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Abstract - Simplified P3 (SP3) theory is widely used in light water reactor (LWR) analyses to partly 

capture the transport effect, especially for pin-by-pin core analysis with pin size homogenization. In this 

paper, a SP3 code named STELLA is developed and verified at Shanghai Nuclear Engineering Research 

and Design Institute (SNERDI). For SP3 method, neutron transport equation can be transformed into two 

coupled equations in the same mathematical form as diffusion equation. In this work, Semi-Analytic Nodal 

Method (SANM) is used to solve diffusion-like equation, due to its easy to handle multi-group problem. 

Whole core nodal boundary net current coupling is used to improve convergence stability in SANM, instead 

of solving two-node problem. Coarse-Mesh Finite Difference (CMFD) acceleration method is employed for 

0-th SP3 equation, which represents the neutron balance relationship. Three benchmarks are used to verify 

the SP3 code, STELLA. The first one is a self-defined one dimensional problem, which demonstrates SP3 

method is extremely accurate, due to no academic approximation in one dimensional for SP3. The second 

one is a two dimensional one-group problem cited from Larsen’s paper, which usually used to verify and 

prove the SP3 code correct and accurate. And the third one is modified from 2D C5G7-MOX benchmark, 

whose numerical results indicate that STELLA is accurate and efficient in pin size level, compared to 

diffusion model. 

 

I. INTRODUCTION 

 

The current generation light water reactor (LWR) core 

physics calculation methods are based on the neutron 

diffusion theory framework, two-group energy structure and 

the generalized equivalent homogenization theory. The 

potential deficiencies of current method are as follows. 

Firstly, two-group energy structure can’t deal with the 

energy spectrum interference effect very well, such as UO2 

and MOX fuel mixed loading problem. Secondly, two-step 

calculation method which decouples the assembly 

homogenization and the actual core calculation will induce 

the depletion historical effect, and usually micro-depletion 

method is used to improve at the core level in today’s 

industry nuclear design code. Finally, there exists quite 

large power distribution error in the regi`on with high 

leakage or strong absorption, such as core periphery or 

control rod neighboring fuel assemblies. As the fuel loading 

pattern of core design becomes more and more complex, it 

is necessary to improve the existing calculation methods to 

improve the calculation accuracy. 

Considering that diffusion calculation needs many 

approximation and ordinary transport calculation methods 

such as MOC or SN method usually takes more computing 

resources, isotropic simplified P3 (SP3) method is 

encouraged to be a middle choice for engineering practice 

use for whole core pin-by-pin calculation with pin size 

homogenization [1][2][3][4]. For SP3 method, neutron 

transport equation can be transformed into two coupled 

equations in the same mathematical form as diffusion 

equation. Therefore, with the advantage of the SP3 method, 

all the effective methods for solving the diffusion equation 

can also be used to deal with the SP3 equation. A next 

generation nuclear design code system for whole core pin-

by-pin calculation with pin homogenization is under 

development by Shanghai Nuclear Engineering Research 

and Design Institute (SNERDI). In this code system, core 

neutronics engine will intend to employ SP3 method, and 

will be coupled with sub-channel thermal-hydraulics code 

for pin size feedback calculation. 

In this paper, we will report the development and 

verification of the SP3 code, STELLA, at SNERDI. There 

are several numerical methods for solving diffusion-like 

equation. Nodal method is one of the best choices, 

specifically for its better performance and superior accuracy. 

Many kinds of nodal diffusion method have been developed, 

such as Nodal Expansion Method (NEM), the Analytic 

Nodal Method (ANM) and the Nodal Green’s Function 

Method (NGFM), et al. In this work, Semi-Analytic Nodal 

Method (SANM) will be used to solve diffusion-like 

equation, due to its easy to handle multi-group problem [5]. 

We use whole core nodal boundary net current coupling to 

improve convergence stability in SANM, instead of solving 

two-node problem, which doesn’t need nonlinear iterations. 

Coarse-Mesh Finite Difference (CMFD) acceleration 

method is employed for 0-th SP3 equation, which represents 

the neutron balance relationship. Three benchmarks will be 

used to verify the SP3 code, STELLA, in this paper. The 

first one is a self-defined one dimensional problem, which 

will demonstrate SP3 method is extremely accurate, due to 

no academic approximation in one dimensional for SP3. 

