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Abstract - This paper is devoted to the physics of a homogeneous tlaldystem with perfect remixing. The
one-group and multigroup gfiision is firstly adopted. The solution of the space integffei@ntial eigenvalue
equation is obtained by a fully analytical method. Both iplittation and time eigenvalues are determined,
and compared with the ones obtained for a standard solid$ystem. The same analytical method is then
employed for the solution of the, $roblem.

. INTRODUCTION assuming one energy group, as originally introduced in [5].
) _ Only one family of precursors is considered for simplicity
The molten-salt reactor is one of the concepts taken intenq the spherical geometry is adopted for consistency with

consideration within the Generation IV undertaking [1, 2].weinberg's proposal. The resulting eigenvalue problem for
Furthermore fluid-core reactors are being proposed for spgne multiplication cofficientk reads as:

cific applications, such as the production of radioisotopes
During the 50's Weinberg proposed the 3P system, which led . _» 1 1Bvis B
to the studies at ORNL on the Homogeneous Reactor Exper—DV O(r) —Za®(r) + E(l_ﬁ)vzf(p(r)Jr KV (@) =0, (1)

iment (HRE) [1, 3, 4]. At a first approach, the core can be . . .
assum(ed to)h[ave a s]pherical georggtry and the fluid to be hy1€re the symbat) denotes an integral on the spatial domain

mogeneous. If the core is not neutronically very large, oné’" VﬂuTeV'd Tlhe g:ietglls on the derivation of this equation
can assume that the motion of the fluid determines a 'perfect2" Be' our;h also Ier]I[ I H the solution to th
mixing’ situation, leading to a uniform distribution of tluke- €ing the problem Nomogeneous, the solution 1o the
layed neutron precursors inside the core. problem is obtained first by imposing a norr_nahzatlon of the
In a previous paper [5] the neutronic one-groufiuiion flux as(®) = OV, then the_ equation is re-written for_the un-
model of such a system was derived and investigated fully a"oWn U(r) = ro(r), obtaining a source-injectedfflision
alytically. In this model the neutron balance is describgd b €duation in slab geometry, where the peculiarity is the depe

an integro-dferential equation. Interesting aspects related tgi€nce Of the source on the eigenvalue:

the structure and properties of the set of multiplicatiqgear 2 1 1 (1=BWE 1 OBvE
values and corresponding eigenfuctions of the balanceaeper q ”2( ) - Fun(r) + —%Un(r) + = BrEs r=0.
tor were analysed. The theory of criticality has been also de r kn kn )

veloped and the results of the computation of some trarssientrhe indexn identifies the eigenfunction and the eigenvalue.

have been presented. , Equation (2) is provided with boundary conditions:
In this paper the main results presented in ref. [5] are

briefly recalled. Afterwards, it is shown that the multiplic Un(r=0)=U,(r =R) =0, (3)
tion eigenvalues are all real and the time eigenvalue set is

also analysed. Some results are presented highlighting thvehere the condition im = O results from the requirement for
differences between the two eigenvalue approaches. In thbe flux eigenfunctiom, to be regular in the sphere center.
following part of the work, the two-group model is discussed The solution for the flux is:

presenting the analytical formulation and some numerigal r . .

sults for the eigenvalue spectrum. The analytical methodol ®@,(r) = OpvEi (R;ln@nr) - 1) = Mn(RS_'n—(‘f”r) _ 1),

ogy used in the two-group problem can be applied to solve Dkn&3 \1 singnR) rsin€R)

the problem in § transport, using the second-order formu- . . (.4)
lation that allows to cast the problem into a set of coupleo‘r’yhere the parametef, depending on the eigenvalue, is de-
diffusion-like equations. ined as:

>, 1(@-ppxzs 1 1
II. EIGENVALUE PROBLEM WITH PERFECT én = k. D L2 BRUNNTS ()

REMIXING - ONE-GROUP DIFFUSION
o _ The eigenvalue condition is obtained by imposing the normal
1. Multiplication k-eigenvalue problem ization(®) = OV, giving explicitly:

The problem of perfect remixing of delayed neutron pre- 127Mp &0 R?
cursors is tackled, as a first approach, iffugiion theory tangnR) = 47MR(3 - £2R?) — 320V ®6)
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In [5] the resulting eigenvalues and corresponding eigesfu 2. Time a-eigenvalue problem

tions were discussed, focusing on th&eatience with respect ) ) ) -

to the standard ffusion problem (W|th0ut precursor remix- ) The solution of the EIgen\(alue problem for the identifica-
ing). However, the solution of equation (6) requires at fiost tion of the_a—mc_)des is also of interest for the prob_lem of per-
verify if the eigenvalues are real or complex. fect remixing since, again, the nature of the equation abthi
shown that, if a complex value for the eigenvakiexists, as for thek-eigenvalue problem, leading to the balance equa-
also its complex conjugaté is an eigenvalue of the problem. tion:

Therefore, itis possible to prove that kkkigenvalues are real 2 a Bvis _

with a procedure inspired by Carlslaw and Jaeger [7]. wePY d)(r)—Zacl)(r)—;cD(r)+(1—ﬁ)v2f<D(r)+ Y] (@) =0.

re-write Eq. (2) in a more compact form, for twofldirent . . . . (14)
eigenvalues, andym: The imposition of the condition on the integral of the flux,

together with the use of the auxiliary functith= r®, leads

" 1 to a diffusion problem as the previous one, apart for what
Up +{m - 12 Un +Cyr =0, @) concerns the dependence of thefiognts on the eigenvalue:
. 1 d2u OBvE
U, + (’}’m - F) Um+ Cyml =0, drnz(r) + nﬁun(r) + ﬁ; f r=0, (15)
wherec = 0/(1 - ). We then multiply each of the two Where 2 _
. ' ! 5 af 1 (1-B)vxs
equations by the other eigenfunction h=-75" 12 + . (16)
B 1 The solution in this case is, similarly to (4):
UnUp + (7” B F) UnUn + €ynlmf = 0, ®) y(r) = OBV (Rsin(nnr) 1) N (Rsin(nnr) 1)
" 1 n\tJ = 2 i T Ssing R )
UnUp, + ()’m - F) UmUn + CymUnr =0, Dri \rsin@mR) rsingnR) (17)
and also the eigenvalue condition has the same structure as
and subtract them: (6): R
, , 3 127Npmn
(UmUn - UnUm)"’(?’n _)’m) UmUn+C(7nUm—7mUn)l’ =0. tan(ﬂnR) = 47TNnR(3—77%R2)—377%®V. (18)

9)
Equation (9) is now integrated on the interval R); The first
term is proven to be null, due to the boundary conditions:

Although expression (6) and (18) are formally identicagith
difference lies in the dependence of thefioents on the
multiplication and time eigevalues. Therefore, it can be ex

R ; ) R R pected that the corresponding eigenfunctions will beedent
f (UmUn - UnUm)dr = UmUnl0 —f U, u,dr (while for standard solid fuel configurations they coingjde
0 R 0 (10)  and the relation betwednand« cannot be worked out ex-
- unu;n|§+f U,Undr =0, plicitly. . ,
0 Also in this case, the proof of the reality of the eigen-

values follows the lines drawn by Carlslaw and Jaeger: the

and the remaining terms are in the form: X X : >
equations corresponding to twdTdirent eigenvalues are con-

R R R sidered "

0 0 0 u’ U =0 (19)
Expression (11) can be further simplified by imposing the norwherec = gvz;©/D. The two equations are then combined
malization condition on the flux, such that: as in the previous proof and integrated on the intervaR[0;

R R
R R " "
oV UnUp = UpUp) dr + (70 = 7m) | UnUndr
Undr= [ Updr=— 12 f(mn nm fIn = Tim n-m
Jy umetr= J unar =22 (12) 0 0 (20)
and (11) becomes: +Cf(; r(Um—Up)dr=0.
R oV The first integral in expression (20) is null as shown in (10).
(yn=ym) UnUndr +c—]=0 (13)  The third term is null as well, due to the normalization cendi
an
0

tion imposed on bothJ,, andU,,. As a result the following
Condition (13) needs to be fulfilled for each couple of eigenexpression is to be fulfilled:

values; if we suppose, and y, are complex conjugates R

(ym = 1), also the corresponding eigenfunctions are com- (7n — nm)f UnUmdr = 0. (22)

plex conjugates, therefore the integral in (13) is stripthgi- 0

tive. Then, being the second term positive, equation (18) caAssumingz, andn, are complex conjugatey = ;7;), the

be fulfilled only if the diferencey, —yy, is null, i.e. the eigen- integral of the product of the two conjugate eigenfunctisns
values are all real. strictly positive and thereforg, = /..
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3. Comparison of k and « eigenvalues and eigenfuctions

In this section some numerical results on the eigenv
ues and eigenfunctions discussed above are presented.

