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Abstract - This paper is devoted to the physics of a homogeneous fluid-fuel system with perfect remixing. The
one-group and multigroup diffusion is firstly adopted. The solution of the space integro-differential eigenvalue
equation is obtained by a fully analytical method. Both multiplication and time eigenvalues are determined,
and compared with the ones obtained for a standard solid fuelsystem. The same analytical method is then
employed for the solution of the SN problem.

I. INTRODUCTION

The molten-salt reactor is one of the concepts taken into
consideration within the Generation IV undertaking [1, 2].
Furthermore fluid-core reactors are being proposed for spe-
cific applications, such as the production of radioisotopes.
During the 50’s Weinberg proposed the 3P system, which led
to the studies at ORNL on the Homogeneous Reactor Exper-
iment (HRE) [1, 3, 4]. At a first approach, the core can be
assumed to have a spherical geometry and the fluid to be ho-
mogeneous. If the core is not neutronically very large, one
can assume that the motion of the fluid determines a ’perfect
mixing’ situation, leading to a uniform distribution of thede-
layed neutron precursors inside the core.

In a previous paper [5] the neutronic one-group diffusion
model of such a system was derived and investigated fully an-
alytically. In this model the neutron balance is described by
an integro-differential equation. Interesting aspects related to
the structure and properties of the set of multiplication eigen-
values and corresponding eigenfuctions of the balance opera-
tor were analysed. The theory of criticality has been also de-
veloped and the results of the computation of some transients
have been presented.

In this paper the main results presented in ref. [5] are
briefly recalled. Afterwards, it is shown that the multiplica-
tion eigenvalues are all real and the time eigenvalue set is
also analysed. Some results are presented highlighting the
differences between the two eigenvalue approaches. In the
following part of the work, the two-group model is discussed,
presenting the analytical formulation and some numerical re-
sults for the eigenvalue spectrum. The analytical methodol-
ogy used in the two-group problem can be applied to solve
the problem in SN transport, using the second-order formu-
lation that allows to cast the problem into a set of coupled
diffusion-like equations.

II. EIGENVALUE PROBLEM WITH PERFECT
REMIXING - ONE-GROUP DIFFUSION

1. Multiplication k-eigenvalue problem

The problem of perfect remixing of delayed neutron pre-
cursors is tackled, as a first approach, in diffusion theory

assuming one energy group, as originally introduced in [5].
Only one family of precursors is considered for simplicity
and the spherical geometry is adopted for consistency with
Weinberg’s proposal. The resulting eigenvalue problem for
the multiplication coefficientk reads as:

D∇2Φ(r)−ΣaΦ(r)+
1
k

(1−β)νΣ fΦ(r)+
1
k

βνΣ f

V
〈Φ〉 = 0, (1)

where the symbol〈·〉 denotes an integral on the spatial domain
of volumeV. The details on the derivation of this equation
can be found also in [6].

Being the problem homogeneous, the solution to the
problem is obtained first by imposing a normalization of the
flux as〈Φ〉 = ΘV, then the equation is re-written for the un-
known U(r) = rΦ(r), obtaining a source-injected diffusion
equation in slab geometry, where the peculiarity is the depen-
dence of the source on the eigenvalue:

d2Un(r)
dr2

−
1
L2

Un(r) +
1
kn

(1− β)νΣ f

D
Un(r) +

1
kn

ΘβνΣ f

D
r = 0.

(2)
The indexn identifies the eigenfunction and the eigenvalue.
Equation (2) is provided with boundary conditions:

Un(r = 0) = Un(r = R) = 0, (3)

where the condition inr = 0 results from the requirement for
the flux eigenfunctionΦn to be regular in the sphere center.

The solution for the flux is:

Φn(r) =
ΘβνΣ f

Dknξ2
n

(

Rsin(ξnr)
r sin(ξnR)

− 1

)

≡ Mn

(

Rsin(ξnr)
r sin(ξnR)

− 1

)

,

(4)
where the parameterξ, depending on the eigenvalue, is de-
fined as:

ξ2
n =

1
kn

(1− β)νΣ f

D
−

1
L2
= γn −

1
L2
. (5)

The eigenvalue condition is obtained by imposing the normal-
ization〈Φ〉 = ΘV, giving explicitly:

tan(ξnR) =
12πMnξnR2

4πMnR
(

3− ξ2
nR2

)

− 3ξ2
nΘV

. (6)
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In [5] the resulting eigenvalues and corresponding eigenfunc-
tions were discussed, focusing on the difference with respect
to the standard diffusion problem (without precursor remix-
ing). However, the solution of equation (6) requires at firstto
verify if the eigenvalues are real or complex.

