak absorber (σt = 0.1 1

cm ), while the right region has a
strong absorber (σt = 10 1

cm ). Each region is 1 cm thick and
the problem is surrounded by vacuum. A constant source of
q = 1 n

s is added in both regions. We compare the unweighted
LS to the weighted LS and the SAAF implementation with
void treatment (SAAFτ) [13] in Rattlesnake. LS and WLS
formulations use the boundary condition Eq. (12) and all cal-
culations employ a S 8 Gauss quadrature.
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Fig. 4. Comparison of the scalar flux results for the two
absorber problem

Figure 4 shows the results for the scalar flux. The LS
result in the left half of the problem is strongly influenced
by the thick material in the right half. The introduction of

the weight function for the WLS ameliorates this problem,
however the result shows still a decrease of the scalar flux
towards the thick material. The SAAFτ scheme is closest to
the reference solution, however it has a strong decrease in the
cell next to the material interface.

The angular fluxes show that the error for the WLS
scheme is strongly dependent on the angle. Only directions
going from the thin into the thick half have the decrease in flux
strength. The opposite direction is not influenced by the thin
material region before the interface. The more perpendicular
the positive direction to the interface is, the larger the error.

2. Reed’s Problem
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Fig. 6. Relative error for the modified Reed’s problem with
SAAF NDA and LS NDA to the WLS reference solution.

To test the void NDA modifications, we use a slightly
modified version of Reed’s problem, a well know test problem
containing a void region and a highly diffusive region. The
calculations uses both NDA schemes, the WLS Eq. (28) and
the SAAFτ Eq. (42). The results are shown in Fig. 5 and the
relative error in the scalar flux can be seen in Fig. 6. Both
schemes have large errors in the absorber region. In the void
region the WLS solution shows a non constant flux and a
wrong magnitude. This affects the adjacent scattering region.
The SAAFτ solution shows some small oscillations at the
void’s left boundary and a decrease in the scalar flux only in
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the leftmost cell in the void. These inaccuracies in both WLS
and SAAFτ disappear with increasing mesh refinement.

Both schemes needed 16 iterations to reduce the error
between two consecutive low order solutions below the error
tolerance of 10−10. The SAAFτ scheme is consistent, hence
the difference between high-order and low order solution can
also be used as measurement for the error. It took only 14
iterations to reduce the iterative error below the tolerance.
The WLS scheme is inconsistent and therefore the high-order
and low-order solutions only converge in the limit of spatial
refinement.
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Fig. 7. Drift vectors for the LS and SAAF NDA calculation
for Reed’s problem

The drift vectors from both WLS and SAAFτ agree well
as can be seen in Fig. 7. The SAAFτ drift vector has oscillation
on the left side of the void region. The WLS drift vector is
constant throughout the void region.

3. Two region problem with a void

To further investigate the non-constant flux of the WLS
solution in the void region as shown in Fig. 5 we simplified
the problem to an one dimensional two absorber problem. The
left half of the problem contains a void (σt = 0 1

cm ), while the
right side contains a strong absorber (σt = 10 1

cm ). On the left
boundary is an incident isotropic flux φin = 1.0 1

cm2s .
In the void region the drift vector D̂1 = −0.5 is constant

as well as the nonlocal diffusion coefficient D1. Equation (23)
simplifies in the void region to

−D1
∂2

∂x2 φ1 − D̂1
∂

∂x
φ1 = 0 (43)

where the subscript 1 stands for the left half of the problem.
The analytical solution to Eq. (43) is

φ1 (x) = A1 + B1e−
D̂1
D1

x (44)

with A1 and B1 constants to be determined by the boundary
and interface conditions. As we can see, the constant solution
is part of the solution space of Eq. (44) but not the only one.
For a nonzero constant B1 the solution can also be exponential.

The solution Eq. (44) in the void region is conservative.
This can be easily shown using the current Eq. (20) with the
solution Eq. (44) and substitute this into the balance equation
Eq. (16).
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Fig. 8. Transport solutions for the two absorber problem with
a void and an incident isotropic flux on the left side

Figure 8 shows the solution to the problem using the WLS
and SAAFτ transport solvers. The WLS scheme shows an
almost constant flux in the void region. The SAAFτ scheme
starts oscillating towards the right side of the void region
and drops in the last cell before the material interface. Both
schemes have a dip after the interface in the material half and
continuing oscillations into the material region.

The posed problem can be easily solved analytical and all
correction terms can be derived from that analytical solutions.
No scattering is present in the problem therefore no iterative
solution is necessary. The low order solution can be obtained
by feeding in a drift vector and vacuum boundary coefficient
into a drift-diffusion solver. This allows the comparison of
the analytical and numerical drift vectors and their influence
on the NDA solution. The analytic case uses the drift vector
obtained from the analytical angular flux and and integrated
with S 8 quadrature. The numerical drift vectors were obtained
from the transport solutions shown in Fig. 8 and use their
corresponding formulation for the drift vector (WLS Eq. (28c)
and SAAFτ Eq. (42c)).

