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Abstract – Acceleration/preconditioning strategies available in the SCEPTRE radiation transport code are 
described. A flexible Transport Synthetic Acceleration (TSA) algorithm that uses a low-order discrete-
ordinates (SN) or spherical-harmonics (PN) solve to accelerate convergence of a high-order SN source-
iteration (SI) solve is described. The convergence of the low-order solves can be further accelerated by ap-
plying off-the-shelf incomplete-factorization or algebraic-multigrid methods. Also available is an algorithm 
that uses a GMRES iterative method rather than SI for convergence, using a parallel sweep-based algo-
rithm to build up a Krylov subspace. TSA has been applied as a preconditioner to accelerate the conver-
gence of the GMRES iterations. The methods are applied to several problems involving electron transport 
and problems with artificial cross sections with large scattering ratio. The methods will be compared and 
evaluated by considering material discontinuities and scattering anisotropy. Observed accelerations ob-
tained are highly problem dependent, but speedup factors around ten have been observed in typical appli-
cations. 

 
I. INTRODUCTION 

 
Electron transport is characterized by a large number of 

collisions before removal from the scattering source, which 
makes the source iterations in a sweeps-based solution 
method slowly convergent. The SCEPTRE radiation 
transport code [1] has several alternative solvers that do 
converge rapidly for electron transport in many circum-
stances. In these alternative solvers, a discretized linear sys-
tem is constructed involving both the spatial and angular 
variables, including the scattering source, which is solved in 
parallel by a Krylov iterative method. The convergence of 
the Krylov methods depends upon the condition number of 
the system matrix and the clustering of the eigenvalues, ra-
ther than upon the scattering ratio, so that rapid convergence 
may be obtained even when highly-scattering media is pre-
sent in the problem. A main drawback of these methods is 
that they can be memory intensive. 

In this work, a method is described that combines the 
two solution approaches, by using a coarse-level (low-order-
in-angle) space/angle solve to accelerate a fine-level (high-
SN-order) source-iteration solve. For the coarse-level solves, 
it is possible to attain further acceleration by applying off-
the-shelf Incomplete-Factorization (IF) [2] or Algebraic 
Multi-Grid (AMG) [3] algorithms. This work is basically 
generalized Transport Synthetic Acceleration (TSA) [4] 
with great flexibility in performing the coarse level solves.  

Additionally, capability has recently been added to 
SCEPTRE to use a Generalized Minimum Residual 
(GMRES) algorithm for convergence rather than source 
iteration. Krylov iterative methods have been effectively 
applied to radiation transport problems for some time [5-7]. 
In this approach, sweep solves are used to build up a Krylov 
subspace that is used to minimize a residual and converge to 
a solution. This method is shown to be effective for elec-

tron-transport and other applications with large scattering 
ratio. TSA has been applied as a preconditioner to accelerate 
the convergence of the Krylov iterations. The Krylov algo-
rithm implemented in SCEPTRE will be described below. 

The next section will provide more details of the meth-
ods, and then results will be provided for modeling electron 
transport in a twisted-pair electrical cable, and a three-
material-block cylinder with various combinations of uni-
form and non-uniform cross sections. Observed accelera-
tions obtained are highly problem dependent, but speedup 
factors around ten have been observed in typical applica-
tions. 

 
II. BACKGROUND 

 
Acceleration methods such as Diffusion Synthetic Ac-

celeration (DSA) and TSA have been very effective at re-
ducing the number of iterations and/or solve time for a wide 
range of applications [8-11]. However, partially consistent 
DSA may perform poorly for certain applications, and fully-
consistent DSA and TSA may effectively reduce the itera-
tion count, while shifting much of the work to the coarse-
level solves. The effectiveness of acceleration methods 
tends to be very problem dependent. Generally, for prob-
lems with highly-scattering regions, some type of accelera-
tion is effective, but practical problems often have highly-
scattering regions and streaming regions, so some flexibility 
is desired in applying a preconditioner. 

