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Abstract - We present in this paper the application of the adjoint technique for solving one–speed X,Y–
geometry discrete ordinates (S N) transport problems by using a spectral–nodal method. We describe the
spectral Green’s function–constant nodal (Adjoint–SGF–CN) scheme and its new features, and compare
the involved quantities with those appearing in the SGF–CN method for forward problems. The resulting
Adjoint–SGF–CN equations are solved by using the adjoint partial one–node block inversion (NBI) iterative
scheme. Numerical results are given to illustrate the method’s features and some advantages of using the
adjoint technique in source–detector problems.

I. INTRODUCTION

The solution of the equation which is adjoint to the Boltz-
mann transport equation can be viewed as a measure of the
importance of a particle to the objective function, e.g., a de-
tector response [1]. This physical interpretation makes the
adjoint flux well suited for use as a function of importance in
deep penetration problems.

In this work we present a coarse–mesh method for one–
speed X,Y–geometry discrete ordinates (S N) adjoint transport
problems considering isotropic scattering in non–multiplying
media. In this method, the adjoint spectral Green’s function
(Adjoint–SGF) scheme, originally developed for solving ad-
joint S N problems in slab–geometry with no spatial trunca-
tion error [2], is applied to solve the adjoint one–dimensional
transverse–integrated S N nodal equations with constant ap-
proximation for the terms corresponding to the transverse
leakages in the forward problem. A companion method has
been successfully applied to X,Y–geometry forward S N prob-
lems [3]. It is well known that the S N equations are not only
non self–adjoint, but also have non self–adjoint boundary
conditions. Nevertheless, we remark that if we use numeri-
cal methods for forward S N problems with adjoint isotropic
sources and vacuum or reflective boundary conditions, as it is
applicable, we shall obtain the forward angular fluxes in the
opposite directions of motion. Although this can be done in
practical applications, we describe in this paper the present
Adjoint–SGF–CN method, which has two new ingredients: (i)
the adjoint auxiliary equation that we present in Section III.;
and (ii) the adjoint partial one–node block inversion (NBI)
iterative scheme, that we describe in section Section IV..

Numerical results to two source–detector test problems
are considered in Section V. and Section VI. offers a number of
general concluding remarks and suggestions for future work.

II. THE TRANSVERSE–INTEGRATED ADJOINT S N
CONSTANT–NODAL EQUATIONS

Let us consider the one–speed adjoint S N equations in a
rectangular domain D = {(x, y) ∈ R2|0 ≤ x ≤ L; 0 ≤ y ≤ H}
with isotropic scattering in non–multiplying media

− µm
∂ψ†m(x, y)

∂x
− ηm

∂ψ†m(x, y)
∂y

+ σT (x, y)ψ†m(x, y)

=
σS 0

4
(x, y)

M∑
n=1

ψ†n(x, y)ωn + Q†(x, y) ,

m = 1 : M ,M = N(N + 2)/2 , (1)

wherein non–outgoing adjoint flux boundary conditions apply,
meaning that the importance of the leakage is clearly equal
to zero, since such particles will not return to D, and thus,
will not contribute to the detector response. In Eq (1) we
have defined ψ†m (x, y) as the adjoint angular flux in direction
(µm, ηm) and N is the order of the angular quadrature set. The
ordered pair (µm, ηm) represents the discrete directions and ωm
are the corresponding weights. In addition, σT is the total
macroscopic cross section and σS 0 is the isotropic scattering
macroscopic cross section. The quantity Q†(x, y) is the adjoint
interior source, which is perfectly arbitrary [4]. Now we con-
sider a rectangular spatial grid on D where each discretization
node is denoted as di, j of width hxi and height hy j. We also
assume that the material parameters and the adjoint interior
source are constant functions in di, j.