The second one is a two dimensional one-group problem 

cited from Larsen’s paper, which usually used to verify and 

prove the SP3 code correct and accurate. And the third one 
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is modified from 2D C5G7-MOX benchmark, whose 

numerical results indicate that STELLA is accurate and 

efficient in pin size level, compared to diffusion model. 

In Sec. 2, fundamental theory and detailed formulations 

are described. Numerical results are shown in Sec. 3, 

followed by conclusions in Sec. 4. 

 

II. CALCULATION MODEL 

 

1. SP3 Formulation 

 

The SP3 transport equation with isotropic scattering can 

be written as follow with the standard notation. 
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2. SANM Formulation 

 

In order to simplify the description, the following one-

dimensional sub-diffusion integral equation is given directly. 
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In this paper, the 2-order exponential functions and 2-

order polynomials are used for expansion of the transverse 

integral flux. The following is the expansion form functions. 
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For transverse leakage, the quadratic approximation 

method is adopted. 
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In this paper, we use residual weight method to 

construct the moment weight equation for solution of 

expansion coefficients of transverse integral flux. 

 

A. Zero-order moment equation 
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B. First-order moment equation 
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C. Second -order moment equation 
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D. Using transverse neutron flux expansion coefficients to 

represent the boundary net current 

 

 
1 2 3 4

1 2 3 4

2
( 3 )

2
( 3 )

k

g k k k k k k

R gu gu gu gu gu gu

k

k

g k k k k k k

L gu gu gu gu gu gu

k

D
J a a H a G a

u

D
J a a H a G a

u

    


    


 (14) 

 

Where 

 

 1

1

cosh( ) (sinh)

sinh( ) (sinh)

k k k

gu gu guk

gu k k

gu gu

m
H

m

 








 (15) 

The equations (8), (10), (12) and (14) are used to obtain 

the relationship between nodal average flux and expansion 

coefficients of transverse integral flux. 
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Based on the continuity condition of surface flux after 

multiplying the discontinuous factors, the following 

equation are established to represent the boundary net 

current coupling relationship of neighboring nodes. 
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Once the boundary net current is obtained, the nodal 

average flux can be calculated by using the nodal neutron 

balance equation. And then the neutron source term can be 

updated and the iterative process can be established. 

 

3. CMFD Acceleration for SP3 Formulation 

 

Coarse-Mesh Finite Difference (CMFD) is an effective 

acceleration convergence technique, which is widely used in 

the field of three dimensional diffusion calculation and 

heterogeneous transport calculation. In this paper, we have 

developed a CMFD acceleration method for the SP3 

equation with reference to recent research progress, and 

obtained a good acceleration effect. 
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Equation (20a) is the neutron diffusion equation, and 

equation (20b) is the 0-th equation of SP3. Comparing 

equations (20a) and (20b), the remaining items are identical 

except for the first item on the left side. Therefore, as long 

as keeping the first term of equation (20a) same as equation 

(20b), the flux and k-effective of equation (20a) can 

converge to the flux and k-effective of 0-th equation of SP3. 

Furthermore, it is found that the 2-th flux of SP3 equation is 

usually about 1 to 2 orders of magnitude smaller than the 0-

th flux. Therefore, the convergence of the 0-th flux of the 

SP3 equation is dominated by the solution of the SP3 

equation. In this paper, the CMFD equation is proposed to 

accelerate the convergence of 0-th flux of the SP3 equation, 

and this practice enhances the stability of the CMFD 

acceleration. The formula is as follows. 
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The nodal coupling correction factor is updated 

according Equation (22), in the iterative process of solving 

the SP3 SANM equations. The remaining process is 

identical to the conventional CMFD acceleration for the 

nodal diffusion method, which is omitted for simplicity. 
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4. Iteration process 

 

The STELLA code is written in the Fortran-95 standard. 