The SCEPTRE radiation transport code has a unique 
ability of allowing for any number of different types of 
solvers to be defined within a single transport calculation 
[1]. The primary application of SCEPTRE is coupled pho-
ton/electron transport, so this flexibility was needed since 
the convergence properties for problems involving neutral 
particles is so different from that involving charged parti-
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cles, and even among different energy groups, convergence 
behavior may be quite variable. As noted previously, 
SCEPTRE includes a sweeps-based source-iteration solver 
and also a number of solvers that use a Krylov iterative 
method to solve the space/angle dependence simultaneously. 

A wide variety of space/angle solvers are available in 
SCEPTRE. Available space/angle solvers include those 
based on the first-order form of the transport equation using 
Discontinuous Finite Elements (DFE), for both the spheri-
cal-harmonics (PN) and discrete ordinates (SN) treatment of 
the angular variable. A DFE spatial discretization always 
results in a non-SPD linear system, so GMRES is used for 
these solvers. Also available are several solvers that result in 
a Symmetric Positive Definite (SPD) linear system, so that 
the highly-efficient Conjugate Gradients (CG) algorithm 
may be used. These methods include the Self-Adjoint Angu-
lar Flux (SAAF) method and Least-Squares (LS) method, 
using Continuous Finite Elements (CFE), again for both PN 
and SN [12-13]. The use of spatial DFE results in a non-
symmetric linear system, regardless of the form of the 
transport equation used, so only CFE spatial approximation 
is available for use with the SAAF and LS solvers. 

As noted earlier, due to huge memory requirements, the 
space/angle solvers are not generally practical except for 
fairly small problems. However, these methods are very 
effective as coarse-level accelerators for a source-iteration 
solver. Because the space/angle linear systems are built us-
ing Trilinos [14] data structures, the rich assortment of pre-
conditioners included in the Trilinos project, including Al-
gebraic Multi-Grid (AMG) and Incomplete Factorization 
(IF), are accessible. 

Mapping from the fine-level problem to the coarse-
level problem is basically Angular Multi-Level (AML) op-
tionally combined with an algebraic preconditioner, either 
IF [2] or AMG [3]. For AML, the restriction and interpola-
tion operators involve the moment-to-discrete and discrete-
to-moment operators, as will be described in the next sec-
tion. For AMG, the restriction and interpolation operators 
and number of levels are handled by the Trilinos/MueLu 
software, and for IF the preconditioning is handled by the 
Trilinos/Ifpack2 software. For the SAAF and LS coarse-
level solves, which use CFE, the mapping back and forth 
between the DFE and CFE representations of the spatial 
dependence is handled by Trilinos/Tpetra tools [14]. 

 
1. Description of the TSA Algorithm 
 
The mono-energetic transport equation is 

  ∇   tr,
 

  s ′ → r, ′d′  Qr, 1a
 

with an imposed surface-source boundary condition 

r,  br,, r ∈ Γ,   n  0, 1b
 

where r is the spatial position,  is the particle direction of 
motion, t is the total cross section, s is the scattering cross 
section,  is the angular flux, and Q is a known distributed 
fixed source.  is the external spatial boundary and n is the 
unit outward normal on . b is the imposed surface bound-
ary condition for incoming directions. 
Defining the transport operator as 

T ∘    ∇ ∘   t ∘ 2a
 

and the scattering operator as 

S ∘   d′s ′ →  ∘, 2b
 

the transport equation can be written as 

Tr,  Sr,  Qr,. 2c
 

The transport equation can be solved by source iteration, 

Tk1  Sk  Q, 3
 

where  (k) is the known kth iterate of the angular flux,  (k+1) 
is the computed (k+1)st iterate, with the iterations continuing 
until convergence. With an SN discretization in angle and a 
DFE discretization in space, the (k+1)st iterate of the angular 
flux is obtained by an efficient sweeping algorithm. 