In order to obtain the one–dimensional transverse-
integrated adjoint S N nodal equations, we define the general-
ized transverse–integration operator

Lu =
1

hus

∫ us+1/2

us−1/2

· du , (2)

where u = x or y, and s = i or j, respectively. First we
apply Ly and then Lx to Eq. (1) within di, j and obtain the one–
dimensional transverse–integrated adjoint S N nodal equations
for the x and y coordinate directions, respectively. That is

−
µm

σT i, j

dψ̃†m, j(x)

dx
+ ψ̃†m, j(x) =

c0 i, j

4
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ψ̃†n, j(x)ωn

+
1

α
y
m i j

[
ψ†m(x, y j+1/2) − ψ†m(x, y j−1/2)

]
+

Q†i, j
σT i, j

(3)
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and

−
ηm

σT i, j

dψ̂†m,i(y)

dy
+ ψ̂†m,i(y) =

c0 i, j

4

M∑
n=1

ψ̂†n,i(y)ωn

+
1

αx
m i j

[
ψ†m(xi+1/2, y) − ψ†m(xi−1/2, y)

]
+

Q†i, j
σT i, j

, (4)

where we have defined α
y
m i j ≡

hy j σT i, j

ηm
, αx

m i j ≡
hxi σT i, j

µm
and

the isotropic scattering ratio c0 i, j ≡ σS 0 i, j/σT i, j . In addition
we define the averages of the adjoint angular fluxes over each
spatial coordinate direction within node di, j

ψ̃†m, j(x) =
1

hy j

∫ yi+1/2

yi−1/2

ψ†m (x, y) dx (5)

and
ψ̂†m,i(y) =

1
hxi

∫ xi+1/2

xi−1/2

ψ†m (x, y) dx . (6)

Equations (3) and (4) form a system of 2M ordinary dif-
ferential equations in 6M unknowns. Therefore, we need to
introduce approximations to guarantee uniqueness of the so-
lution. In this paper we approximate the adjoint node–edge
angular fluxes in Eqs (3) and (4) by the adjoint node–edge
average angular fluxes. That is

ψ†m(x, y j±1/2) ≈ ψ̂†m,i, j±1/2 (7a)

and
ψ†m(xi±1/2, y) ≈ ψ̃†m,i±1/2, j . (7b)

Now, we substitute Eqs. (7a) and (7b) into Eqs. (3) and (4),
respectively. For the x direction we obtain

−
µm

σT i, j

dψ̃†m, j(x)

dx
+ ψ̃†m, j(x) =

c0 i, j

4

M∑
n=1

ψ̃†n, j(x)ωn

+
1

α
y
m i j

[
ψ̂†m,i, j+1/2 − ψ̂

†

m,i, j−1/2

]
+

Q†i, j
σT i, j

, m = 1 : M . (8)

An analogous result is obtained for the y direction. Henceforth
we shall perform our description only for the x direction, since
similar results are obtained for the y direction.

At this point we solve Eq. (8) analytically, whose general
solution can be written as

ψ̃†m j(x) = ψ̃† P
m j + ψ̃†Hm j(x) , x ∈ di, j .

Here ψ̃† P
m j is a particular solution and ψ̃†Hm j(x) is the homoge-

neous component of the general solution. Substituting the
spatially constant ψ̃† P

m j into Eq. (8) we obtain

ψ̃† P
m j =

Q†i j

σT i j (1 − c0 i j)
+

c0 i j ∆Ĵ†j
σT i j hy j (1 − c0 i j)

+ τ̂†m i j , (9)

where we have defined

∆Ĵ†j ≡
1
4

M∑
n=1

ηn ωn

(
ψ̂†n,i, j+1/2 − ψ̂

†

n,i, j−1/2

)

and

τ̂†m i j ≡
1

α
y
m i j

(
ψ̂†n,i, j+1/2 − ψ̂

†

n,i, j−1/2

)
.

To determine the homogeneous component, we consider
the expression

ψ̃†Hm j (x) = a†m(ξ) e
−σT i j(x − λi)

ξ , λi =


xi+1/2 , ξ < 0

xi−1/2 , ξ > 0
.

