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Abstract - In this paper, we develop a linear discontinuous finite element method (DFEM) for the spatial
approximation of the low-order quasidiffusion (QD) equations in 1D slab geometry. This discretization is
consistent with a linear DFEM discretization of the transport equation. It involves special interface conditions
at cell edges based the idea of QD boundary conditions. The proposed method is studied by means of test
problems formulated with the method of manufactured solutions. We present numerical results demonstrating
the performance of the proposed method.

I. INTRODUCTION

The quasidiffusion (QD) method is an efficient method for
solving the particle transport equation [1, 2]. It is formulated
as a system of high-order transport equation and low-order QD
(LOQD) equations. If the LOQD and high-order equations
are approximated with an algebraically consistent discretiza-
tion, then the QD method is a pure acceleration scheme, but
the LOQD and high-order equations are not required to be
discretized consistently. The method is stable and rapidly con-
verges in the case of independent discretization schemes [3].
Application of such a discretization can improve the accuracy
of the transport solution [3, 4], for example, if a high-order
accurate scheme for spatial discretization of the LOQD equa-
tions is used. From another viewpoint, if within the framework
of the QD method, one applies a transport discretization of
high-order accuracy, then the discretization of the LOQD equa-
tions should at least match the order of the transport scheme
to preserve the level of quality of the high-order transport
solution.

In this paper we consider the transport scheme defined
by the linear discontinuous finite element method (DFEM)
to which we apply the QD method. The DFEM transport
spatial approximation has 3rd order accuracy. Hence, to pre-
serve the high quality of the DFEM transport solution, the
spatial discretization of the LOQD equations should match
this order of accuracy. To achieve this, we develop a linear
DFEM for the LOQD equations. To formulate this method
we follow the way that is applied in derivation of independent
discretization schemes. The DFEM for the LOQD equations
thus obtained can lead to a scheme consistent with the DFEM
transport discretization, depending on the closure relations
and the definition of the nonlinear factors. We formulate two
different closures, one of which gives rise to a fully-consistent
DFEM.

The slab geometry transport problem with isotropic scat-
tering is given by

µ
∂ψ(x, µ)
∂x

+σt(x)ψ(x, µ) =
1
2
σs(x)

∫ 1

−1
ψ(x, µ′)+q(x, µ) , (1)

ψ(0, µ) = ψ+
in(µ) for µ > 0 , (2)

ψ(X, µ) = ψ−in(µ) for µ < 0 . (3)

The QD method for 1D slab geometry is defined by the high-
order transport equation [1]

µ
∂ψ(x, µ)
∂x

+ σtψ(x, µ) =
1
2
σsφ(x) + q(µ) , (4)

and the low-order QD (LOQD) equations for the moments of
the angular flux

dJ(x)
dx

+ σaφ(x) = q0 , (5a)

d
dx

(E(x)φ(x)) + σt J(x) = q1 , (5b)

where

φ =

∫ 1

−1
ψdµ , J =

∫ 1

−1
µψdµ , (6)

qn =

∫ 1

−1
µnq(µ)dµ . (7)

The system of the high-order and low-order equations is closed
by the QD, or Eddington, factor

E =

∫ 1
−1 µ

2ψdµ∫ 1
−1 ψdµ

. (8)

The boundary conditions for the LOQD equations (5) are
defined as follows [5]:

J(0) = C−0
(
φ(0) − φ+

in
)

+ J+
in , (9a)

J(X) = C+
X
(
φ(X) − φ−in

)
+ J−in , (9b)

where the boundary factors are

C−0 =

∫ 0
−1 µψdµ∫ 0
−1 ψdµ

∣∣∣∣∣∣∣∣
x=0

, C+
X =

∫ 1
0 µψdµ∫ 1
0 ψdµ

∣∣∣∣∣∣∣∣
x=X

, (10)

and

φ±in = ±

∫ ±1

0
ψ±indµ , J±in = ±

∫ ±1

0
µψ±indµ . (11)

To formulate the DFEM discretization of the LOQD equa-
tions we start from the differential moment equations in the
unclosed form for the zeroth, first and second moments of the
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angular flux [6]. Subsequently, QD closures will be defined
for the unclosed moment equations in a way that is consistent
with the DFEM transport approximation. That is, we formu-
late auxiliary conditions for the scalar flux and current at cell
interfaces assuming the discrete high-order transport solution
is discontinuous at cell edges. Note that the LOQD equations
(5) reduce to the P1 equations if the angular flux is a linear
function of µ. We derive the discretization scheme for the
LOQD equations that results in the linear DFEM for the diffu-
sion equation in that case [7]. This scheme can also be used
with different transport methods that will lead to independent
discretization schemes [3]. To demonstrate the performance of
our QD discretization, we present numerical results of several
analytic tests formulated with the method of manufactured
solutions (MMS).