In the TSA algorithm, the (k+1)st iterate of the angular 
flux is obtained by means of a two-step process: 1) a sweep 
solve, and 2) computation and application of a correction 
term. Re-indexing the result of a sweep solve as the 
(k+1/2)th iteration, 

Tk1/2  Sk  Q, 4
 

the goal is to determine a correction to the (k+1/2)th iterate 
of the solution to accelerate convergence. Defining the error 
term,  (k+1/2), as the difference between the actual solution, 
, and the (k+1/2)th iterate, 

  k1/2  k1/2, 5
 

the residual at the (k+1/2)th iteration is 

rk1/2  Q − T − Sk1/2, 6a

or 

rk1/2  Sk1/2 − k . 6b
 

Combining Eqs. (6a), (2c) and (5) results in an expression 
for computing the correction term from the residual 

T − Sk1/2  rk1/2. 7
 

Rather than solving Eq. (7) directly, which may be as 
difficult as solving the original transport equation, the pro-
cedure is to map the fine-level linear system for computing 
the correction term, Eq. (7), to a coarse-level linear system, 
which is solved for a coarse-level correction term that is 
then mapped back to fine-level and applied to the (k+1/2)th 
iterate of the angular flux. Defining a coarse-level linear 
system as 
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Tc − Sc c
k1/2  rc

k1/2, 8a
 

where a coarse-level residual is computed from 

rc
k1/2  Rrk1/2, 8b

 
where R is a restriction operator for mapping from the fine-
level linear problem to a coarse-level linear problem. Eq. 
(8a) can be solved by any desired method for the coarse-
level correction term. Through numerical experimentation, 
an optimal convergence criterion (for minimum solver time) 
may be determined for solving the coarse-level system, of-
ten much more relaxed than that for the fine-level solves. 
The coarse-level correction term is mapped back to the fine-
level problem by applying a prolongation operator, 

k1/2  Pc
k1/2, 8c

 
where P is a prolongation operator, for mapping the coarse-
level problem back to the fine-level problem. The (k+1)st 
iterate of the angular flux is obtained by applying the cor-
rection term, 

k1  k1/2  k1/2. 9

Specific restriction and prolongation operators for using 
either spherical harmonics or discrete ordinates as a coarse-
level solver are described in the next sections. 
 
A. Using PN as a Coarse-Level Solver 
 
For a coarse-level PN problem, the coarse-level residual 
moments are computed from 

rc
k1/2  Rrk1/2  Dfc rk1/2, 10a

 
where R is the restriction operator, which is Dfc, the fine-
to-coarse discrete-to-moment operator. The coarse-level 
correction term is mapped back to fine level by 

k1/2  Pc
k1/2  Mcf c

k1/2, 10b
 

where P is the prolongation operator, which is Mcf, the 
coarse-to-fine moment-to-discrete operator. 
 
B. Using SN as a Coarse-Level Solver 
 
For a coarse-level SN problem, the coarse-level residual is 
computed from  

rc
k1/2  Rrk1/2  MccDfc rk1/2, 11a

 
where R is the restriction operator, which is the product of 
Mcc, the coarse-to-coarse moment-to-discrete operator, and 
Dfc, the fine-to-coarse discrete-to-moment operator. The 
coarse-level error term is then mapped back to the fine level 
by 

k1/2  Pc
k1/2  McfDccc

k1/2, 11b
 

where P is the prolongation operator, which is the product 
of Mcf, the coarse-to-fine moment-to-discrete operator, and 
Dcc, the coarse-to-coarse discrete-to-moment operator. 
  
2. Description of the Preconditioned Krylov Algorithm 
 

Starting with the mono-energetic transport equation, 
Eq. (2c), and operating from the left with the inverse 
transport operator and rearranging results in [5-7] 

I − T−1Sr,  uncr,, 12a
 

where the uncollided flux is given by 

uncr,  T−1Qr,. 12b
 

The linear system, Eq. (12a), is solved by a GMRES algo-
rithm. We have implemented the GMRES(m) algorithm 
with restart, given by Saad [15] to solve a general linear 
system in SCEPTRE. The matrix-vector multiplication as 
required in constructing the Krylov subspace is replaced by 

the operation (I-T -1S). The computation of T -1S is per-
formed using a highly-efficient sweeping algorithm. The 
maximum dimension of the Krylov subspace is set to m so 
that the Krylov process is restarted after m iterations. This 
restart strategy can degrade the convergence of the GMRES 
iterations but is necessary to manage memory usage. 

