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Abstract - Oak Ridge National Laboratory and the University of Michigan are jointly developing the MPACT
code to be the primary neutron transport code for the Virtual Environment for Reactor Applications (VERA).
To solve the transport equation, MPACT uses the 2D/1D method, which decomposes the problem into a stack of
2D planes that are then coupled with a 1D axial calculation. MPACT uses the method of characteristics (MOC)
for the 2D transport calculations and 1D P3 wrapped in a two-node nodal expansion method (NEM-P3) solver
for the 1D axial calculations, then accelerates the solution using the 3D coarse mesh finite difference (CMFD)
method. Increasing the number of 2D MOC planes will increase the accuracy of the calculation, but will also
increase the computational burden of the calculations and can result in slow convergence or instability. To
prevent these problems while maintaining accuracy, the subplane scheme has been implemented in MPACT.
This method subdivides the MOC planes into subplanes, refining the 1D NEM-P3 and 3D CMFD calculations.
This allows fewer MOC planes to be used while maintaining accuracy, improving the stability, and decreasing
the required computational resources.

To test the subplane scheme, three of the VERA Progression Problems were selected: Problem 3, a
single assembly problem; Problem 4, a 3×3 assembly problem with control rods and pyrex burnable poisons;
and Problem 5, a quarter-core problem. These three problems demonstrated that the subplane scheme can
accurately produce intra-plane axial flux profiles that preserve the accuracy of the fine mesh solution. The
eigenvalue differences are negligibly small, and differences in 3D power distributions are less than 0.1% for
realistic axial meshes. Furthermore, the convergence behavior with the subplane scheme compares favorably
with the conventional 2D/1D method, and the computational expense is decreased for all calculations owing to
the reduction in expensive MOC calculations.

I. INTRODUCTION

The Consortium for Advanced Simulation of Light-Water
Reactors [1] is currently developing an advanced code pack-
age called the Virtual Environment for Reactor Applications
(VERA). VERA is intended to provide tools for high-fidelity
modeling and simulation of light-water reactors beyond what
has so far been possible with tools available to industry.
VERA’s tools include codes to perform neutronics, thermal-
hydraulics, fuel performance, and other calculations, as shown
in Figure 1. MPACT is the deterministic neutronics code in
VERA that uses the 2D/1D method to provide 3D pin-resolved
power distributions for the entire reactor [2, 3]. The work
discussed in this paper focuses on improvements made to the
2D/1D implementation in MPACT using the subplane scheme.

The 2D/1D method [3, 4, 5, 6] takes advantage of the ge-
ometry in the reactor by noting that most of the heterogeneity
occurs in the radial direction. Because of this feature, the prob-
lem is decomposed into a stack of 2D planes. In MPACT, each

1This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-
AC0500OR22725 with the U.S. Department of Energy. The United States Government
retains and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this manuscript, or allow others
to do so, for the United States Government purposes. The Department of Energy will
provide public access to these results of federally sponsored research in accordance with
the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Fig. 1. VERA code package.

of these radial planes is solved using the 2D method of char-
acteristics (MOC), which is capable of accurately resolving
complicated geometries. These planes are then coupled axially
using the 1D P3 approximation wrapped in a two-node nodal
expansion method (NEM-P3) [7, 8] calculation on a coarse,
pin-homogenized mesh. Additionally, this scheme uses the 3D
coarse mesh finite difference (CMFD) method [9] to accelerate
the convergence of the solution. This iteration scheme is capa-
ble of providing highly accurate 3D power distributions and is
still much faster than doing a direct 3D transport calculation.
However, the cost of direct whole-core transport calculations
using the 2D/1D method significantly increased computational
cost compared to current methods— with the majority of the
computational burden coming from the 2D MOC calculations.
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Fig. 2. The 2D/1D method with the subplane scheme used for the 3D CMFD and 1D axial calculations.

Because of this, a balance must be struck between minimizing
the number of MOC planes to reduce runtime and maintain-
ing a sufficiently accurate solution. This paper will discuss
the subplane scheme, which is an alternative way of using the
CMFD and 1D NEM-P3 solvers to reduce the number of MOC
planes without sacrificing solution accuracy.