The remainder of this paper is organized as follows. In
Sec. II, we derive discretization of the LOQD equations, for-
mulate cell-interface conditions, and define closure relations
and discontinuous QD factors. In Sec. III, we present numeri-
cal results. We conclude with a summary in Sec. IV.

II. APPROXIMATION OF EQUATIONS

1. Discretization of the LOQD Equations

To derive the spatial discretization of the LOQD equa-
tions, we consider the system of unclosed moment equations

dJ(x)
dx

+ σaφ(x) = q0 , (12)

dF(x)
dx

+ σt J(x) = q1 , (13)

where

F =

∫ 1

−1
µ2ψdµ . (14)

The DFEM expansion of the low-order solution in the i-th
spatial cell (xi−1 ≤ x ≤ xi) is given by

φi(x) =
∑

c=L,R

φc,iBc,i(x) , Ji(x) =
∑

c=L,R

Jc,iBc,i(x) , (15)

where the basis functions are

BL,i =
1

∆xi
(xi − x) , BR,i =

1
∆xi

(x − xi−1) , (16)

∆xi = xi − xi−1 . (17)

We integrate Eqs. (12) and (13) with Bc,i to get

− Jb(xi−1) +
1
2

(JL,i + JR,i) + σa,i
∆xi

6

(
2φL,i + φR,i

)
=

∆xi

6

(
2q0,L,i + q0,R,i

)
, (18a)

Jb(xi) −
1
2

(JL,i + JR,i) + σa,i
∆xi

6

(
φL,i + 2φR,i

)
=

∆xi

6

(
q0,L,i + 2q0,R,i

)
, (18b)

− Fb(xi−1) +
1

∆xi

∫ xi

xi−1

Fi(x)dx +σt,i
∆xi

6

(
2JL,i + JR,i

)
=

∆xi

6
(
2q1,L,i + q1,R,i

)
, (19a)

Fb(xi) −
1

∆xi

∫ xi

xi−1

Fi(x)dx + σt,i
∆xi

6

(
JL,i + 2JR,i

)
=

∆xi

6
(
q1,L,i + 2q1,R,i

)
, (19b)

where the superscript b indicates terms evaluated at cell inter-
faces. The closures for Eqs. (18) and (19) are formulated for
the terms with the second moment F. The integral term in Eqs.
(19) is cast as ∫ xi

xi−1

Fi(x)dx = Ēi

∫ xi

xi−1

φi(x)dx , (20)

where the cell-average QD (Eddington) factor is given by

Ēi =

∫ xi

xi−1
dx

∫ 1
−1 dµµ2ψi(x, µ)∫ xi

xi−1
dx

∫ 1
−1 dµψi(x, µ)

. (21)

Here ψi(x, µ) is the angular flux in the i-th cell defined by the
solution of the DFEM discretization of the high-order transport
equation.

To match the structure of the DFEM diffusion discretiza-
tion, the cell-interface terms in Eqs. (19) should be closed by
the scalar flux, and the QD factor is defined by the correspond-
ing upwinding angular fluxes [7]. The closure is defined as
follows:

Fb(xi) = Eb
i φ

b(xi) , (22)

where

Eb
i =

∫ 0
−1 µ

2ψi+1dµ +
∫ 1

0 µ2ψidµ∫ 0
−1 ψi+1dµ +

∫ 1
0 ψidµ

∣∣∣∣∣∣∣∣
x=xi

. (23)

Thus, the moment equations (19) with the closures (20) and
(22) lead to the discretized first-moment QD equations of the
form

− Eb
i−1φ

b(xi−1) +
1
2

Ēi(φL,i + φR,i) + σt,i
∆xi

6

(
2JL,i + JR,i

)
=

∆xi

6
(
2q1,L,i + q1,R,i

)
, (24a)

Eb
i φ

b(xi) −
1
2

Ēi(φL,i + φR,i) + σt,i
∆xi

6

(
JL,i + 2JR,i

)
=

∆xi

6
(
q1,L,i + 2q1,R,i

)
. (24b)

As a result, the LOQD equations discretized with DFEM are
given by Eqs. (18) and (24).