The GMRES iterations can be preconditioned by apply-
ing a left preconditioner to Eq. (12a), 

M−1I − T−1Sr,  M−1uncr,, 13
 

where M-1 is an approximation to the system linear opera-

tor, I - T  -1S.  
A good approximation to the inverse of the linear-

system operator may be obtained as follows. Using the un-
collided flux as an approximate solution of the transport 
equation results in a residual of 

runc  Q − T − Sunc  Sunc. 14a

The error term in using the uncollided flux as a approximate 
solution is 

unc   − unc  T − S−1runc. 14b

Combining Eqs. (14a) and (14b) results in an expression for 
the angular flux solution in terms of the uncollided flux,  

  I  T − S−1S unc. 15

Comparing Eqs. (12a) and (15), the inverse linear operator 
can be written as 

I − T−1S−1  I  T − S−1S. 16
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Mapping the transport solve in Eq. (16), (T–S)-1, to a 
coarse-level linear system results in an approximate inver-
sion of the linear operator, 

I − T−1S−1 ≃ I  PTc − Sc 
−1RS, 17a

which indicates that an effective preconditioner is 

M−1  I  PTc − Sc 
−1RS, 17b

 
In principle, any of the Krylov-method based TSA solvers, 
such as those mentioned in the previous section, can be used 

to perform the operation (Tc–Sc)-1. So far, we have only 
implemented the GMRES(m) algorithm for this purpose. 

 
III. RESULTS 
 

In this section, the various preconditioners/accelerators 
will be applied to several test problems, using either typical 
cross sections for electron transport, or artificial cross sec-
tions with large scattering ratios. The effectiveness of the 
various methods will be evaluated by comparing the con-
vergence rates of the error norm and also by comparing the 
solver times for the electron energy groups. 

The TSA algorithms have many options available for 
controlling both the coarse-level solves and the coarse-level 
acceleration. One of the most important factors affecting 
overall runtime is specifying the convergence tolerance 
and/or maximum number of iterations for the coarse level 
solves. Often, running a small number of coarse-level itera-
tions, resulting in a fairly crude approximation to the correc-
tion term, may result in a good speed up in the convergence 
of the fine-level source iterations. This is especially true for 
the DFE coarse-level solvers using GMRES, which is fairly 
expensive. For the SAAF and LS coarse-level solvers, 
which use CG, limiting the number of coarse-level iterations 
is not as crucial, since the CG algorithm is so fast. 

For some of the results presented in this section, the 
coarse-level parameters are somewhat optimized for reduc-
ing overall runtime. For other of the results, the coarse-level 
parameters are set to provide a fairly well-converged coarse-
level solve, which effectively speeds up convergence versus 
source iteration, while not necessarily providing optimal 
overall runtime. 
 
1. Twisted-Pair Cable 

 
The problem considered here is a segment of a braided-

shield twisted-pair cable with copper conductors, shown in 
Fig. 1a. A planar source of 50-keV photons was incident 
approximately along the positive x-axis. The spatial mesh 
contained about a half-million linear hexahedral (hex8) ele-
ments, and the angular approximation used S8 level-
symmetric quadrature with P3 scattering, including a -
function down scatter correction. 10 linear photon and 10 
log electron energy groups were used, and cross sections 

were obtained from the CEPXS code [16]. Fig. 1b shows the 
conductor pair with insulating and shielding materials re-
moved. 

 
Fig. 1a. Charge-deposition distribution in braided-shield 

twisted-pair cable. 

 
 
Fig. 1b. Charge-deposition distribution in conductor pairs. 

 
Fig. 2 shows the scattering ratio for Cu as a function of 

electron energy, for either logarithmic or linear energy dif-
ferencing and for P3 or P7 scattering order. The scattering 
ratio depends upon the scattering order due to the -function 
correction, which subtracts the (L+1)st order moment from 
the total and self-scatter cross sections. The scattering ratio 
also depends upon the energy grid, due to the manner in 
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which the electron multi-group cross sections are computed 
[16].  

 
Fig. 2. Scattering ratio for electron transport in copper for 

different energy differencing and scattering order. 
 

 
 Fig. 3a. Convergence of the 5th electron group iterations for 

various TSA solvers. 
 