II. THEORY

The subplane scheme, depicted in Figure 2 and described
here, is a modification to the manner in which the 3D CMFD
system and 1D axial solvers interact with the 2D MOC planes.
To expound on the subplane scheme, first, the traditional
CMFD method will be introduced and briefly explained. Then
the modifications required for the implementation and use of
the subplane scheme to be used will be discussed. Finally, the
iteration scheme for the CMFD calculations and a full 2D/1D
calculation in MPACT will be discussed.

1. CMFD Acceleration

CMFD is a coarse mesh acceleration method that can be
used with a variety of transport methods [9]. To accelerate
convergence, the MOC mesh used by the transport calculations
is homogenized into a coarser mesh. The diffusion approxima-
tion is then applied to this coarse mesh. This produces a linear
system for N ×G unknowns, where N is the total number of
CMFD cells and G is the number of energy groups used by the
problem. Solving this system provides a global flux shape on
the coarse mesh. This shape can be used to scale the fine mesh
fluxes to accelerate convergence and to calculate an updated
eigenvalue for the eigenvalue problem.

In MPACT, a single pin cell usually contains around 50

fine mesh regions for which the scalar flux is calculated using
MOC. To prepare the coarse mesh, each of these pin cells
is homogenized into a single coarse mesh cell with an axial
height equal to the thickness of the MOC plane. This proce-
dure is applied to every pin cell in each MOC plane as shown
in Equation 1:
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where i is the fine mesh cell index, I is the set of fine mesh cells
that make up the coarse mesh cell, J is the coarse mesh cell
index, g indicates the energy group index, V is volume, k is the
iteration index, φ is the scalar flux, Σ is a transport or scattering
cross-section, νΣ f is the nu-fission cross-section, and χ is
the energy distribution for the fission source. Using these
definitions, the coarse mesh quantities preserve the volume-
averaged scalar flux and reaction rates in each pin cell on the
MOC mesh—which is necessary for consistency between the
MOC and CMFD calculations.

For consistency, ensuring that the leakage on each face of
the pin cell is consistent between the transport and diffusion
solutions is a requirement. Because the CMFD system is
using the diffusion approximation, the currents calculated at
the coarse mesh cell interfaces will differ from those calculated
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using MOC. To prevent this inconsistency, a current correction
factor is calculated using the transport solution that enforces
consistency between the CMFD and MOC currents. These
correction factors are calculated for each of the six faces of
the coarse mesh cell, as shown in Equation 2:
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2

= −Dg,J+ 1
2

(
φg,J+1 − φg,J

)
+D̂g,J+ 1

2
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As before, i refers to fine mesh cells, and J refers to coarse
mesh cells. Indexes I + 1

2 and J + 1
2 refer to the same interface

between two pin cells, with I + 1
2 referring the quantities from

the transport calculation and J + 1
2 referring to the quantities

from the diffusion calculations. ∆J is half the width of pin cell
J, and Σtr,g,J is the group g transport cross-section for CMFD
cell J. Dg,J+ 1

2
is the group g diffusion coefficient at interface

J + 1
2 , and D̂g,J+ 1

2
is the group g coupling coefficient enforcing

consistency between the diffusion and transport solutions at the
same interface. In MPACT, the transport current Jg,I+ 1

2
comes

from the 2D MOC calculations for the four radial interfaces
and the 1D NEM-P3 calculations for the two axial interfaces.
These definitions ensure consistency between the CMFD and
MOC solutions as well as between the CMFD and axial NEM-
P3 solutions.

After the CMFD calculation has finished, the MOC flux
must be scaled using the CMFD results by simply calculating
a scaling factor using the new and old CMFD fluxes, then
applying this scaling factor to each of the MOC fluxes in the
CMFD pin cell. This process accelerates the convergence of
the transport solution by correcting the magnitude of the fine
mesh fluxes while preserving the intra-pin shape calculated by
MOC. This process is shown in Equation 3:

φk
g,i =

φk
g,J

φk−1
g,J

φk−1
g,i . (3)

2. Subplane Scheme

The conventional 2D/1D approach requires a carefully
selected axial mesh. A refined axial mesh can lead to in-
stabilities in the 2D/1D iteration scheme [10] and increased
computational cost due to more MOC calculations. However,
coarsening the axial mesh too much can decrease the accuracy
of the 2D/1D approach. To solve this problem, a group of
researchers at the Korea Atomic Energy Research Institute
developed the subplane scheme [11]. This scheme allows each
pin cell in the coarse mesh to be divided axially into multi-
ple cells. Thick MOC planes can then be used to minimize
instability and computational burden while the CMFD and 1D
NEM-P3 calculations generate intra-plane flux profiles as if a
finer axial mesh were being used.