(10)

We remark that the shifting strategy considered in Eq. (10)
with λi, so defined, is not essential, but prevents overflow dis-
ruption due to computational finite arithmetic in coarse–mesh
calculations. Substituting Eq. (10) into the homogeneous
equation corresponding to Eq. (8), we obtain

M∑
n=1

{
−
δm,n

µm
+

c0 i j ωn

4 µm

}
a†n(ξ) =

1
ξ

a†m(ξ) , (11)

where δm,n is the Kronecker delta. For m = 1 : M, Eq. (11)
represents an eigenvalue problem. Therefore, for x ∈ di j we
obtain a linearly independent set of M eigenfunctions defined
in Eq. (10) and we write the general solution for Eq. (8) in
node di j as

ψ̃†m(x) =

M∑
k=1

βk a†m(ξk) e
−σT i j(x − λi)

ξk + ψ̃† P
m j . (12)

Here a†m(ξk) is the m′th component of the eigenvector corre-
sponding to the eigenvalue ξ−1

k ; βk are arbitrary constants and
ψ̃† P

m j is calculated by Eq. (9). Henceforth, we refer to ξk as an
eigenvalue, although, in fact, the eigenvalue is ξ−1

k , as we see
in Eq. (11).

We remark at this point that the eigenvalues ξk for the
adjoint transverse–integrated S N equations in node di j appear
in ± pairs due to the symmetry of the angular quadrature sets
and they are all real numbers for the cases where c0 i j < 1.
Moreover, these eigenvalues are exactly the same as the eigen-
values for the corresponding forward transverse–integrated S N
equations in node di j [3]. On the other hand, the correspond-
ing eigenvectors are all different, but they may have the same
entries located in different positions within the column matrix,
as represented in Fig. 1.

Figure 1 illustrates that, if we obtain the M–dimensional
eigenvectors am(ξk) corresponding to the simple eigenvalue ξk
(multiplicity equal to one), by following a spectral analysis of
the forward S N nodal equations integrated in the y direction
[3], viz Fig. 1a, then the eigenvectors a†m(ξk) corresponding
to the same simple eigenvalue ξk for the adjoint S N equations
(8) interchange the first and second M/4–dimensional arrays
as well as the third and fourth M/4–dimensional arrays, viz
Fig. 1b. On the other hand, for the forward and adjoint S N
nodal equations integrated in the x direction, the eigenvectors
corresponding to a given simple eigenvalue ξk do interchange
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am(ξk) =

(a) Forward problem

a†m(ξk) =

(b) Adjoint problem

Fig. 1: M–dimensional eigenvectors corresponding to the
same simple eigenvalue ξk for the forward and adjoint S N

models integrated in the y direction within node di j, cf. Eq.
(8).

the first and third in addition to the second and fourth M/4–
dimensional arrays. This result is due to the change of signs
of the discrete ordinates µm and ηm.

However, for the isotropic case, we obtain M − N eigen-
values ξk equal to the values of µm (or ηm) according to the
forward transverse–integrated S N equations in y (or x) coor-
dinate direction. These eigenvalues have multiplicity equal
to N − 2m + 1 for µ1 < µ2 < . . . < µN/2. For example, if we
use the S 6 model, we obtain one simple eigenvalue equal to
µ3, three eigenvalues equal to µ2 and five eigenvalues equal
to µ1. Similar results are obtained for the case considering
transverse–integration in the x direction, wherein the eigenval-
ues are equal to ηm with multiplicity also equal to N−2m+1 for
η1 < η2 < . . . < ηN/2. Furthermore, for the adjoint transverse–
integrated S N equations in y (or x) coordinate direction, one
obtains the same M − N eigenvalues with the same multiplic-
ities. However, the corresponding eigenvectors are different
for the forward and adjoint problems. For the transverse in-
tegration in the y direction, the eigenvectors corresponding
to the same eigenvalue µm with multiplicity N − 2m + 1 > 1,
m = 1 : N/2−1, may be linear combinations of the linearly in-
dependent eigenvectors corresponding to the same eigenvalue
µm, with the same interchanges as illustrated in Fig. 1.

In the next section, we derive the Adjoint–SGF–CN
method that preserves the local general solution of the
transverse–integrated adjoint S N nodal equations inside each
node di j. Using boundary conditions and continuity conditions,
we apply the Adjoint–SGF–CN method to solve numerically
adjoint S N problems on arbitrary rectangular grids.