TABLE Il. Eigenvaluesk anda for the perfect remixing prob-
lem, as compared to the eigenvalue of the corresponding) soli

6;_lfuel diffusion problem for the first 10 eigenfunctiori®£ 80

nuclear data for these evaluations and the following case )-

are taken from previous analyses on molten salt reactors per

formed in the frame of a European research project [8] and ) kn @n - 10°[s7]
are reported in Table I. One-group data are obtained by the remix _standard _ remix . standard
two-group set by a standard energy collapsing procedure in"=1 | 099945 100200| -34242-10°  1.2473 10"
the spherical domain considered. n=2 | 047526 047790| -0.068612  -0.068267
n=3 | 025377 025532 —-0.182632 —0.182253
TABLE I. Nuclear data in one-group and two-group adopted n=4 | 0.15358 015455 -0.342225  -0.341834
in the numerical evaluations. n=5 | 010187 010252 -0.547406  -0.547010
n=6 | 007217 007264 —0.798179 -0.797779
one-group two-group n=7 | 005368 005403 ~1.094545  -1.094144
g=1 g=1 g=2 n=8 | 0.04143 004170 —-1.436505 -1.436103
D [cm] | 898-10| 942.10% 815.10° n=10| 002677 002694 -2257208 -—2.256804
DI [cm™] | 2404-10°2 | 978-10* 556-10°2
Tgogi  [omT] - | 308-10% - _ S
T, [cm™] | 2.404-103 | 4.058-10% 556-103 TABLE |Ill. Coefficients ¢ and M appearing in
VEs [cm™] | 3797103 00 1222-102 k—eigenfunctions, compared to the corresponding coef-
v [cnys] 1.65-1C° 1.65- 10’ 55.10° ficients  and N in a—eigenfunctions. Same data and
B [pcm] 650 650 geometry as in the previous Table.
—1 —1 —2g1 —2g-1
Table Il reports the eigenvalues, evaluated for the first—— gno[;s;gse]ss '&[309%5(]34 Mn(ECOT80522]0 N [(i)rgsoslz]o
10 eigenfunctions, for both eigenvalue problems. The wlue | _5 | 19784842 m785133| 00093853 00044572
are compared to the correspondingnd« obtained for the n=3 | 01177789 a1178019] 00078048 00019799
standard solid fuel problem, according to the formulae: n=4 | 01570581 Q1570763 0.0072524 0011136
s n=5 | 01963330 (01963478 0.0069968 007127
ky = ret 1 - n=6 | 0.2356059 [@®356185 0.0068580 0004949
Za Hz(”_”) n=7 | 02748779 (748887 0.0067743 (0003636
R ) (22) n=8 | 03141493 (B141589| 0.0067200 0002784
an = (ko — 1vZa 1+ L2 (”_ﬂ) ' n=9 | 03534204 (8534289 00066827 (00002200
" a R n=10 | 0.3926912 (B926989|  0.0066561 (0001782

The dfect on the reactivity of the system associated to the pre-
cursor remixing is clearly visible as the multiplicatiomgen-
valuek is reduced, moving from a slightly supercritical con-
figuration to a subcritical one. Theft#rence is of course
present for all eigenvalue indexand is visible also in terms