Fig. 3a compares the convergence of the iterations for 
the 5th electron group for various TSA methods, including 
unaccelerated source iteration (SI), SAAF with CFE spatial 
differencing, and First-Order (FO) TSA with DFE spatial 
differencing, with and without Incomplete Factorization (IF) 
acceleration of the coarse-level solves. Solver time versus 
electron energy group is shown in Fig. 3b for the various 
acceleration methods. For this test problem, FO P3 TSA 
with IF performs the best, in terms of both convergence rate 

and solver time. SAAF performed poorly for this test prob-
lem, being only slightly faster than unaccelerated SI. The 
timings were obtained by running on a TLCC2 machine, 
using 256 Intel Sandy Bridge 2.6 GHz cores. The conver-
gence tolerance for the fine-level sweeps was an L2 error 
norm of 10-5. 

 
Fig. 3b. Solve times for the electron groups for various TSA 

solvers. 
 
Table I lists the convergence metrics for the TSA solves 

and the combined solve time for the electron energy groups. 
Using P3 FO TSA with IF resulted in a factor of 13 speedup 
compared with unaccelerated SI. Convergence metrics for 
the coarse-level solves were somewhat optimized experi-
mentally for minimum solve time. For the FO DFE coarse 
solves, a fairly loose convergence tolerance of 0.01 was 
used, since the GMRES iterations are fairly expensive, 
providing minimal additional benefit for a tighter conver-
gence. The use of IF to accelerate the coarse-level solves 
results in faster convergence, so a lower maximum iteration 
count of 10 was used for these runs. A tighter convergence 
tolerance of 10-4 was used for the SAAF TSA run, since the 
CG iterations are relatively inexpensive. 

 
Table I. TSA convergence metrics and total solve time for 

electron groups for various acceleration methods. 
 

TSA 
method 

Coarse-level 
acceleration 

Coarse-level 
convergence 

tolerance 

Coarse-
level max 
iterations 

Total solve 
time of 
electron 

groups (s) 

none - - - 3530 
FO P1 none 0.01 100 653 
FO P1 IF 0.01 10 365 
FO P3 IF 0.01 10 272 

SAAF S2 none 10-4 1000 3160 
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2. Three-Region Cylinder 
 

The test problems in this section model transport in a 
three-region cylinder. For the first two tests, a plane-parallel 
source of 1-MeV electrons is incident on the side of the cyl-
inder. The first test, described in Sec. 2.A, has lead in all 
three material regions, to test the performance of the accel-
erators in uniform material. In the test described in Sec. 2.B, 
the middle material region is replaced by void, to test the 
performance of the accelerators for problems with non-
uniform material regions. The scalar flux in the inner- and 
outer-lead regions for the lead/void/lead test problem is 
shown in Fig. 4. 

 
 

Fig. 4. Scalar flux in lead regions for lead/void/lead test 
problem. 

 
Fig. 5. Scattering ratio for electron transport in lead for 20 
logarithmically-distributed energy groups and P5 scattering 

order. 
 

Fig. 5 shows the scattering ratio for lead for 20 loga-
rithmically-distributed electron groups, with a maximum 
energy of 1 MeV and P5 scattering. The third test problem in 
Sec. 3.C uses artificial cross sections with scattering ratio of 
unity, and compares the performance of the accelerators for 
P3 and P7 scattering, to investigate the performance of the 
accelerators with scattering anisotropy. 
 
A. Performance of TSA in uniform material 

 
In this section, a plane-parallel source of 1-MeV elec-

trons is incident on a uniform lead cylinder. S10 level-
symmetric quadrature is used with P5 scattering, with 20 
logarithmically-distributed energy groups. The figures com-
pare the convergence of the error norm vs. iteration and 
solver time vs. energy group. In each of the plots, the per-
formance of various TSA solvers is compared with unaccel-
erated source-iteration (SI) results and Krylov/GMRES 
solver results. 

Fig. 6a compares the error-norm convergence of four 
different TSA solvers using CFE spatial differencing, using 
either a SAAF or LS transport solve and using a CG itera-
tive solve. The TSA solves use either an S2 discrete-
ordinates solve or a P1 spherical harmonics solve. The re-
sults shown in Fig. 6a are for the first energy group (1 MeV). 
The SPD accelerators for this test problem are very effective 
at reducing the error for the first few iterations, then tend to 
stall and then appear to become more effective as the con-
vergence tolerance of 10-4 is approached. The iteration count 
is comparable to the Krylov/GMRES results for conver-
gence tolerance of 10-4. 