Observing the eigenvalue equation (6) it can be easily
shown that, if a complex value for the eigenvaluek exists,
also its complex conjugatek† is an eigenvalue of the problem.
Therefore, it is possible to prove that allk eigenvalues are real
with a procedure inspired by Carlslaw and Jaeger [7]. We
re-write Eq. (2) in a more compact form, for two different
eigenvaluesγn andγm:

U
′′

n +

(

γn −
1
L2

)

Un + cγnr = 0,

U
′′

m +

(

γm −
1
L2

)

Um + cγmr = 0,
(7)

wherec = βΘ/(1 − β). We then multiply each of the two
equations by the other eigenfunction

UmU
′′

n +

(

γn −
1
L2

)

UmUn + cγnUmr = 0,

UnU
′′

m +

(

γm −
1
L2

)

UmUn + cγmUnr = 0,
(8)

and subtract them:
(

UmU
′′

n − UnU
′′

m

)

+ (γn − γm) UmUn+ c (γnUm − γmUn) r = 0.
(9)

Equation (9) is now integrated on the interval [0;R]. The first
term is proven to be null, due to the boundary conditions:

∫ R

0

(

UmU
′′

n − UnU
′′

m

)

dr = UmU
′

n

∣

∣

∣

R

0
−

∫ R

0
U
′

mU
′

ndr

− UnU
′

m

∣

∣

∣

R

0
+

∫ R

0
U
′

mU
′

ndr = 0,
(10)

and the remaining terms are in the form:

(γn − γm)
∫ R

0
UmUndr + cγn

∫ R

0
Umdr − cγm

∫ R

0
Undr = 0.

(11)
Expression (11) can be further simplified by imposing the nor-
malization condition on the flux, such that:

∫ R

0
Umdr =

∫ R

0
Undr =

ΘV
4π

, (12)

and (11) becomes:

(γn − γm)

(∫ R

0
UmUndr + c

ΘV
4π

)

= 0. (13)

Condition (13) needs to be fulfilled for each couple of eigen-
values; if we supposeγn and γm are complex conjugates
(γm = γ

†
n), also the corresponding eigenfunctions are com-

plex conjugates, therefore the integral in (13) is strictlyposi-
tive. Then, being the second term positive, equation (13) can
be fulfilled only if the differenceγn− γ

†
n is null, i.e. the eigen-

values are all real.

2. Time α-eigenvalue problem

The solution of the eigenvalue problem for the identifica-
tion of theα-modes is also of interest for the problem of per-
fect remixing since, again, the nature of the equation obtained
is different from usual cases. We adopt the same hypotheses
as for thek-eigenvalue problem, leading to the balance equa-
tion:

D∇2Φ(r)−ΣaΦ(r)−
α

v

Φ(r)+ (1−β)νΣ fΦ(r)+
βνΣ f

V
〈Φ〉 = 0.

(14)
The imposition of the condition on the integral of the flux,
together with the use of the auxiliary functionU = rΦ, leads
to a diffusion problem as the previous one, apart for what
concerns the dependence of the coefficients on the eigenvalue:

d2Un(r)
dr2

+ η2
nUn(r) +

ΘβνΣ f

D
r = 0, (15)

where

η2
n = −

α2
n

vD
−

1
L2
+

(1− β)νΣ f

D
. (16)

The solution in this case is, similarly to (4):

Φn(r) =
ΘβνΣ f

Dη2
n

(

Rsin(ηnr)
r sin(ηnR)

− 1

)

= Nn

(

Rsin(ηnr)
r sin(ηnR)

− 1

)

,

(17)
and also the eigenvalue condition has the same structure as
(6):

tan(ηnR) =
12πNnηnR2

4πNnR
(

3− η2
nR2

)

− 3η2
nΘV

. (18)

Although expression (6) and (18) are formally identical, their
difference lies in the dependence of the coefficients on the
multiplication and time eigevalues. Therefore, it can be ex-
pected that the corresponding eigenfunctions will be different
(while for standard solid fuel configurations they coincide),
and the relation betweenk andα cannot be worked out ex-
plicitly.