To describe this scheme, some notation must be defined.
Subscripts i and j will refer to fine mesh and coarse mesh cell
indexes, respectively. I is then defined as the set of fine mesh
cells making up a pin cell in the MOC mesh, and J is the set of
coarse mesh cells used by CMFD and then axial NEM-P3 that
make up a full pin cell in the MOC mesh. Using this notation,
cell-averaged volume and flux from the MOC mesh relates to
the plane-averaged volume and flux from the CMFD mesh, as
follows: ∑

i∈I

Vi = VI = VJ =
∑
j∈J

V j , (4a)
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With this notation defined, the CMFD method using the
subplane scheme can now be described. First, a subplane
shaping factor s is calculated for each CMFD cell. This factor
is used to provide an axial shape for the cross-sections since
homogenization of the MOC mesh will not accomplish this
on its own. To do this, the ratio of the CMFD cell flux to
the previous iteration’s plane-averaged CMFD flux is used to
generate a shape function for each CMFD cell, as shown in
equation 5:
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1 , k = 1
. (5)

With this factor defined, we can now define the homoge-
nized flux, cross-sections, and χ for each CMFD cell using the
most recent MOC and CMFD solutions. To account for the
intra-plane axial profiles, the fine mesh flux φi is multiplied by
the shaping factor s j for each CMFD cell, giving the following
modified equations:
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The homogenized cross-sections in Equation 6b has the axial
shaping factor sg, j in both summations. Because the shaping
factor is constant radially, it cancels out and gives an expres-
sion equivalent to Equations 1c:
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k−1
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= Σk
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With this simplification, the cross-sections are axially constant,
and χ has an axial distribution within each MOC plane. This
result is expected and physically consistent. A fundamental
assumption of the 2D/1D method is that the materials are
constant in each plane, so the cross-sections should remain
axially constant within the plane, even with the application
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of the subplane scheme. However, the axial mesh refinement
introduced by the subplane scheme should also have the effect
of refining the fission source distribution. This is accomplished
by allowing χ to have an intra-plane axial shape.

The current coupling coefficients described in Equation 2
also require some modification. With the subplane scheme,
each pin cell has multiple interfaces in the axial direction, and
each radial interface has one sub-interface for each subplane.
Because the 1D NEM-P3 calculations use the same homoge-
nized mesh as the subplane CMFD calculations, the radial and
axial coupling coefficients must be handled differently. In the
radial direction, the transport currents have been calculated
along the entire interface. Thus, the other quantities must also
be calculated for full height of the MOC plane. To accomplish
this, the following equations for the radial diffusion currents
are defined:
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Using these definitions, the coupling coefficients D and D̂
are the same for all sub-interfaces on a given radial interface.
However, the subplane fluxes are used in the calculation of the
radial currents, allowing the currents to maintain an intra-plane
axial shape.

For the axial interfaces, subplane quantities are used
everywhere instead of the plane-averaged quantities, giving
Equation 9:
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Using these expressions, each axial interface in a pin cell has
a unique set of D and D̂, unlike the radial interfaces, which
use a single value for D and D̂ for all sub-interfaces in each
direction. However, this is required to maintain consistency
between the CMFD and 1D NEM-P3 systems.

Equation 3 can be used, without modification, to project
the CMFD flux back to the MOC fine mesh. This equation
requires the CMFD flux to be averaged over the entire plane.
For traditional CMFD, this is immediately available at the
end of the calculation. When applying the subplane scheme,
the subplane cells must be volume-averaged in each MOC
plane to obtain φk

g,J and φk−1
g,J . This averaging is accomplished

by applying Equation 4b to the solutions of the current and
previous iterations.

Fig. 3. Axial view of Westinghouse 17×17 fuel assembly in
Watts Bar Unit 1.