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

2. Cell-Interface Conditions

The DFEM low-order solution at the cell interface xi is
defined with partial currents from adjacent cells. Hence, the
current and scalar flux are given by

Jb(xi) = J+
i (xi) + J−i+1(xi) , (25)

φb(xi) =
J+

i (xi)
C+

i (xi)
+

J−i+1(xi)
C−i+1(xi)

, (26)

where

J±i (x) = ±

∫ ±1

0
µψi(x, µ)dµ (27)

are the partial currents and

C−i (x) =

∫ 0
−1 µψi(x, µ)dµ∫ 0
−1 ψi(x, µ)dµ

, (28a)

C+
i (x) =

∫ 1
0 µψi(x, µ)dµ∫ 1
0 ψi(x, µ)dµ

(28b)

are the interface QD factors defined by the high-order trans-
port solution. To derive conditions at the cell interfaces, we
apply the idea of the QD boundary conditions (9) [5]. First,
we formulate the cell-interface condition at xi defined by the
solution in the ith cell to obtain

Ji(xi) = C−i (xi)
(
φi(xi) −

J+
i (xi)

C+
i (xi)

)
+ J+

i (xi) . (29)

This condition is used to define the partial current from the
ith cell to the (i + 1)th cell. We now introduce a condition at
the left boundary of the (i + 1)th cell that provides the partial
current from the (i + 1)th cell to the ith cell. This interface
relation at xi is defined by the solution in the (i + 1)th cell and
has the form

Ji+1(xi) = C+
i+1(xi)

(
φi+1(xi) −

J−i+1(xi)
C−i+1(xi)

)
+ J−i+1(xi) . (30)

We use the interface condition (29) to get the outgoing partial
current from the ith cell

J+
i (xi) = γ+

i (xi)
(
Ji(xi) −C−i (xi)φi(xi)

)
, (31)

where

γ+
i (x) =

C+
i (x)

C+
i (x) −C−i (x)

. (32)

The boundary condition (30) leads to the outgoing partial
current from the (i + 1)th cell

J−i+1(xi) = γ−i+1(xi)
(
Ji+1(xi) −C+

i+1(xi)φi+1(xi)
)
, (33)

where

γ−i+1(x) =
C−i+1(x)

C−i+1(x) −C+
i+1(x)

. (34)

Substituting Eqs. (31) and (33) into Eqs. (25) and (26) we
obtain the cell-interface conditions

Jb(xi) = γ+
i (xi)

(
Ji(xi) −C−i (xi)φi(xi)

)
+ γ−i+1(xi)

(
Ji+1(xi) −C+

i+1(xi)φi+1(xi)
)
, (35)

φb(xi) =
1

C+
i (xi) −C−i (xi)

(
Ji(xi) −C−i (xi)φi(xi)

)
+

1
C−i+1(xi) −C+

i+1(xi)

(
Ji+1(xi) −C+

i+1(xi)φi+1(xi)
)
. (36)

We note that if ψ > 0 then C−i ≤ 0 and C+
i ≥ 0. The

case C−i = C+
i = 0 takes place if ψ = δ(µ). Thus γ±i are well

defined almost everywhere.

3. Definition of QD Factors Using DFEM Transport
Scheme

We now consider the DFEM transport scheme for dis-
cretizing the high-order transport equation. The DFEM angu-
lar flux spatial expansion is given by

ψm,i(x) =
∑

c=L,R

ψc,m,iBc,i(x) . (37)

We substutute Eq. (37) into Eqs. (21) and (23) to get the QD
factors for DFEM in the ith cell

Ēi =

∑
m µ

2
m

(
ψL,m,i + ψR,m,i

)
wm∑

m

(
ψL,m,i + ψR,m,i

)
wm

, (38)

Eb(xi) =

∑
m− µ

2
mψL,m,i+1wm +

∑
m+ µ2

mψR,m,iwm∑
m− ψL,m,i+1wm +

∑
m+ ψR,m,iwm

, (39)

where m± = {m : µm ≷ 0}. The interface QD factors are given
by

C±i (xi) =

∑
m± µmψR,m,iwm∑

m± ψR,m,iwm
, (40)

C±i+1(xi) =

∑
m± µmψL,m,i+1wm∑

m± ψL,m,i+1wm
. (41)

It can be shown that the definition of the QD grid functionals
(39) and (38) lead to a discretization of the LOQD equations
that is consistent with the DFEM discretization of the transport
equation.