Also in this case, the proof of the reality of the eigen-
values follows the lines drawn by Carlslaw and Jaeger: the
equations corresponding to two different eigenvalues are con-
sidered

U
′′

n + ηnUn + cr = 0,
U
′′

m + ηmUm + cr = 0,
(19)

wherec = βνΣ fΘ/D. The two equations are then combined
as in the previous proof and integrated on the interval [0;R]:

∫ R

0

(

UmU
′′

n − UnU
′′

m

)

dr + (ηn − ηm)
∫ R

0
UnUmdr

+c
∫ R

0
r (Um − Un) dr = 0.

(20)

The first integral in expression (20) is null as shown in (10).
The third term is null as well, due to the normalization condi-
tion imposed on bothUn andUm. As a result the following
expression is to be fulfilled:

(ηn − ηm)
∫ R

0
UnUmdr = 0. (21)

Assumingηn andηm are complex conjugate (ηm = η
†
n), the

integral of the product of the two conjugate eigenfunctionsis
strictly positive and thereforeηn = η

†
n.
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3. Comparison of k and α eigenvalues and eigenfuctions

In this section some numerical results on the eigenval-
ues and eigenfunctions discussed above are presented. The
nuclear data for these evaluations and the following cases
are taken from previous analyses on molten salt reactors per-
formed in the frame of a European research project [8] and
are reported in Table I. One-group data are obtained by the
two-group set by a standard energy collapsing procedure in
the spherical domain considered.

TABLE I. Nuclear data in one-group and two-group adopted
in the numerical evaluations.

one-group two-group
g = 1 g = 1 g = 2

Σt [cm−1] 3.711· 10−1 3.54 · 10−1 4.09 · 10−1

D [cm] 8.98 · 10−1 9.42 · 10−1 8.15 · 10−1

Σa [cm−1] 2.404· 10−3 9.78 · 10−4 5.56 · 10−3

Σg→g+1 [cm−1] − 3.08 · 10−3 −

Σr [cm−1] 2.404· 10−3 4.058· 10−3 5.56 · 10−3

νΣ f [cm−1] 3.797· 10−3 0.0 1.222· 10−2

v [cm/s] 1.65 · 106 1.65 · 107 5.5 · 105

β [pcm] 650 650

Table II reports the eigenvalues, evaluated for the first
10 eigenfunctions, for both eigenvalue problems. The values
are compared to the correspondingk andα obtained for the
standard solid fuel problem, according to the formulae:

kn =
νΣ f

Σa

1

1+L2

(nπ
R

)2 ,

αn = (kn − 1)vΣa

(

1+ L2
(nπ

R

)2
)

.

(22)

The effect on the reactivity of the system associated to the pre-
cursor remixing is clearly visible as the multiplication eigen-
valuek is reduced, moving from a slightly supercritical con-
figuration to a subcritical one. The difference is of course
present for all eigenvalue indexn and is visible also in terms
of time-eigenvaluesαn. The corresponding eigenfunctions,
differently from the standard case, are no longer the same: al-
though the mathematical form of the two eigensolutions is the
same (see expressions (4) and (17)), the coefficients couples
(ξ, M) and (η,N) are slightly different, as shown in Table III.
The effect on the eigenfunction shape is shown graphically in
Fig. 1.

The potential use of these sets of eigenfunctions instead
of the standard Helmholtz solutions has been discussed in [5],
showing how the asymptotic behavior of the system can be
more accurately described with thek-eigenfunctions here ob-
tained, due to the correct evaluation of the fundamental mode
of the system. Similar comments can be made as regards the
potential use of theα-eigenfunctions in the presence of remix-
ing: the stable period of the system is here obtained as the
inverse of the first eigenvalue of the problem, while the adop-
tion of standard Helmholtz eigenfunctions would result in an
infinite series of exponential terms.