III. RESULTS AND ANALYSIS

When testing the subplane scheme, there are two primary
concerns. First, it is important to determine if the subplane
scheme is preserving the accuracy of an axially refined conven-
tional 2D/1D calculation. It must be shown that the intra-plane
flux profiles calculated by CMFD and 1D NEM-P3 compare
well with the profiles obtained by simply adding more MOC
planes. 3D pin power distributions and ke f f are used to show
this comparison. Second, the convergence and runtime be-
havior must also be analyzed. Increasing the number of itera-
tions required to converge can be prohibitive when introducing
complications such as coupling with other codes for thermal-
hydraulic or fuel performance feedback. Furthermore, the
subplane scheme introduces some parallel imbalance in the
CMFD and axial NEM-P3 systems that could increase the
computational expense, even if the calculations converge in
the same number of iterations. The efficiency of the subplane
scheme is analyzed by counting the number of iterations and
the runtime (core-hours) required to reach convergence.

Three models were taken from the VERA Progression
Problems [12], based on Watts Bar Unit 1, and used to test
the subplane scheme. All problems use Westinghouse 17×17
fuel assemblies, shown in Figure 3, with active fuel heights of
365.76 cm. Each assembly has six spacer grids in the active
fuel region, with a height of 3.810 cm. Using conventional
2D/1D, these problems would normally be simulated using a
total of 58 MOC planes, with 49 planes in the active fuel region.
Each spacer grid is one plane, and the spans between grids are
divided into 6 planes, each being about 8 cm thick. All three
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TABLE I. Comparison of subplane scheme to traditional 2D/1D for VERA Progression Problem 3a.

Planes Number of Cores k-eff Difference Pin Power Difference Outer Iterations Runtime (Core-hours) SpeedupConventional Subplane (pcm) RMS Max Conventional Subplane Conventional Subplane

44 44 30 0.0 0.015% 0.048% 11 11 0.58 0.45 1.29

58 58 30 0.0 0.029% 0.095% 9 9 0.75 0.44 1.71

88 44 30 0.1 0.024% 0.090% 9 9 0.95 0.57 1.67

106 53 30 −0.2 0.046% 0.139% 9 9 1.14 0.65 1.76

147 49 30 0.0 0.072% 0.172% 17 9 2.40 0.97 2.46

problems take advantage of symmetry, allowing MPACT to
model only the southeastern quadrant of the problem.

These models were meshed to enable a comparison be-
tween an axially refined 2D/1D mesh without the subplane
scheme and an axially coarse 2D/1D mesh with the subplane
scheme. For each problem, all subplane calculations used the
same number of MOC planes with an increasingly refined sub-
plane mesh. This was accomplished by sub-dividing all MOC
planes into subplanes until they were less than a user-specified
maximum thickness, ranging from 3.2–19 cm. For each of
these subplane cases, a reference was set up that had one MOC
plane for each subplane in the test case. This configuration
resulted in the mesh for the CMFD and NEM-P3 calculations
being identical between the two models while the number of
MOC planes in the reference case was higher. An example of
this meshing scheme is shown in Figure 4.

Fig. 4. Depiction of conventional (left) and subplane (right)
2D/1D axial meshes. Solid lines indicate MOC plane bound-
aries, while dashed lines indicate CMFD cell boundaries.

1. VERA Problem 3a

The first problem is Progression Problem 3a, which con-
sists of a single assembly with 2.6% enrichment. No control
rods or burnable poisons are present in this problem. The
model has also been modified to exclude the spacer grids. The
spacer grids are modeled for the full axial height of an MOC
plane, and without their removal this would cause—for the
most refined meshes tested in this paper— differences between
the reference cases and subplane cases that are not caused by

using the subplane scheme. Removal of the spacer grids pro-
vides a more consistent comparison between conventional and
subplane 2D/1D, even though both methods can accurately
capture spacer grid effects.

Table I shows the results for the Problem 3a calculations.
Each subplane case was executed using 30 MOC plane on
a development cluster running 16 8-core AMD OpteronT M

Processor 6376 CPUs clocked at 2.3 GHz. The first column
shows the total number of subplanes in the test cases and
the number of MOC planes used for the conventional 2D/1D
reference cases. In all cases, the ke f f differences are negligibly
small, being on the order of the ke f f convergence criterion
of 0.1 pcm. The power distribution errors show a generally
increasing trend as the mesh is refined. As more MOC planes
are added to the reference cases, the differences in the transport
solution—at each axial level that CMFD is unable to capture—
are expected to grow. However, even with 147 planes, the
RMS difference in the power distribution is only 0.07%, and
the maximum difference is only 0.172%. For the 58-plane
cases, which are closest to the mesh normally used for Problem
3a, the maximum difference is less than 0.1%—a negligibly
small difference.