 
 

Fig. 6a. Error convergence of various CFE SPD TSA solv-
ers compared with SI and Krylov/GMRES solvers for uni-

form-material test problem. 
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Fig. 6b compares solver times of various SPD CFE 
TSA solvers with SI and GMRES solvers. The solver time 
includes the time for the sweep solves and the TSA solves. 
The Krylov/GMRES solver generally performs better than 
the SPD TSA solves, especially for the lower-energy elec-
tron groups. 

 
Fig. 6b. Solver time of various CFE SPD TSA solvers com-

pared with SI and Krylov/GMRES solvers for uniform-
material test problem. 

 
Fig. 7a. Error convergence of various DFE FO TSA solvers 
compared with SI and Krylov/GMRES solvers for uniform-

material test problem. 
 

Figs. 7a and 7b include performance information for the 
first-order (FO) DFE non-SPD TSA solvers, showing gen-
erally better performance than the SPD TSA solvers, both in 
convergence rate and solver times. The S4 FO TSA solver 

shows the best convergence behavior, while the P3 TSA 
solver using Incomplete Factorization has the best solver-
time performance. 

 
Fig. 7b. Solver time of various DFE FO TSA solvers com-

pared with SI and Krylov/GMRES solvers for uniform-
material test problem. 

 
 

Fig. 8a. Effect of material discontinuity on convergence of 
various solvers. 

 
B. Effect of Material Discontinuity 
 

In this section, the effect of material discontinuity on 
the effectiveness of the methods is investigated, by replac-
ing the middle material region by void, as shown in Fig. 4. 
Fig. 8a. compares convergence behavior for several solvers 
both for uniform lead and for the lead/void/lead configura-
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tion.  The Krylov/GMRES results are only slightly affected 
by the void region. The P3 TSA method is negatively affect-
ed by the introduction of the void region. The method per-
forms poorly for the first few iterations and then recovers 
with later iterations. Solver times are compared in Fig. 8b, 
showing an increase in global solver time of from 60 s for 
the uniform-material test problem to 143 s for the test prob-
lem including the void region, an increase in solver time by 
a factor of 2.4. 

 
Fig. 8b. Effect of material discontinuity on solver time for 

various solvers/preconditioners. 

 
Fig. 9a. Effectiveness of TSA preconditioning on the itera-

tive convergence of Krylov/GMRES algorithm for the 
lead/void/lead test problem. 

 
Fig. 9b. Comparison of solver times of various Krylov and 

TSA algorithms. 
 

Figs. 9a and 9b show the effectiveness of TSA precon-
ditioning applied to the Krylov/GMRES solver for the non-
uniform material test problem. Preconditioning the GMRES 
iterations with S4P3 TSA effectively reduces the iterative 
convergence, resulting in a moderate decrease in solver time. 
The TSA solves for the GMRES preconditioning are cur-
rently performed by application of the GMRES(m) algo-
rithm applied to the coarse-mesh linear problem. Other 
methods for performing this step in the computation are 
under investigation and may increase efficiency of the 
method. 

 
C. Effect of Scattering Order 
 

In this section, the effect of the scattering anisotropy on 
the effectiveness of the methods is investigated. Total and 
scattering cross sections for this test problem are shown in 
Table II. The scattering cross section is large, forward 
peaked, and highly scattering, analogous to electron 
transport. 

Table II. Cross Sections for Test Problem 
 

Cross 
Section 

Inner Middle Outer 

t 1.0x104 0 1.0x104 
0 1.0x104 0 1.0x104 
1 0.9x104 0 0.9x104 
2 0.8x104 0 0.8x104 
3 0.7x104 0 0.7x104 
4 0.6x104 0 0.6x104 
5 0.5x104 0 0.5x104 
6 0.4x104 0 0.4x104 
7 0.3x104 0 0.3x104 
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Fig. 10a. P3 scattering cross section for test problem. 

 

 
 

Fig. 10b. P7 scattering cross section for test problem. 
 