TABLE II. Eigenvaluesk andα for the perfect remixing prob-
lem, as compared to the eigenvalue of the corresponding solid
fuel diffusion problem for the first 10 eigenfunctions (R= 80
cm).

kn αn · 105 [s−1]
remix standard remix standard

n = 1 0.99945 1.00200 −3.4242· 10−5 1.2473· 10−4

n = 2 0.47526 0.47790 −0.068612 −0.068267
n = 3 0.25377 0.25532 −0.182632 −0.182253
n = 4 0.15358 0.15455 −0.342225 −0.341834
n = 5 0.10187 0.10252 −0.547406 −0.547010
n = 6 0.07217 0.07264 −0.798179 −0.797779
n = 7 0.05368 0.05403 −1.094545 −1.094144
n = 8 0.04143 0.04170 −1.436505 −1.436103
n = 9 0.03292 0.03313 −1.824059 −1.823656
n = 10 0.02677 0.02694 −2.257208 −2.256804

TABLE III. Coefficients ξ and M appearing in
k−eigenfunctions, compared to the corresponding coef-
ficients η and N in α−eigenfunctions. Same data and
geometry as in the previous Table.

ξn [cm−1] ηn [cm−1] Mn [cm−2s−1] Nn [cm−2s−1]
n = 1 0.0390563 0.0390564 0.0180220 0.0180120
n = 2 0.0784842 0.0785133 0.0093853 0.0044572
n = 3 0.1177789 0.1178019 0.0078048 0.0019799
n = 4 0.1570581 0.1570763 0.0072524 0.0011136
n = 5 0.1963330 0.1963478 0.0069968 0.0007127
n = 6 0.2356059 0.2356185 0.0068580 0.0004949
n = 7 0.2748779 0.2748887 0.0067743 0.0003636
n = 8 0.3141493 0.3141589 0.0067200 0.0002784
n = 9 0.3534204 0.3534289 0.0066827 0.0002200
n = 10 0.3926912 0.3926989 0.0066561 0.0001782

III. EIGENVALUE PROBLEM WITH PERFECT
REMIXING - MULTIGROUP DIFFUSION

1. Multiplication k-eigenvalue problem

The physical problem under analysis is now generalized
including the energy dependence, to show a general approach
for the solution of the critical problem in multigroup diffusion,
that could also be applied to transport problems in second-
order form. The technique is based on a decoupling procedure
leading to a set of uncoupled diffusion-like equations [9]. We
start from the two-group criticality problem assuming thermal
fission only:











































D1∇
2Φ1(r) − Σr1Φ1(r) +

1
k
νΣ f 2(1− β)Φ2(r)+

1
k

νΣ f β

V
〈Φ2〉 = 0

D2∇
2Φ2(r) − Σa2Φ2(r) + Σ1→2Φ1(r) = 0.

(23)

Similarly to the one-group case, the integral of the thermal
flux 〈Φ2〉 is set equal toΘV. The system of equations can be



M&C 2017 - International Conference on Mathematics& Computational Methods Applied to Nuclear Science& Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

written in matrix form:

[

∇2 0
0 ∇2

]
∣

∣

∣

∣

∣

∣

Φ1

Φ2

〉

+































−
1

L2
1

νΣ f 2(1− β)

kD1
Σ1→2

D2
−

1

L2
2































∣

∣

∣

∣

∣

∣

Φ1

Φ2

〉

+

∣

∣

∣

∣

∣

∣

∣

∣

1
k

ΘβνΣ f 2

D1
0

〉

(24)
and then diagonalised by using the eigenvectors|ψ1〉 and|ψ2〉

of the coefficient matrixÂ:

A =































−
1

L2
1

νΣ f 2(1− β)

kD1
Σ1→2

D2
−

1

L2
2































, (25)

associated to the eigenvaluesϑ2 and−ς2, and their adjoints
〈

ψ+1

∣

∣

∣ and
〈

ψ+2

∣

∣

∣, representing a bi-orthonormal basis set. The
two eigenvalues are of opposite sign if the condition

k < (1− β)
νΣ f 2

Σr2

Σ1→2

Σr1
→ k < (1− β)k∞ (26)

is verified, as it is for the problem under consideration. The
unknown flux vector is then represented as:

|Φ〉 =

∣

∣

∣

∣

∣

∣

Φ1

Φ2

〉

= f1 |ψ1〉 + f2 |ψ2〉 (27)

and it is substituted into Eqs. (24). The projection on the
adjoint vectors leads to two uncoupled diffusion equations for
the componentsf1 and f2:







































