III. THE ADJOINT SPECTRAL GREEN’S FUNCTION
CONSTANT–NODAL METHOD

Integrating Eq. (1) within an arbitrary spatial cell di j by
using the operator

1
hxi hy j

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

(·) dy dx ,

we obtain the discretized adjoint spatial balance S N equations

−
4µm

hxi
∆ψ̃†mi−

4ηm

hy j
∆ψ̂†m j+ 4σT i jΨ

†

m, j = σS 0 i j

M∑
n=1

ψ
†

n i j ωn+ 4 Q†i j,

(13)

where we have defined

∆ψ̃†mi ≡ ψ̃
†

m,i+1/2, j − ψ̃
†

m,i−1/2, j ,∆ψ̂†m j ≡ ψ̂
†

m,i, j+1/2 − ψ̂
†

m,i, j−1/2

and the node–average adjoint angular flux in cell Ωi j

Ψ
†

m,i, j =
1

hxi hy j

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

ψ†m(x, y) dydx . (14)

Equation (13), within an arbitrary spatial cell di j, represents
a system of M algebraic linear equations in 3M unknowns.
Therefore, we need to use 2M auxiliary equations. In the
Adjoint–SGF–CN method we use an auxiliary equation of the
form

Ψ
†

m,i, j =
∑
µn<0

Λ
i, j
m,n ψ̃

†

n, j−1/2 +
∑
µn>0

Λ
i, j
m,n ψ̃

†

n, j+1/2 + Ĝm,i, j(Q
†

i j) ,

(15)

where Ĝm,i, j(Q
†

i j) is a function of the interior adjoint source to
be determined such that the particular solution is automatically
preserved. To determine the term Ĝm,i, j(Q

†

i j) we substitute Eq.
(9) into Eq. (15) and the result appears as

Ĝm,i, j(Q
†

i j) =

N∑
n=1

(
δm,n − Λ

i, j
m,n

)
ψ̃† P

m j .

We determine the parameters Λ
i, j
m,n by requiring that the

homogeneus component of the local general solution be pre-
served by using equation (10) in equation (15) and, after some
algebraic manipulations, we obtain the following linear sys-
tems:

ξka†m(ξk)
σTi jhxi

(
1 − e−

σTi jhxi
ξk

)
=

∑
µn<0

a†n(ξk)Λi, j
m,n + e−

σTi jhxi
ξk

∑
µn>0

a†n(ξk)Λi, j
m,n , (ξk > 0) (16)

and

|ξk |a
†
m(ξk)

σTi jhxi

(
1 − e−

σTi jhxi
|ξk |

)
= e−

σTi jhxi
|ξk |

∑
µn<0

a†n(ξk)Λi, j
m,n +

∑
µn>0

a†n(ξk)Λi, j
m,n , (ξk < 0). (17)

Requiring this to hold for m = 1 : M and k = 1 : M, we obtain
a linear system of M2 equations in the M2 unknowns Λ

i, j
m,n.

We note that the present adjoint auxiliary equation (15)
and the analogous one for the y direction are very similar to
the auxiliary equation used for the forward SGF–CN method
[3]. However, in the present Adjoint–SGF–CN method, the
adjoint node–average angular flux in direction (µm, ηm) is re-
lated to the adjoint node–average angular fluxes in all outward
directions and interior adjoint source, as opposed to the in-
ward directions for the forward S N problems. Therefore, the
parameters Λ

i, j
m,n can be viewed as the weights of the contribu-

tions of the outgoing particles through the node–edges, which
have importances ψ̃†n, j±1/2 to the node–average importance of
particles travelling in direction (µm, ηm), given by Ψ

†

m,i, j, for
the detector response, that depends on the numerical value
attributed to the adjoint source Q†i j, normally equal to the
macroscopic absorption cross section. Clearly the outgoing
particles have non–zero importance to the detector response,
since they might come back to node di, j, except if they leave
the domain, as we have mentioned in Section II..
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IV. ADJOINT PARTIAL ONE–NODE BLOCK INVER-
SION (NBI) ITERATIVE SCHEME

In order to generate numerical solutions of the Adjoint–
SGF–CN equations, we use the adjoint partial one–node block
inversion (NBI) iterative scheme. This iterative scheme uses
the most recent available estimates for the outgoing adjoint
node–edge average angular fluxes (solid arrows in Fig. 2),
to solve the resulting adjoint S N problem in that cell for all
the incoming adjoint node–edge average angular fluxes in the
opposite sweeping direction (dashed arrows in Fig. 2), which
constitute the outgoing adjoint node–edge average angular
fluxes for the adjacent cell in the sweeping direction. Each
arrow in Fig. 2 represents N(N + 2)/8 directions in each
quadrant for the 1 – 3 sweeping direction.