1. Multiplication k-eigenvalue problem

1. EIGENVALUE PROBLEM WITH PERFECT
REMIXING - MULTIGROUP DIFFUSION

of time-eigenvaluesr,. The corresponding eigenfunctions, The physical problem under analysis is now generalized
differently from the standard case, are no longer the same: §lic|uding the energy dependence, to show a general approach
though the mathematical form of the two eigensolutionses th o the solution of the critical problem in multigroupfision,
same (see expressions (4) and (17)), thefments couples  hat could also be applied to transport problems in second-
(£, M) and @,N) are slightly diferent, as shown in Table Ill. " 5rqer form. The technique is based on a decoupling procedure
The dfect on the eigenfunction shape is shown graphically INeading to a set of uncoupledttiision-like equations [9]. We

Fig. 1. ] i , ) start from the two-group criticality problem assuming that
The potential use of these sets of eigenfunctions insteagssion only:

of the standard Helmholtz solutions has been discussed,in [5
showing how the asymptotic behavior of the system can be
more accurately described with tkesigenfunctions here ob-
tained, due to the correct evaluation of the fundamentalemod
of the system. Similar comments can be made as regards the
potential use of the-eigenfunctions in the presence of remix-
ing: the stable period of the system is here obtained as the
inverse of the first eigenvalue of the problem, while the adop
tion of standard Helmholtz eigenfunctions would resultin a Similarly to the one-group case, the integral of the thermal
infinite series of exponential terms. flux (@,) is set equal t®V. The system of equations can be

1
D1V2Dy(r) — Z1 @4 (r) + EVZfZ(l - B)D2(r)+
1vEeB
k V

(@) =0 (23)

D2V2<D2(r) - Zaz(bz(r) + 21_>2d)1(r) =0.
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written in matrix form: The criticality condition is again retrieved by imposing
1 vEp(l-pB) . the condition on the integral of the thermal flux:
v2 0]|o, L2 kD, ||o)\ |LOBYEr
0 Vf[op/ [Tz 1 |la/ K Dt G ALR(L R
D2 L3 92 92 9 4nR (30)
(24) Y2205, (R (R 1V
. . . . 2,1
and then diagonalised by using the eigenvedtbrsand|y,) —dn—>— (— coth@R) — — - ER) =0V
of the codficient matrixA: s s
Yi2(1l -
—iz M The solution of Eq. (30) allows to identify an infinite set of
A=y L1 lel , (25) discrete real solutions, and the numerical evaluation ef th
1-2

_— eigenvalues for a subset of harmonics is presented and dis-
D2 L% cussed in the following. However, the form of such equation

) ) 5 ) o does not allow a simple proof of the fact that all its solution
associated to the eigenvalugsand—¢?, and their adjoints  gre real (as the previous cases reported in Egs. (6) and (18))
<'//I| and <'l/§|. representing a bi-orthonormal basis set. Thejn addition, the approach to the reality proof as sketched in

two eigenvalues are of opposite sign if the condition the previous session does not provide useful results in this
Vs X case, leaving the mathematical question on the realityef th
k<(1-p) 3 % - k< (1-pBks (26)  eigenvalue set open. Thence, one cannot exclude the peesenc
r2 rl

of complex eigenvalues.
is verified, as it is for the problem under consideration. The ~ The question on the reality of the eigenvalues is espe-

unknown flux vector is then represented as: cially of interest if the time-eigenvalue are considereus it
has already been shown that in multigroufiuiion the pres-
_ @1\ _ ence of complexr values is possible if at least three energy
)= | > = fulpa) + T2 l2) 27) groups are considered, while two-group theory admits only

o _ _ o real time constants [10]. However, since the physical prob-
and it is substituted into Eqs. (24). The projection on thelem under consideration shows some peculiar features with
adjoint vectors leads to two uncoupledidsion equations for  respect to the problem for solid fuel systems, the questipn o
the components, and f: the presence of complex eigenvalues is legitimate, althoug