∇2 f1 + ϑ2(k) f1 +
1
k

νΣ f 2βΘ

D1

〈

ψ+1 |
1
0

〉

=

∇2 f1 + ϑ2(k) f1 + ℓ(k)ψ+1,1(k) = 0

∇2 f2 − ς2(k) f2 +
1
k

νΣ f βΘ

D1

〈

ψ+2 |
1
0

〉

=

∇2 f2 − ς2(k) f2 + ℓ(k)ψ+2,1(k) = 0,

(28)

whereψ+i, j is the j-th component of thei-th adjoint eigenvector
〈

ψ+i

∣

∣

∣. Each of the above equations can be solved in spherical
geometry with the same procedure as for the one-group case,
introducing the auxiliary functionsUi = r f i . The imposition
of the regularity of the fluxes inr = 0 and boundary condi-
tions inr = Rallows to reconstruct the two-group fluxes as:


















































































Φ1(r) = ψ1,1(k)
ℓ(k)ψ+1,1(k)

ϑ(k)2

(

Rsinϑ(k)r
r sinϑ(k)R

− 1

)

−ψ2,1(k)
ℓ(k)ψ+2,1(k)

ς(k)2

(

Rsinhς(k)r
r sinhς(k)R

− 1

)

Φ2(r) = ψ1,2(k)
ℓ(k)ψ+1,1(k)

ϑ(k)2

(

Rsinϑ(k)r
r sinϑ(k)R

− 1

)

−ψ2,2(k)
ℓ(k)ψ+2,1(k)

ς(k)2

(

Rsinhς(k)r
r sinhς(k)R

− 1

)

,

(29)

whereψi, j is the j-th component of thei-th direct eigenvector
|ψi〉.

The criticality condition is again retrieved by imposing
the condition on the integral of the thermal flux:

4π
ψ1,2ψ

+
1,1ℓR

ϑ2

(

1
ϑ2
−

R
ϑ

cot(ϑR) −
V

4πR

)

−4π
ψ2,2ψ

+
2,1ℓR

ς2

(

R
ς

coth(ςR) −
1
ς2
−

V
4πR

)

= ΘV.
(30)

The solution of Eq. (30) allows to identify an infinite set of
discrete real solutions, and the numerical evaluation of the
eigenvalues for a subset of harmonics is presented and dis-
cussed in the following. However, the form of such equation
does not allow a simple proof of the fact that all its solutions
are real (as the previous cases reported in Eqs. (6) and (18)).
In addition, the approach to the reality proof as sketched in
the previous session does not provide useful results in this
case, leaving the mathematical question on the reality of the
eigenvalue set open. Thence, one cannot exclude the presence
of complex eigenvalues.

The question on the reality of the eigenvalues is espe-
cially of interest if the time-eigenvalue are considered, since it
has already been shown that in multigroup diffusion the pres-
ence of complexα values is possible if at least three energy
groups are considered, while two-group theory admits only
real time constants [10]. However, since the physical prob-
lem under consideration shows some peculiar features with
respect to the problem for solid fuel systems, the question on
the presence of complex eigenvalues is legitimate, although
not easy to answer.

2. Time α-eigenvalue problem

The solution of the time eigenvalue problem in two-
group is readily solved as described in the previous section.
Once the problem has been recast in matrix form:

[

∇2 0
0 ∇2

]
∣

∣

∣

∣

∣

∣

Φ1

Φ2

〉

+































−
1

L2
1

−
α

v1D1

νΣ f 2(1− β)

D1
Σ1→2

D2
−

1

L2
2

−
α

v2D2































∣

∣

∣

∣

∣

∣

Φ1

Φ2

〉

+

∣

∣

∣

∣

∣

∣

∣

∣

ΘβνΣ f 2

D1
0

〉

,

(31)
the eigenvalues of the coefficient matrix, now depending onα,
can be identified, together with the corresponding eigenvec-
tors and formulae (27)-(30) are left unchanged, apart from the
functional dependence of the parameters on the eigenvalue.
As mentioned before, the numerical solution of Eq. (30) al-
lows to find a set of discrete real eigenvalues, but the potential
presence of complex solutions is still an open question.