4. Alternate Discretization

We now formulate an alternate DFEM method, which is
not fully consistent. In this case, we use linear approximation
of the second moment in the ith cell of the following form:

Fi(x) = EL,iφL,iBL(x) + ER,iφR,iBR(x). (42)

The first moment equations on the left and right are defined as
follows:

−EL,iφ
b(xi−1)+

1
2

(
EL,iφL,i + ER,iφR,i

)
+σt,i

∆xi

6
(
2JL,i + JR,i

)
=

∆xi

6
(
2q1,L,i + q1,R,i

)
, (43a)
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Fig. 1: Linear Solutions.

ER,iφ
b(xi) −

1
2

(
EL,iφL,i + ER,iφR,i

)
+ σt,i

∆xi

6
(
JL,i + 2JR,i

)
=

∆xi

6
(
q1,L,i + 2q1,R,i

)
. (43b)

The QD factors are defined as

EL,i =

∑
m wmµ

2
mψL,i∑

m wmψL,i
, (44)

ER,i =

∑
m wmµ

2
mψL,i∑

m wmψL,i
. (45)

The LOQD equations discretized with the alternate DFEM
method are given by Eqs. (18) and (43).

III. NUMERICAL EXPERIMENTS

1. Linear MMS solution

The manufactured solution is linear in space, and we
would expect that the linear DFEM discretization will obtain a
linear solution exactly. The manufactured angular flux solution
for this problem is taken to be

ψM(x, µ) =
3

64
(2 − x)

(
9 + 5µ2

)
,

for x ∈ [0, 1]. With this angular flux, the manufactured scalar
flux and QD factor are

φM(x) = 2 − x, EM(x) =
3
8
.

This MMS problem is solved with σt = 1, σs = 0.9 and
S 8 Gauss-Legendre quadrature. Figure 1 shows that the S 8
DFEM transport solution, from which the factors for the QD
methods are computed, and the QD solution all lie on the
linear solution φM(x). Thus, we see that solutions with the
fully-consistent and alternate methods both retain the linear
solution as expected. A calculation of the discrete L2-norm
of the difference between the numerical and manufactured
solutions was observed to be on the order of the machine
precision.

2. Analytic Tests

To evaluate convergence rates and errors of the developed
DFEM for the LOQD equations we use several analytic tests
formulated by the MMS.

The manufactured angular flux solution for this problem
is taken to be

ψM(x, µ) =
1
2
φM(x) +

3
2
µJM(x)

+
5
8

(
3µ2 − 1

)
(3EM(x) − 1) φM(x) , (46)

where the constants and angular dependence have been chosen
such that ∫ 1

−1
ψM(x, µ) dµ = φM(x) ,∫ 1

−1
µψM(x, µ) dµ = JM(x) ,∫ 1

−1
µ2 ψM(x, µ) dµ = EM(x)φM(x) .

We have used three values for φM(x), one for which the
solutions are zero at the boundaries, and two for which the
solutions are non-zero at the boundaries. In the former case,
we take the manufactured scalar flux

φM(x) = 8x2 (1 − x) (MMS 1)

while, in the latter case, we define

φM(x) = 5
[
1 + x2

(
1 − x2

)]
(MMS 2)

and

φM(x) = 5−tanh

30
(
x −

1
2

)2 . (MMS 3) .

In all three cases, we use

EM(x) =
1
3

1 +

(
x −

1
2

)2 . (47)

The manufactured current is determined from the first moment
equation

JM(x) = −
1
σt

d
dx

(
EM(x)φM(x)

)
. (48)

These MMS problems are all solved on x ∈ [0, 1] with
σt = 1, σs = 1/2, and S8 Gauss-Legendre quadrature, for
a sequence of meshes with k = 2n, n = 3, . . . , 12 mesh cells
having constant mesh spacing ∆x = 1/k.