0 0.5 1 1.5 2
−5

−2.5

0

2.5

5

7.5

σt = 0 1
cm σt = 10 1

cm

x [ cm ] (16 cells)

D
ri

ft
V

ec
to

r
D̂

[-
]

Analytic
WLS

SAAFτ

Fig. 9. Analytic and numerical drift vectors for the two ab-
sorber problem

Figure 9 shows the drift vectors. All drift vectors are neg-
ative and constant in the void, however the SAAFτ one starts
oscillating towards the material interface and is positive in the
last void cell before the interface. In the material region the
drift vector results are far off the reference of the analytic drift
vector. The reasons are that the transport solutions oscillate
and that the low magnitude of the scalar flux φ makes the drift
vector ill-conditions (Eqs. (21) and (41)). The numerical drift
vectors are discontinuous.

Figure 10 shows the NDA solutions with the drift vectors
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Fig. 10. NDA solutions to the two absorber problem with
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different NDA schemes.
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Fig. 11. Relative error in the scalar flux of the transport and
NDA solutions for the two absorber problem with a void, the
NDA solutions use different drift vector vectors.

described above. All calculation use an analytic expression
for the nonlocal diffusion coefficient. Surprisingly the analytic
drift vector gives the worst result. The scalar flux in the void
region is exponentially increasing towards the material inter-
face. The WLS drift vector produces a decreasing flux in the
void regions. The SAAFτ is constant in the void region with
minor oscillations except for the last cell before the interface.
In this cell it decreases strongly. The results show that a more
accurate drift vector does not necessarily increase the accuracy
of the NDA solution.

The relative error in the scalar flux is shown in Fig. 11.
The largest error shows the NDA with the analytic drift vector.
In the void region the WLS transport solution has the least
error. The SAAFτ transport and the NDA using the SAAFτ
drift vector have almost exactly the same error. All numerical
schemes show approximately the same error in the material
region with strong oscillations.

To measure the influence of the drift vector formulation
(Eq. (21) or Eq. (41)), the formulations are used with the
other transport scheme, hence Eq. (42c) uses the transport
solution from Eq. (28a) (labeled with NDA 1) and respectively
Eq. (28c) the solution from Eq. (42a) (labeled with NDA 2).
Figure 12 shows the comparison of the switched drift vectors
with the original schemes and the corresponding relative errors
are shown in Fig. 13. The drift vector formulation switch
influences the solution only in the void part of the problem.
For SAAFτ NDA the consistent schemes shows significant
lower error than the NDA 2 scheme using the same transport
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Fig. 12. Comparison of the NDA solutions to the two absorber
problem with switched drift vectors.
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Fig. 13. Relative error in the scalar flux of the NDA solutions
for the two absorber problem with switched drift vectors.

solution. The WLS NDA scheme error is comparable to the
NDA 1 scheme. This shows that the NDA results are mainly
dependent on the transport solution, and that the formulation
of the drift vector is not the cause of the large deviations for
the WLS scheme. This is particular interesting, since the WLS
transport solution shows a smaller error in the void than the
SAAFτ one (Fig. 11).

The described error in the void is a coarse mesh problem.
Increasing refinement of the mesh reduces the error as shown
in Fig. 14. All schemes converge spatially with second or-
der. So do the schemes using the switched formulation of the
drift vector (not shown to keep the plot simple). The conver-
gence for NDA 1 is similar to the NDA WLS scheme and the
convergence of NDA 2 is similar to the NDA SAAFτ.

IV. CONCLUSIONS

We derived a weighted LS transport equations and showed
that we can make this equation equivalent to the SAAF equa-
tion by deploying the right weight function. However, to be
able to handle voids, a modified weight function and optional
boundary conditions are used, which renders the equations
equal only for sufficient large cross sections and on the mesh
interior. Even if the weight function does not completely guar-
antee causality for the WLS equation, the results improved
significantly. The resulting discretization of the WLS scheme
is in problems with void, in contrast to the SAAFτ scheme,
symmetric positive definite.

The NDA was modified to support void regions by using
a nonlocal diffusion tensor and an alternative formulation for
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Fig. 14. Convergence of the error for the two region problem
for transport and NDA solutions

the current in optical thin cells. The resultant algorithm loses
effectiveness for problems with optical thick purely scattering
cells and voids. However, for scattering ratios smaller than one
the scheme accelerates the convergence. Materials in practical
problems are never purely scattering.