In the following section numerical results for this eigen-
value problem are provided, comparing theα values with the
corresponing results obtained in standard solid fuel systems.
In this latter case, the time eigenvalues can be obtained, for
a valueB2

n = (nπ/R)2 of the buckling, solving the following
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characteristic equation:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−
1

L2
1

− B2
n −

α

v1D1

νΣ f 2(1− β)

D1
Σ1→2

D2
−

1

L2
2

− B2
n −

α

v2D2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (32)

providing theα eigenvalues, associated to the eigenfunction:

φ1(r) =
sin(Bnr)

r
,

φ2(r) =
Σ1→2

D1

(

1+ L2
2B2

n + α/(v2Σa2)
)

sin(Bnr)
r

.
(33)

The values ofα obtained in this case can be used as starting
guess for the numerical procedure to identify the solutionsof
Eq. (30), supposing the the eigenvalue structure is preserved
from the standard case to the full remixing one.

3. Evaluation of eigenvalues and eigenfuctions in two-
group theory

The evaluation of both the fundamental and higher-order
harmonics for the two-group problem is performed, adopting
the data in Table I andR = 80 cm. The eigenvaluesk andα
up to order 8 are reported in Table IV, as compared to the re-
sults of the standard diffusion formulation for solid fuel. The
reactivity loss (reduction of the fundamentalk eigenvalue) as-
sociated to the remixing is coincident with the one-group case,
coherently with the energy collapsing process adopted to gen-
erate the one-group data from the two-group cross sections.
It can also be observed that, as expected, the higher-order
k eigenvalues are much smaller than the fundamental, differ-
ently from the previous case, with well-known implications
in the physical description of the system behavior [11]. In
addition, the effect of remixing on higher-harmonics shows a
stronger damping with increasing order. The observation of
the time eigenvalues leads to similar comments.

In Figs. 2 and 3 the eigenfunctions of thek andα prob-
lem are compared to the corresponding harmonics of the stan-
dard case, showing discrepancies in the order of the percent.
The peaks in the difference visible in the graphs are associ-
ated to the different localization of the zeros of the functions,
together with the definition of the difference in relative terms.

The same approach can be adopted for the solution of the
corresponding adjoint problem:















































D1∇
2Φ+1 (r) − Σr1Φ

+
1 (r) + Σ1→2Φ

+
2 (r) = 0

D2∇
2Φ+2 (r) − Σr2Φ

+
2 (r) +

1
k
νΣ f (1− β)Φ+1 (r)

+
1
k

νΣ fβ

V
〈Φ+1〉 = 0,

(34)

using the eigenvalues and eigenvectors of the transposed co-
efficient matrix. The evaluation of the neutron importance is
needed when adopting a perturbative approach for the study
of the effect of material modifications in this kind of system,
as was done in [12].

TABLE IV. Eigenvaluesk andα for the perfect remixing prob-
lem in two-group diffusion theory, as compared to the eigen-
value of the corresponding standard solid fuel problem for the
first 8 eigenfunctions (R= 80 cm).

kn αn · 104 [s−1]
remix standard remix standard

n = 1 0.99945 1.00200 −1.9832· 10−4 7.2010· 10−4

n = 2 0.35831 0.36030 −0.368818 −0.367650
n = 3 0.12946 0.13025 −0.804279 −0.803529
n = 4 0.05339 0.05372 −1.334132 −1.333644
n = 5 0.02506 0.02522 −1.981410 −1.981075
n = 6 0.01307 0.01315 −2.756689 −2.756447
n = 7 0.00740 0.00745 −3.664768 −3.664586
n = 8 0.00448 0.00451 −4.707981 −4.707839

The method outlined here can be extended to any number
of energy groups, allowing the general solution of a multi-
group diffusion problem for this peculiar kind of nuclear sys-
tem. Moreover, the same approach can be fruitfully exploited
for the solution of the corresponding transport problem, asis
done in the next section.