The discrete L2-norm used to compute the error measure-
ments is

||φM − φ||L2 =

1
n

n∑
i=1

[
φ̄M,i − φ̄i

]2


1
2

,

where n is the number of mesh cells and where φ̄M,i and φ̄i are
the known and numerical cell-averaged scalar flux solutions,
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TABLE I: ||φM − φ||L2 for the Fully-Consistent Method.

k MMS 1 MMS 2 MMS 3

3 1.28×10−3 1.55×10−3 2.39×10−3

4 1.74×10−4 2.13×10−4 4.55×10−4

5 2.27×10−5 2.77×10−5 6.82×10−5

6 2.88×10−6 3.53×10−6 9.32×10−6

7 3.64×10−7 4.45×10−7 1.22×10−6

8 4.57×10−8 5.59×10−8 1.55×10−7

9 5.72×10−9 7.01×10−9 1.96×10−8

10 7.16×10−10 8.77×10−10 2.46×10−9

11 8.96×10−11 1.10×10−10 3.08×10−10

12 1.12×10−11 1.37×10−11 3.86×10−11

TABLE II: ||φM − φ||L2 for the Alternate method.

k MMS 1 MMS 2 MMS 3

3 1.15 5.66×10−2 9.46×10−2

4 2.63 3.09×10−2 8.00×10−2

5 1.93×10−1 1.60×10−2 4.38×10−2

6 5.04×10−2 8.12×10−3 2.25×10−2

7 1.91×10−2 4.09×10−3 1.14×10−2

8 8.32×10−3 2.05×10−3 5.69×10−3

9 3.86×10−3 1.03×10−3 2.85×10−3

10 1.85×10−3 5.14×10−4 1.43×10−3

11 9.07×10−4 2.57×10−4 7.13×10−4

12 4.44×10−4 1.29×10−4 3.57×10−4

respectively. The L2-norm of errors in the solution of the fully-
consistent method are listed in Table I and plotted in Figure
2. These results show that the developed fully-consistent
DFEM method matches the transport solution and is third-
order accurate, as anticipated. The norm of errors in the
solution of the low-order equations for the alternate method
are presented in Table II and in Figure 3, demonstrating that
the alternate method is first-order accurate.

3. Test on Convergence of Transport Iterations

We now consider a two-region transport problem with
vacuum boundary conditions. The material regions are defined
as follows:

1. 0 ≤ x ≤ 5, σt = 1, σs = 0.9, q = 1,

2. 5 ≤ x ≤ 10, σt = 2, σs = 0.1.

This test is used to illustrate how the QD method with the
fully-consistent DFEM scheme and the standard DFEM dis-
cretization of the P1 equations compare when used to acceler-
ate the source iteration applied to the DFEM transport scheme.
The convergence criteria is

‖ φ(s) − φ(s−1) ‖L2< ε ,

1 0 - 4 1 0 - 3 1 0 - 2 1 0 - 1
1 0 - 1 2

1 0 - 1 1
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L 2 E
rro

r

∆ x
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 M M S  3
 Ο(∆x 3 )

Fig. 2: Error in MMS Solutions for the Fully-Consistent
Method.
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Fig. 3: Error in MMS Solutions for the Alternate Method.

where s is the iteration index and ε = 10−8. In the case of no
acceleration, ε is scaled by

1 − ρ
ρ

,

where ρ is an estimate of the spectral radius. Table III shows
the number of iterations required to converge an S8 solution.
We see that the proposed fully-consistent QD method effi-
ciently accelerates transport iterations. It converges faster than
the P1SA method in problems with optically thin cells. In the
case of optically thick cells, the QD method requires just one
or two more iterations compared to the P1SA method.

IV. CONCLUSIONS

We have developed the DFEM discretization of the low-
order QD equations in 1D slab geometry. This scheme is fully



M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

TABLE III: Number of iterations.

h QD P1SA SI

0.01 3 4 4
0.05 4 8 11
0.10 7 10 25
0.50 12 12 200
1.00 13 13 872
2.00 12 12 3909
5.00 13 10 14690

10.00 11 8 21574
20.00 8 7 23751
50.00 7 6 24397

100.00 6 5 24645

consistent with the DFEM approximation of the transport equa-
tion. The obtained numerical results demonstrated expected
order of accuracy of the spatial discretization as well as rapid
convergence of iterations. The proposed DFEM scheme for
the LOQD equations can be used with various discretization
schemes for the high-order transport equation. We note that
another version of interface conditions can be derived on the
basis of the alternative QD boundary conditions [8]. The
LOQD DFEM scheme will be extended to multidimensional
geometries in a future work.
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