t easy to answer.
1vE1,80 1 no
2 2 - + -
Vf1+l9(k)f1+k D, < l|0>

V2f; + 92(K) f1 + (w7, (K) = 0

2. Time a-eigenvalue problem

The solution of the time eigenvalue problem in two-

1v580 (28) group is readily solved as described in the previous section
V21, — ¢2(K) fp + E% <¢5 | 1> - Once the problem has been recast in matrix form:
1
V2f, = 22 + (w3, (K) = O, 1 e Epl-p)
wherey;". is the j-th component of theth adjoint eigenvector vz 0lla Lf  vaD: D1 @y
o , : , 0 V2||0, R 1 o (o
(wﬂ. Each of the above equations can be solved in spherical D, 277D,
geometry with the same procedure as for the one-group case, @2 5 Ly vaDa
introducing the auxiliary functiond); = rf;. The imposition BrEiz
of the regularity of the fluxes in = 0 and boundary condi- +| D1 >
tions inr = Rallows to reconstruct the two-group fluxes as: 0
. ) (31)
®4(r) = ya.1(k) (001,09 Rind(r _ 1) the eigenvalues of the cfigient matrix, now depending an
’ #(K)?2  \rsind(kR can be identified, together with the corresponding eigenvec

—¥21(K)

t(Ky51(K) (Rsinhg(K)r 1 tors and formulae (27)-(30) are left unchanged, apart fien t
s(K2  \rsinhg(KR functional dependence of the parameters on the eigenvalue.
(29)  As mentioned before, the numerical solution of Eqg. (30) al-

Oor) = ¥ (k)g(k)‘ﬁil(k) Rsind(kr lows to find a set of discrete real eigenvalues, but the pialent
z L2 9(k)? r sind(K)R presence of complex solutions is still an open question.
L(K)Y5,(K) (Rsinhg(k)r In the following section numerical results for this eigen-
—2.2(K) g(k)’z (r Sinho(OR 1)’ value problem are provided, comparing thealues with the

corresponing results obtained in standard solid fuel gyste
wherey; ; is the j-th component of théth direct eigenvector In this latter case, the time eigenvalues can be obtained, fo

i) a valueB? = (nr/R)? of the buckling, solving the following
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characteristic equation: TABLE IV. Eigenvaluek anda for the perfect remixing prob-
lem in two-group diftusion theory, as compared to the eigen-
_i -B2- @ vZi2(1-5) value of the corresponding standard solid fuel problemtfer t
L2 viD1 D _ first 8 eigenfunctionsk = 80 cm).
! 2:1—>2 1 2 a - 0’ (32)
D2 L% " V2D2 kn an- 10¢ [S—l]
o ) ) ) ) remix  standard remix standard
providing thea eigenvalues, associated to the eigenfunction: 7y =1 [ 099945 100200 | —1.9832- 10% 7.2010- 10°%
sin(Bnr) n=2| 035831 (036030 -0.368818  -0.367650
o1(r) = n , n=3| 012946 013025 —-0.804279 -0.803529
r . = - -
1o sin(Bnr) (33) n=4 | 0.05339 005372 1.334132 1333644
¢o(r) = 5 . n=5| 0.02506 002522 -1.981410 -1.981075
Di(1+L2B3 +/(voZe)) T n=6 | 001307 001315 -2.756689  —2.756447
n=7 | 0.00740 000745 -3.664768 -3.664586
The values otv obtained in this case can be used as starting n- 8 | 0.00448 000451 _4707981 -4.707839

guess for the numerical procedure to identify the solutmfis

Eq. (30), supposing the the eigenvalue structure is prederv

from the standard case to the full remixing one. The method outlined here can be extended to any number
of energy groups, allowing the general solution of a multi-

3. Evaluation of eigenvalues and eigenfuctions in two-  group difusion problem for this peculiar kind of nuclear sys-

group theory tem. Moreover, the same approach can be fruitfully expdoite
for the solution of the corresponding transport problenisas
The evaluation of both the fundamental and higher-ordetone in the next section.

harmonics for the two-group problem is performed, adopting

the data in Table | an& = 80 cm. The eigenvaludsanda IV. EIGENVALUE PROBLEM WITH PERFECT

up to order 8 are reported in Table 1V, as compared to the re- REMIXING - TRANSPORT MODEL

sults of the standard filusion formulation for solid fuel. The

reactivity loss (reduction of the fundamenkatigenvalue) as- 1. One-dimensional slab model: Sy approximation

sociated to the remixing is coincident with the one-grolgeca . . . .
g g The eigenvalue problem discussed in the previous sec-

coherently with the energy collapsing process adoptedre ge .
erate the one-group data from the two-group cross sectioriiONS can be also approached in transport theory. If we adopt
monoenergetic transport model in one-dimensional slab ge