Results are compared for S16 level-symmetric quadra-
ture and either P3 or P7 scattering. Figs. 10a and 10b show 
the angular dependence of the P3 and P7 scattering cross 
sections, respectively. Fig. 11 compares the convergence for 
various solvers for P3 and P7 scattering, indicating that the 
scattering order has little effect on any of the solvers. Unac-
celerated SI diverges for this test problem. The SAAF TSA 
solver performs well for the first few iterations, then stalls 
for an error norm around 0.05, and again converges rapidly 
for later iterations as the convergence tolerance of 10-4 is 
approached. The Krylov/GMRES results are without TSA 
preconditioning and would be improved with the application 
of TSA. These results were obtained before TSA was im-
plemented into the Krylov solver. 

Fig. 12 shows the effectiveness of increasing the order 
of the TSA solver for increasing convergence rate, showing 
moderate improvement in going from P1 to P3 or S2 to S4 

TSA. Table III compares global solver times for the two test 
problems, using P3 and P7 scattering, respectively. The solv-
ers are essentially unaffected by the order of the scattering, 
with the P1 TSA solver showing the best performance. For 
the SAAF TSA solver, the cross section was modified 
slightly to a scattering ratio of 0.99, since the SAAF algo-
rithm is singular for pure scattering. 

 
 
 

 
 

Fig. 11. Comparison of the various solvers/preconditioners 
for P3 and P7 scattering. 

 

 
 

Fig. 12. Comparison of the effectiveness of TSA solvers of 
various orders. 
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Table III. Comparison of solver times for various solv-
ers/preconditioners. 

 
Acceleration 

method 
Solver time (s) 

P3 scattering P7 scattering 
none - - 

GMRES 110 140 
DFE P1 TSA 36 38 
DFE P3 TSA 52 58 
DFE S2 TSA 58 48 
DFE S4 TSA 130 110 

SAAF P1 TSA 
(c=0.99) 

180 190 

 
IV. CONCLUSIONS 
 

Accelerating/preconditioning of transport applications 
is a very rich and fascinating topic of study, due to the ex-
treme variability in transport applications, often containing 
highly streaming regions adjacent to highly scattering re-
gions, complex geometries, and a wide range of physics for 
different particle types and energies. In this work is present-
ed a flexible ML approach for accelerating the convergence 
of source-iterations for problems involving highly-scattering 
media. The method attempts to efficiently compute a correc-
tion term for the fine-level source-iteration solve by solving 
a coarse-level level transport equation and mapping the 
coarse-level correction term to the fine-level space. 

The method attempts to further accelerate the coarse-
level solves by making use of existing off-the-shelf AMG 
and IF packages. In the application presented here, IF effec-
tively reduced both iteration count and solve time when 
applied to the coarse-level linear system. AMG effectively 
reduced the iteration count, but due to the overhead cost was 
less effective at reducing solve time. Multi-grid methods 
tend to be most effective for elliptic problems, and the effi-
cient use of multi-grid methods for other problem types 
needs further investigation. 

The coarse-level solves can be either based on a 1st-
order DFE discretization using GMRES or an SPD discreti-
zation using CG. For the application presented here, the 
DFE discretization with a small number of GMRES itera-
tions (5-10) was the most effective at reducing solve time. 
The SPD CG solves were very fast but were generally less 
effective at reducing fine-level source-iteration count. This 
warrants further investigation; e.g. CG-based TSA methods 
may work well for problems with spatially smooth solu-
tions, where a CFE differencing provides an accurate simu-
lation. 

The flexibility of the method could also be a liability, 
since there are many options available for the coarse level 
solves and many additional knobs to turn for the IF and 

AMG preconditioning, and it is not always clear for a par-
ticular application how to set the many options. 

A GMRES iterative method has also been implemented 
that uses a parallel, sweep-based algorithm to build up a 
Krylov subspace, with TSA applied as a preconditioner to 
accelerate convergence of the GMRES iterations. Currently, 
the TSA solves use the GMRES(m) algorithm for the 
coarse-level solves. Other methods may provide better per-
formance, but this warrants further investigation. 

Finally, since the coarse-level linear system is built us-
ing Trilinos tools, Kokkos [17] capabilities should be effec-
tive for porting to next-generation processors, but that is for 
future investigations. 
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