IV. EIGENVALUE PROBLEM WITH PERFECT
REMIXING - TRANSPORT MODEL

1. One-dimensional slab model: SN approximation

The eigenvalue problem discussed in the previous sec-
tions can be also approached in transport theory. If we adopt
a monoenergetic transport model in one-dimensional slab ge-
ometry of dimensionH, the resulting equation to be solved
is:

µ
∂ϕ(x, µ)
∂x

+ Σϕ(x, µ) =
Σs

2

∫ 1

−1
dµ′ϕ(x, µ′)

+
νΣ f (1− β)

2k

∫ 1

−1
dµ′ϕ(x, µ′) +

νΣ f β

2kH

∫ 1

−1
dµ′〈ϕ(x, µ′)〉.

(35)
Scattering is assumed isotropic, and the spatial integral of the
flux is identified with the same notation as before. One possi-
ble approximation is based on discrete ordinates, solving for
the angular fluxes in a finite set ofN directions and approxi-
mating the integrals over the variableµ as quadrature sums:

µn
dϕ(x, µn)

dx
+ Σϕ(x, µn) =

(

Σs

2
+
νΣ f (1− β)

2k

) N
∑

m=1

wnϕ(x, µm)

+
νΣ f β

2kH

N
∑

m=1

wm〈ϕ(x, µm)〉, n = 1, . . . ,N.

(36)
As customarily done, the directions and weights are taken ac-
cording to the Gauss-Legendre quadrature set.

The choice of SN allows to adopt the methodology de-
scribed above for multigroup. In fact, system (36) can be re-
arranged by combining the equations for opposite directions
(summing and subtracting them), obtaining a set ofN/2 cou-
pled even-parity second-order equations. As an example, the
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S4 model becomes:











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


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


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





µ2
1

Σ

∂2Φ1

∂x2
+

(

−Σ + Σsw1 +
(1− β)νΣ f

k
w1

)

Φ1

+(Σsw2 +
(1− β)νΣ f

k
w2)Φ2 +

βνΣ fΘ

k
= 0

µ2
2

Σ

∂2Φ2

∂x2
+ (Σsw1 +

(1− β)νΣ f

k
w1)Φ1

+

(

−Σ + Σsw2 +
(1− beta)νΣ f

k
w2

)

Φ2 +
βνΣ fΘ

k
= 0,

(37)
where the integral of the flux has been set toΘH as before,
µ3 = −µ1 andµ2 = −µ4 and the new unknowns are:

Φ1 = ϕ(x, µ1) + ϕ(x,−µ1),
Φ2 = ϕ(x, µ2) + ϕ(x,−µ2).

(38)

System (37) is clearly in the same form as the two-group prob-
lem (24), apart from the different positioning of thek eigen-
value, and it can be solved with the same approach. A differ-
ence arises concerning the imposition of the boundary condi-
tions: if we suppose the system symmetric around zero and
impose Mark boundary conditions on the discrete ordinates
fluxes [13], we obtain

µ1
dΦ1

dx

∣

∣

∣

∣

∣

x=H/2
+ ΣΦ1(x = H/2) = 0,

µ2
dΦ2

dx

∣

∣

∣

∣

∣

x=H/2
+ ΣΦ2(x = H/2) = 0,

(39)

together with the request for the solution to be even. If we in-
troduce a fictitious two-group diffusion coefficientD̃i = µ

2
i /Σ,

system (37) is recast in matrix form as:
[

∇2 0
0 ∇2

]
∣

∣

∣

∣

∣

∣

Φ1

Φ2

〉

+ Â

∣

∣

∣

∣

∣

∣

Φ1

Φ2

〉

+

∣

∣

∣

∣

∣

∣

ℓ1

ℓ2

〉

, (40)

where the coefficient matrix and source vector now are:

Â =




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(

−
Σ
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
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
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(41)
∣

∣

∣

∣
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∣

ℓ1

ℓ2

〉

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ΘβνΣ f

D̃1
ΘβνΣ f

D̃2

〉

. (42)

Using the same symbols as before for the eigevalues and
eigenvectors of matrix̂A and solving for the auxiliary func-
tions f1 and f2, the solution for the even-parity fluxes are ob-
tained as:

Φ1(x) = Acos(ϑx) +C cosh(ςx)

−
ψ+1,1ℓ1 + ψ

+
1,2ℓ2

ϑ2
+
ψ+2,1ℓ1 + ψ

+
2,2ℓ2

ς2

Φ2(x) = Aψ1,2 cos(ϑx) +Cψ2,2 cosh(ςx)

−ψ1,2

ψ+1,1ℓ1 + ψ
+
1,2ℓ2

ϑ2
+ ψ2,2

ψ+2,1ℓ1 + ψ
+
2,2ℓ2

ς2
.