It can also be observed that, as expected, the higher-ord&r
k eigenvalues are much smaller than the fundamenttiéreli ometry of dimensiorH, the resulting equation to be solved
ently from the previous case, with well-known |mpl|cat|ons Is:
in thr—; physical descrlptlgr} of the system behaylor [11]. Ap(X, 1) s, )
addition, the &ect of remixing on higher-harmonics shows a = Zp(X, ) = > I e e(x, 1)
stronger damping with increasing order. The observation of 5 (1)
the time eigenvalues leads to similar comments. vairlll- 14 ,
In Figs. 2 and 3 the eigenfunctions of tk@anda prob- * f—ld (1) + 2kH f G (X 1))-
lem are compared to the corresponding harmonics of the stan- (35)
dard case, showing discrepancies in the order of the percefcattering is assumed isotropic, and the spatial integtako
The peaks in the ffierence visible in the graphs are associflux is identified with the same notation as before. One possi-
ated to the dferent localization of the zeros of the functions, ble approximation is based on discrete ordinates, sohang f
together with the definition of the fierence in relative terms. the angular fluxes in a finite set &f directions and approxi-
The same approach can be adopted for the solution of thé@ating the integrals over the variahleas quadrature sums:
corresponding adjoint problem:

do(X, un) _(Zs sz(l B)
D1V2d>{(r) — 2, @3 (r) + Z1_,®5(r) = 0 P —gx + Zp(X, tn) = > L ra— ZWnSO(X Hm)
VIS
— =1,...,N.
D203(0) - 5,050 + s pog) O EEP
1vE«f . ) ] ) ) (36)
Y (®7) =0, As customarily done, the directions and weights are taken ac

cording to the Gauss-Legendre quadrature set.
using the eigenvalues and eigenvectors of the transposed co The choice of | allows to adopt the methodology de-
efficient matrix. The evaluation of the neutron importance isscribed above for multigroup. In fact, system (36) can be re-
needed when adopting a perturbative approach for the studyrranged by combining the equations for opposite direstion
of the dfect of material modifications in this kind of system, (summing and subtracting them), obtaining a setg? cou-
as was done in [12]. pled even-parity second-order equations. As an exampe, th
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S, model becomes:

2 92
i 2D (1-B)vi
El 8X21 +[-Z+Z W + —————wp | Dy
1-ppvZ NG
+(ZSW2 + ﬂWQ(DZ + ﬁV—f =0
k k
2 92
oD 1-ppx
%0722 + (Zswy + ﬂwl)q)l
(1 - betgvxs BvEZi®
+|-Z+ oo + — W Oy + ——— =0,

(37)
where the integral of the flux has been set®d as before,
uz = —ug andu, = —u4 and the new unknowns are:

(Dl = SD(X,N].) + SD(X7 _/Jl)y

@3 = ¢(X, p2) + (X, —p12). (38)

The imposition of the boundary conditions (39) provides a
solution for the cofficientsA andC, still dependent on thke
eigenvalue, and the requirement on the flux integral gives th
criticality condition:

1af1+ Y10 H
,ﬂ2
1/12151 + ‘/’5,262
§2

2 .
(W +WoP12) L—9Asm(ﬁ%) -

+(Wy + Woss) EC sinh(g%) + H} (44)

- OH

In Table V the first eight eigenvalues of the problem are re-

System (37) is clearly in the same form as the two-group prolyorted and compared to the solution of the transport problem

lem (24), apart from the ffierent positioning of th& eigen-
value, and it can be solved with the same approach.fi&rdi
ence arises concerning the imposition of the boundary eon

tions: if we suppose the system symmetric around zero an

impose Mark boundary conditions on the discrete ordinate
fluxes [13], we obtain

1% +ZCD1(X= H/2)=0,
dX etz 39
dD, (39)
Ho—— +X0y(x=H/2) =0,
dX lx=h/2

together with the request for the solution to be even. If we in
troduce a fictitious two-group fiusion codicientD; = ,4?/2,
system (37) is recast in matrix form as:

5 oA

0 V2
where the cofficient matrix and source vector now are:
w (X N (1-BvEs (1-pBvzs
D\ w k

+ X

1 1
W b 1-Bpvz
_1 [ +¢

D,
D,

+A(D1

@,

141

. (40)

W
5—2 s+

|
)

A= W
D,
OBVE;

(1-B)vZs
52 (ZS * Wy s k

K ) |
)

(41)

{1

Py (42)

D
(O] ijf

D>

in absence of the perfect remixing, obtained with an analo-

goous analytical procedure. The material data adopted are th

Jame as in all previous cases (see Tabl¢ & 80 cm). The
gigenfunction shapes are then compared in Fig. 4 for the first
four harmonics. Th& values obtained show similar trends re-
garding the reactivity reduction as in previous cases, had t
spatial modification of the eigenfunction is again in thegan

of the percent.

The problem here presented provides a significant exam-
ple of how the methodologies developed in the frame fitili
sion theory can be applied tq$ransport to obtain analytical
solutions. However, the numerical results are not readitg-c
parable to the previous ones, due to thiedent assumption
regarding the geometry, since the transport problem inrsphe
ical geometry would not allow such a simple analogy with
diffusion.

A possible solution in order to address also spherical ge-
ometry in transport theory is to transform the sphericaigra
port problem into a planar case with a standard technique
[14] and then apply the method here described. Numerical
results in spherical geometry based on this approach will be
presented in a future work.

TABLE V. Eigenvalue for the perfect remixing problem in
slab geometry solved iny&pproximation, as compared to the
eigenvalue of the corresponding standard solid fuel praple

Using the same symbols as before for the eigevalues arf@r the first 8 eigenfunctions{ = 80 cm).

eigenvectors of matriA and solving for the auxiliary func-
tions f; and f,, the solution for the even-parity fluxes are ob-
tained as:

@;(x) = Acos(x) + C coshgx)
w_{,lfl + w12€2 1#2151 + (ﬁz’ng
B 92 + g2
D,(X) = A2 COSEX) + Cyrp2 COShEX)
Y16+ YLt Yo .01+ Y5500
2 02 + §2 .

(43)

1 22

remix  standard
n=1| 103484 103589
n=2| 027862 028028
n=3| 011675 011749
n=4 | 006454 006496
n=5| 004169 004196
n=6 | 002962 002981
n=7| 002239 002254
n=8| 001766 001777
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V. CONCLUSIONS

The physics of a fluid fuel system with perfect remixing
is studied in the one-group and multigrougfdsion model.
The analysis is focused on the determination of the mudtpli

tion and time eigenvalues and corresponding eigenfunstion

The equation describing the system second-ord&srential

and integral in space. The results are compared with the
ones obtained for a standard solid fuel system. The analyjo

ical methods developed infélision theory are then applied

to discrete ordinates transport. The analysis allows ta gai

a physical insight into the peculiar characteristics of terol
salt fast reactors. In future work the analytical approadh w

be extended to other transport models and the nature of the

eigenvalue spectrum will be investigated.
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) ) ) ) ) Fig. 2. Graph of thé&-eigenfunctiond (left axis, solid lines -
Fig. 1. Graph of thd(-e_|genfunct|oncb(k) in one-group dif-  yaq: fast flux, blue: thermal flux) and relativeffigirence with
fusion with perfect remixing and absoluteférence with re- respect to thé-eigenfunction of dfusion without remixing
spect to ther-eigenfunctiond for the first four harmonics. ¢ (right axis, dashed lines - red: fast flux, blue: thermal flux)
Material data from Table IH = 80 cm. for the first four harmonics. Same data and geometry as in

previous graph.
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Fig. 3. Graph of thex-eigenfunctiond (left axis, solid lines - xfemd

red: fast flux, blue: thermal flux) and relativefidrence with

respect to ther-eigenfunction of diusion without remixing ~ Fig. 4. Graph of thé-eigenfunction evaluated iy Sipproxi-

¢ (right axis, dashed lines - red: fast flux, blue: thermal flux)mation of transport with full remixing (left axis) and reis

for the first four harmonics. Same data and geometry as iffifference with respect to theeigenfunction of the standard

previous graphs. solid fuel case (right axis) for the first four harmoniées £ 80
cm).