The NDA results for the WLS show non-constant be-
havior in void regions. We showed that this solution is con-
servative and within the solution space of the drift-diffusion
equation. Improved accuracy of the drift vector does not ame-
liorate the error in the void region. Currently different ways
of improving the behavior of the NDA in the void region are
under investigation.

ACKNOWLEDGMENTS

This material is based upon work supported by the Depart-
ment of Energy, Battelle Energy Alliance, LLC, under Award
Number DE-AC07-05ID14517.

REFERENCES

1. D. GASTON, C. NEWMAN, G. HANSEN, and
D. LEBRUN-GRANDIE, “MOOSE: A Parallel Compu-
tational Framework for Coupled Systems of Nonlinear
Equations,” Nuclear Engineering and Design, 239, 10,
1768–1778 (2009).

2. J. HANSEN, J. R. PETERSON, J. E. MOREL, J. C. RA-
GUSA, and Y. WANG, “A Least-Squares Transport Equa-
tion Compatible with Voids,” Journal of Computational
and Theoretical Transport, 43, 1-7, 374–401 (2014).

3. J. MOREL and J. MCGHEE, “A Self-Adjoint Angular
Flux Equation,” Nuclear Science and Engineering, 132,
3, 312–25 (Jul. 1999).

4. J. R. PETERSON, H. R. HAMMER, J. E. MOREL, J. C.
RAGUSA, and Y. WANG, “Conservative Nonlinear Dif-
fusion Acceleration Applied to the Unweighted Least-
Squares Transport Equation in MOOSE,” in “Mathemat-
ics and Computations, Supercomputing in Nuclear Ap-
plications and Monte Carlo International Conference, M

and C+SNA+MC 2015, April 19, 2015 - April 23, 2015,”
American Nuclear Society (2015), vol. 1, pp. 636–648.

5. E. W. LARSEN and T. J. TRAHAN, “2-D Anisotropic
Diffusion in Optically Thin Channels,” in “2009 ANS
Annual Meeting and Embedded Topical Meetings: Risk
Management and 2009 Young Professionals Congress,
November 15, 2009 - November 19, 2009,” American
Nuclear Society (2009), Transactions of the American
Nuclear Society, vol. 101, pp. 387–389.

6. T. J. TRAHAN and E. W. LARSEN, “3-D Anisotropic
Neutron Diffusion in Optically Thick Media with Opti-
cally Thin Channels,” in “Proc. Intl. Conf. on Math. and
Comput. Methods Applied to Nucl. Sci. Eng.(M&C 2011),
Rio de Janeiro, Brazil, May 8,” (2011), vol. 12.

7. C. DRUMM, W. FAN, A. BIELEN, and J. CHENHALL,
“Least-Squares Finite-Element Algorithms in the SCEP-
TRE Radiation Transport Code,” Ann Arbor, 1001, 48109–
2104 (2011).

8. V. M. LABOURE, Y. WANG, and M. D. DEHART,
“Least-Squares PN Formulation of the Transport Equation
Using Self-Adjoint-Angular-Flux Consistent Boundary
Conditions,” in “Physics of Reactors 2016: Unifying The-
ory and Experiments in the 21st Century, PHYSOR 2016,
May 1, 2016 - May 5, 2016,” American Nuclear Society
(2016), Physics of Reactors 2016, PHYSOR 2016: Unify-
ing Theory and Experiments in the 21st Century, vol. 5,
pp. 3376–3385.

9. T. MANTEUFFEL and K. RESSEL, “Least-Squares
Finite-Element Solution of the Neutron Transport Equa-
tion in Diffusive Regimes,” SIAM Journal on Numerical
Analysis, 35, 2, 806–35 (Apr. 1998).

10. J. E. MOREL, “A Non-Local Diffusion Theroy,” Research
Report LA-UR-07-5257, Los Alamos National Labora-
tory, NM (2007).

11. J. E. MOREL, J. S. WARSA, and K. G. BUDGE, “Al-
ternative Generation of Non-Local Diffusion Tensors,”
Research memo, Texas A&M University (2010).

12. S. SCHUNERT, H. R. HAMMER, J. LOU, Y. WANG,
J. ORTENSI, F. N. GLEICHER, B. BAKER, M. D. DE-
HART, and R. C. MARTINEAU, “Using Directional Dif-
fusion Coefficients for Nonlinear Diffusion Acceleration
of the First Order S N Equations in Near-Void Regions,”
Las Vegas, NV (Nov. 2016).

13. Y. WANG, H. ZHANG, and R. C. MARTINEAU, “Diffu-
sion Acceleration Schemes for Self-Adjoint Angular Flux
Formulation with a Void Treatment,” Nuclear Science and
Engineering, 176, 2, 201–225 (2014).