The convergence of the subplane cases is much more con-
sistent than the conventional 2D/1D case. The 44-subplane
case, which had a maximum subplane thickness of 14.3695 cm,
required 11 iterations to converge. Because all other subplane
cases had thinner CMFD cells and the same MOC plane thick-
nesses, each of them took 9 iterations. The conventional cases
showed more fluctuations. The 88-plane case converged in
just 7 iterations, but the more refined meshes began requiring
more iterations because of the thinner MOC planes, with the
147-plane case requiring as many as 17 iterations. This occurs
because the thinner MOC planes increase the under-relaxation
required for 2D/1D, which slows the convergence.

The runtime in terms of core-hours is consistently less
for the subplane cases than for the conventional 2D/1D cases.
This is caused primarily by the subplane cases having only one
MOC plane per core, no matter how refined the axial mesh
was. The conventional cases used more cores and had as many
as three MOC planes per core, which significantly increased
the computational expense. Furthermore, the increased num-
ber of cores used in the parallel decomposition also reduces
the parallel efficiency of the calculation. Since only planar
decomposition was being used, this effect would be observed
primarily in the CMFD method, with some effect on the 1D
NEM-P3 and little effect on the 2D MOC. While these effects
are greater for the conventional 2D/1D cases, the subplane
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TABLE II. Comparison of subplane scheme to traditional 2D/1D for VERA Progression Problem 4.

Planes Number of Cores k-eff Difference Pin Power Difference Outer Iterations Runtime (core-hours) SpeedupConventional Subplane (pcm) RMS Max Conventional Subplane Conventional Subplane

44 44 30 0.0 0.020% 0.127% 12 13 6.26 4.98 1.26

58 58 30 0.0 0.006% 0.027% 12 12 10.67 5.50 1.94

88 44 30 0.0 0.006% 0.039% 12 12 11.88 6.28 1.89

106 53 30 −0.7 0.086% 0.289% 13 12 19.17 7.42 2.58

147 49 30 −0.6 0.088% 0.282% 18 12 30.04 9.89 3.04

cases have a unique parallel imbalance. Because the decom-
position is done according to the MOC planes, dividing the
MOC planes into subplanes causes the CMFD system to have
a parallel imbalance for the subplane cases—an imbalance
that cannot exist for the conventional 2D/1D cases. If this
imbalance were eliminated, the speedup from subplane would
increase further.

2. VERA Problem 4

The second problem is Progression Problem 4, a 3×3
assembly problem. This problem has a combination of 2.1%
and 2.6% enriched assemblies. The center assembly has a
control rod, and some of the other assemblies have discrete
pyrex burnable poisons. The control rod and burnable poison
positions were adjusted slightly to align with the top or bottom
of spacer grid planes. This positioning prevents potential
discrepancies caused by homogenizing materials while using
coarse axial meshes. Additionally, the spacer grid material was
removed from the model, as with Problem 3. The assembly
layout is shown in Figure 5.

Fig. 5. VERA Problem 4 assembly layout.

The Problem 4 results are shown in Table II. The ke f f
differences are once again negligibly small at less than 1 pcm
for all subplane cases. For the 3 coarsest meshes, the power
differences are comparable to the Problem 3 results. The two
finest meshes show maximum differences larger than for Prob-
lem 3, close to 0.3%. However, this is still a small difference,
and it occurs near the bottom of the problem at the interface
between the pyrex poison and the end plug, where the power
is low.

The Problem 4 calculations used the same planar decom-
position scheme used for Problem 3 and were conducted on
the same development machine. The convergence behavior
is similar for the conventional and subplane cases, except for

the more refined conventional case. The runtime improvement
of the subplane cases is more significant for Problem 4 that
for Problem 3. This occurs because each parallel domain in
Problem 3 consists of a quarter assembly; whereas for Prob-
lem 4, each domain consists of 2.25 total assemblies. Thus,
the reduction in MOC planes becomes more significant for
Problem 4. The speedup is around 2× for the 58-plane case,
and exceeds 3× for the most refined 147-plane case.