The source iterative method is used to solve the SP3 

equations. Firstly, given the initial source, 0-th SP3 equation 

with CMFD acceleration is solved, where the number of 

iterations should be fixed (usually 5 to 8). Secondly, using 

the 0-th flux to update the source term of 2-th SP3 equation, 

and then drive the SANM to solve the 2-th SP3 equation. 

Finally, taking both 0-th and 2-th flux contribution into 

account, update the k-effective and source term until the 

iterations are reached to convergence. 

 

III. NUMERICAL RESULTS 

 

1. Self-defined 1D problem 

 

A one dimensional 7-group benchmark problem is self-

defined. Fig. 1 shows the layout of this problem. Materials 

from the left side to right are H2O, UO2, 4.3% MOX, 7.0% 

MOX and 8.7% MOX. The cross-section parameters of 

materials are from the 2D C5G7-MOX benchmark [6]. The 

left side is the vacuum boundary condition, and the right 

side is the reflective boundary condition. The width for each 

material is 20cm shown in Fig. 1. Due to the large 

differences in energy spectrum among the various materials 

and the strong leakage, it’s a good case for code STELLA 

accuracy verification. 

 

 
Fig. 1 Layout of the self-defined 1D problem 

 

The reference solution including k-effective and power 

distribution of the problem is given by the Monte Carlo 

program MCMG [7]. In order to obtain a reliable reference 

results, we use 1000 cycles (including 50 inactive cycles) 

with 100000 sampling for each cycle. The result of 

STELLA is given by the SANM-SP3 module and the mesh 

is divided into 1cm per mesh. Table 1 shows the results 

comparison of the STELLA and MCMG. Since there is no 

academic approximation in one dimensional for SP3 theory, 

the difference should be very small. It can be seen from the 

table 1 that STELLA is very accurate, with k-effective error 

of only -1pcm and the maximum power error of -0.15%. 

 

2. Larsen’s one-group problem 
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Brantley and Larsen [1] have established a two 

dimensional one-group isotropic problem. Fig. 2 shows the 

layout of the problem, and Table 2 gives the cross-section 

parameters. Boundary condition and geometry size are also 

shown in the Fig. 2. 

 

Table 1 Results comparison between STELLA and MCMG 

 MCMG STELLA Err. 

keff 1.02156 1.02155 -1 pcm 
a 

P
o

w
er 

UO2 0.2588 0.2584 -0.15 % 

4.3%MOX 0.4544 0.4546 0.04 % 

7.0%MOX 1.2273 1.2272 -0.01 % 

8.7%MOX 2.0608 2.0600 -0.04 % 
a
 pcm is defined as percent-milli, i.e., 10

-5 

 

 
Fig. 2 layout of the one-group problem 

 

Table 2 Material parameters of the one-group problem 

 
Material 

M F 

t  1.0 1.5 

s  0.93 1.35 

f  0.0 0.1 

f  0.0 0.24 

 

The benchmark reference solution is established by the 

two dimensional SN transport code TWODANT, with the 

quadrature group S16 and the 150 × 150 meshes. In 

reference paper only provides k-effective and does not 

provide power distribution. In order to further evaluate the 

benchmark problem, a two dimensional MOC transport 

code PEACH [8] is used to provide the detailed power 

distribution; PEACH uses 150 × 150 meshes and 0.01 cm 

ray spacing, with 32 azimuthal angles and 2 optimal polar 

angles in an octant. STELLA P1 and SP3 model uses the 

same 10 × 10 meshes division. 

 

Table 3 K-effective comparison of Larsen’s problem 

Larsen’s paper This paper 

Model keff Err./pcm Model keff Err./pcm 

S16 0.806132 Reference 
STELLA 

-P1 
0.77689 35.6 

a
 

P1 0.776534 -2959.8 
STELLA 

-SP3 
0.79913 51.3

 b
 

SP3 0.798617 -751.5 PEACH 0.80616 2.8 
c 

a Err. = (STELLA-P1 – Larsen P1)*10
5
. 

b Err. = (STELLA-SP3 – Larsen SP3)*10
5
. 

c Err. = (PEACH – Larsen S16)*10
5
. 