(43)

The imposition of the boundary conditions (39) provides a
solution for the coefficientsA andC, still dependent on thek
eigenvalue, and the requirement on the flux integral gives the
criticality condition:

(

w1 + w2Ψ1,2
)






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2
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


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(

w1 + w2Ψ2,2
)


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



2
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C sinh
(

ς H
2

)

+
ψ+2,1ℓ1 + ψ

+
2,2ℓ2

ς2
H













= ΘH

(44)

In Table V the first eight eigenvalues of the problem are re-
ported and compared to the solution of the transport problem
in absence of the perfect remixing, obtained with an analo-
gous analytical procedure. The material data adopted are the
same as in all previous cases (see Table I,H = 80 cm). The
eigenfunction shapes are then compared in Fig. 4 for the first
four harmonics. Thek values obtained show similar trends re-
garding the reactivity reduction as in previous cases, and the
spatial modification of the eigenfunction is again in the range
of the percent.

The problem here presented provides a significant exam-
ple of how the methodologies developed in the frame of diffu-
sion theory can be applied to SN transport to obtain analytical
solutions. However, the numerical results are not readily com-
parable to the previous ones, due to the different assumption
regarding the geometry, since the transport problem in spher-
ical geometry would not allow such a simple analogy with
diffusion.

A possible solution in order to address also spherical ge-
ometry in transport theory is to transform the spherical trans-
port problem into a planar case with a standard technique
[14] and then apply the method here described. Numerical
results in spherical geometry based on this approach will be
presented in a future work.

TABLE V. Eigenvaluesk for the perfect remixing problem in
slab geometry solved in S4 approximation, as compared to the
eigenvalue of the corresponding standard solid fuel problem,
for the first 8 eigenfunctions (H = 80 cm).

remix standard
n = 1 1.03484 1.03589
n = 2 0.27862 0.28028
n = 3 0.11675 0.11749
n = 4 0.06454 0.06496
n = 5 0.04169 0.04196
n = 6 0.02962 0.02981
n = 7 0.02239 0.02254
n = 8 0.01766 0.01777
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V. CONCLUSIONS

The physics of a fluid fuel system with perfect remixing
is studied in the one-group and multigroup diffusion model.
The analysis is focused on the determination of the multiplica-
tion and time eigenvalues and corresponding eigenfunctions.
The equation describing the system second-order differential
and integral in space. The results are compared with the
ones obtained for a standard solid fuel system. The analyt-
ical methods developed in diffusion theory are then applied
to discrete ordinates transport. The analysis allows to gain
a physical insight into the peculiar characteristics of molten
salt fast reactors. In future work the analytical approach will
be extended to other transport models and the nature of the
eigenvalue spectrum will be investigated.
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Fig. 1. Graph of thek-eigenfunctionΦ(k) in one-group dif-
fusion with perfect remixing and absolute difference with re-
spect to theα-eigenfunctionΦ(α) for the first four harmonics.
Material data from Table I,H = 80 cm.
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Fig. 2. Graph of thek-eigenfunctionΦ (left axis, solid lines -
red: fast flux, blue: thermal flux) and relative difference with
respect to thek-eigenfunction of diffusion without remixing
φ (right axis, dashed lines - red: fast flux, blue: thermal flux)
for the first four harmonics. Same data and geometry as in
previous graph.
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Fig. 3. Graph of theα-eigenfunctionΦ (left axis, solid lines -
red: fast flux, blue: thermal flux) and relative difference with
respect to theα-eigenfunction of diffusion without remixing
φ (right axis, dashed lines - red: fast flux, blue: thermal flux)
for the first four harmonics. Same data and geometry as in
previous graphs.
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Fig. 4. Graph of thek-eigenfunction evaluated in S4 approxi-
mation of transport with full remixing (left axis) and relative
difference with respect to thek-eigenfunction of the standard
solid fuel case (right axis) for the first four harmonics (H = 80
cm).