3. VERA Problem 5

The third problem is Progression Problem 5. This prob-
lem is the full Watts Bar Unit 1 core at beginning of life,
including radial reflector regions. Enrichments for this prob-
lem range from 2.1% to 3.1%. All control banks are fully
withdrawn except for bank D, which is inserted about 1

3 of
the way into the active fuel region. Some assemblies also
have burnable pyrex rods. The radial layout of Problem 5 is
shown in Figure 6. The same adjustments as were made in the
previous two models were also made here—to spacer grids,
control rods, and burnable poisons.

Fig. 6. VERA Problem 5 assembly layout.

Problem 5 was run on Oak Ridge National Laboratory’s
Titan [13] using 16 CPU cores per MOC plane. The results are
shown in Table III. Overall, the ke f f and power distribution
differences for each case are similar to those of Problem 4.
The subplane cases still showed speedup compared with the
conventional cases, but not as much of a speedup as seen
in Problems 3 and 4. This performance shortfall is caused
primarily by the increase in the CMFD system’s size, which
results in an increase in the parallel imbalance for the subplane
cases. Furthermore, this CMFD imbalance also required more
nodes to be used for the subplane calculations due to the
increase in memory requirements.

It should be noted that the 106-plane conventional 2D/1D
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TABLE III. Comparison of subplane scheme to traditional 2D/1D for VERA Progression Problem 5.

Planes Number of Cores k-eff Difference Pin Power Difference Outer Iterations Runtime (core-hours) SpeedupConventional Subplane (pcm) RMS Max Conventional Subplane Conventional Subplane

44 704 480 0.0 0.006% 0.035% 12 12 192 174 1.11

58 928 480 −0.1 0.008% 0.065% 13 12 264 213 1.24

88 1408 480 −0.1 0.008% 0.120% 13 12 416 294 1.41

106 1696 480 −0.3 0.058% 0.229% 13 13 520 397 1.31

147 2352 480 −0.3 0.057% 0.220% 18 12 962 477 2.02

case and both 147-plane cases experienced convergence issues
that required some small adjustments to the axial calculations.
These adjustments did not affect the runtime or accuracy, but
did indicate that the thick MOC planes used by the subplane
scheme served to maintain stability at finer meshes than the
conventional 2D/1D approach. The combination of thicker
MOC planes and thinner CMFD planes can improve stability
in some cases.

IV. CONCLUSIONS AND FUTURE WORK

The subplane scheme was successfully implemented in
the MPACT 2D/1D code. VERA Progression Problems 3a,
4, and 5 were simulated using a variety of different conven-
tional and subplane meshes to analyze the performance of the
subplane scheme. All three problems showed that the sub-
plane scheme sufficiently preserves the intra-plane flux shape
from a more refined 2D/1D calculation. Furthermore, these
runs showed that using the subplane scheme decreased the
computational expense for all three problems.

However, several improvements can still be made to this
implementation. First, the subplane scheme naturally intro-
duces an imbalance in the CMFD system for parallel calcu-
lations. This imbalance decreases the parallel efficiency and
increases the memory requirements for each core, though
the total memory usage is less than that of a more refined
conventional 2D/1D calculation. This could be improved by
decomposing the CMFD system separately from the MOC cal-
culation to improve the parallel efficiency and to more evenly
distribute the memory burden.

A second improvement to the subplane scheme involves
stability. For some of the more finely meshed subplane cases
for Problems 4 and 5, the iteration scheme became unstable.
To mitigate this instability required switching from the default
one-node NEM-P3 axial solvers to a hybrid solver that pro-
duces the same solution as the one-node solver but displays
better stability for certain problems. While all the calculations
for this paper were successfully completed using one of these
two solvers, an axial solver that remains stable with thin sub-
planes would make the subplane scheme more reliable and
user friendly. These two axial solvers are discussed in further
detail in [14].

Finally, the 2D/1D method fundamentally assumes that
materials are axially constant within each MOC plane. When
this is not true, the materials must be axially homogenized to
perform the 2D MOC calculations. The most common exam-
ple of this is control rod cusping [7], which introduces large

errors caused by the volume homogenization of strongly ab-
sorbing control rod materials in the 2D MOC plane. Therefore,
to improve the practical usefulness of the subplane scheme, an
accurate and efficient control rod decusping technique must be
used to correct the cusping errors. A variety of solutions have
been developed to address this problem [15, 16, 17], including
one which has been developed in MPACT specifically for the
subplane 2D/1D framework [18].
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