 

 
Fig. 3 Comparsion of power distribution between PEACH-

MOC and STELLA SP3 

 

According Table 3, we can see that the corresponding 

deviations of STELLA-P1 and STELLA-SP3 are 35.6 pcm 

and 51.3 pcm respectively. We also find that the k-effective 

error is only 2.8 pcm between reference and PEACH-MOC, 

so the results from PEACH-MOC are reliable and the power 

distribution of PEACH-MOC is used as the benchmark 

reference. The maximum power error is 1.38% between 

PEACH-MOC and STELLA SP3 according Fig. 3. 

Compared with those reference results, the quite small 

deviation can prove that the theoretical derivation and code 

development are correct in this paper. 

 

3. 2D C5G7-MOX problem 

 

A 2D C5G7-MOX homogenized pin problem is 

generated from original C5G7 benchmark [6]. For the 

homogenized pin problem, the reference solution is obtained 

by a two dimensional MOC code PEACH, in which the 
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single pin is subdivided with 5 × 5 meshes, and the ray 

spacing is about 0.04 cm. Fig. 4 is the layout of this problem. 

STELLA has two modules of neutronics solution, one is 

diffusion calculation module with SANM, and the other is 

SP3 module introduced in Sec. 2. 

 

 
Fig. 4 layout of the 2D C5G7-MOX homogenized pin 

problem 

 

Table 4 K-effective difference and performance comparison 

 keff Err. /pcm Time /s CMFD 

PEACH 1.18716 reference   

STELLA 

-P1 
1.18426 -290 5.34 No 

STELLA 

-P1 
1.18426 -290 2.56 Yes 

STELLA 

-SP3 
1.18561 -155 39.73 No 

STELLA 

-SP3 
1.18561 -155 15.76 Yes 

 

Table 5 power distribution difference comparison between 

STELLA P1 and SP3 

 STELLA-P1 STELLA-SP3 

Assembly 

power err. 

/% 

Inner UO2 -0.18 0.05 

MOX 0.35 -0.06 

Outer UO2 -0.59 0.03 

Fuel pin 

power err. 

/% 

Max. 

power pin 
-0.29(2.368)

a 
0.14(2.368)

a 

Max. 3.18(0.660)
a 

-0.74(0.557)
a 

RMS 0.88 0.19 
a
 Number in parentheses stands for normalized power. 

 

 
Fig. 5 Pin power error (%) distribution of STELLA 

diffusion calculation module 

 

 
Fig. 6 Pin power error (%) distribution of STELLA SP3 

calculation module 

 

In this paper, the problem of the 2D C5G7-MOX 

homogenized pin problem is solved by using both STELLA 

P1 model and SP3 model. The single fuel pin mesh is not 

subdivided, and still uses original 1 × 1 mesh. Table 4 gives 

the results of the 2D C5G7-MOX benchmarks k-effective 

calculation. The results show k-effective difference and 

performance comparison. We can see that the STELLA P1 

model k-effective error is 290 pcm and the STELLA SP3 

model is 155 pcm. We also find that CMFD can 

significantly accelerate the convergence rate and greatly 

reduce the computation time without affecting the 

calculation results. Table 5 shows the power distribution 

difference comparison between STELLA P1 and SP3. For 

the assembly power error and fuel pin power error, the 

results of STELLA SP3 is more accurate compared with P1, 

with maximum error in assembly power of -0.06% and 

RMS error in pin power of 0.19%. 

Fig. 5 shows pin power error distribution of STELLA 

P1 module compared with reference. Fig. 6 gives pin power 

error distribution of STELLA SP3 module. The results of 

these two Fig.s show that the diffusion model has a large 

error at the interface of fuel-reflector and UO2-MOX fuel 

cell, and the SP3 model can obtain perfect results, which 

shows that the SP3 model is better than the diffusion model 

in accuracy. 
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IV. CONCLUSIONS 

 

In this paper, we report the development and 

verification of the SP3 code, STELLA, at SNERDI. We use 

SANM with CMFD acceleration to solve the diffusion-liked 

SP3 equations. Numerical results of several benchmarks 

demonstrate that STELLA SP3 module is accurate at pin-

by-pin level, compared to diffusion model. In the future, we 

will extend the code for whole core pin-by-pin calculation. 
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