ψ̂†
Q1,j+1/2ψ̂†

Q2,j+1/2

ψ̂†
Q4,j−1/2

ψ̂†
Q3,j−1/2

ψ̂†
Q4,j+1/2ψ̂†

Q3,j+1/2

ψ̃†
Q1,i+1/2

ψ̃†
Q4,i+1/2

ψ̃†
Q2,i+1/2

ψ̃†
Q3,i+1/2

ψ̃†
Q2,i−1/2

ψ̃†
Q3,i−1/2

Ωij

1 2

34

Fig. 2: Sweeping scheme for adjoint partial NBI algorithm in
the 1 – 3 direction .

The algorithm is based on iterating on the node–edge
average angular quantities in four sweeping directions: 1 –
3 , 3 – 1 , 2 – 4 and 4 – 2 . Therefore, we substitute the

Adjoint–SGF auxiliary equation (15) and the corresponding
for the y coordinate direction into the balance equation (13) to
remove the node–average angular quantities.

In the following section, we present numerical results
illustrating the performance of the Adjoint–SGF–CN method
with the adjoint partial NBI iterative scheme.

V. NUMERICAL RESULTS

In this section we consider two model problems. The
first model problem consists of a uniform isotropic neutron
source (Q1) surrounded by a shielding material (Q2 = 0). Fig-
ure 3 represents one–fourth of the whole shielding structure.
The second model problem is a typical well–logging problem
and we simulate the response for the detector D due to three
sources located in different positions. Both model problems
are are adapted from [5] and [6] and we compared the re-
sults by solving the forward problem and using the adjoint
technique. The stopping criterion for each run required that
the discrete maximum norm of the relative deviation between
two consecutive estimates for the node–average scalar fluxes
(forward and adjoint) did not exceed 10−6. All numerical re-
sults were obtained by using a computational tool developed
with the programming language C++ (Embarcadero R© C++

Builder XE2).

1. Model Problem No 1

Let us consider a uniform isotropic neutron source (Q1 =
1 cm−3 s−1) surrounded by a shielding material (Q2 = 0) as
represented in Fig. 3. Here we consider reflective boundary
conditions for both left and bottom boundaries and prescribed
boundary conditions for both right and upper boundaries.

In this work we simulate the detection of neutrons by
two identical detectors D1 and D2 (σA = 1.9 cm−1) located as
illustrated in Fig. 3. To solve the adjoint problem, we set the
adjoint sources numerically equal to the detector absorption
macroscopic cross section (σA), i.e., Q† = 1.9, and ran the two
adjoint problems using the offered Adjoint–SGF–CN method
with D1 and D2 separately.. Assuming prescribed boundary
conditions for the forward S N problem and zero outgoing
adjoint flux boundary conditions for the adjoint S N problem
at the top and right boundaries of Fig. 3, the detector response
can be obtained by

R = 〈ψ†,Q〉+
∫

Γ

dΓ

∫
n̂·Ω̂<0

dΩ̂ |̂n◦Ω̂| ψ†
(
rΓ, Ω̂

)
Ψ

(
rΓ, Ω̂

)
.

(18)
where we have defined the integral operation [7]

〈·, ·〉 ≡

∫
Γ

dΓ

∫
4π

dΩ .

Here Γ is the contour surface and Ω is the direction of motion.
We used the LQ16 angular quadrature set [7] and two spa-

tial grids. The results for the forward problem were obtained
by using the forward SGF–CN method [3].

0 55 10

0

5

10

BCR

D1

D2

6

6

Zone 1

σT = 1.0

σS0 = 0.5

Q1

Zone 2

σT = 2.0

σS0 = 0.1

Q2

BCT

Zone 2

σT = 2.0

σS0 = 0.1

Q2

Zone 2

σT = 2.0

σS0 = 0.1

Q2

Fig. 3: Geometry and nuclear data for Model Problem No 1.

Table II shows the results for the detector response ob-
tained by running both the forward and adjoint methods. The
third and fourth columns display the absorption rate densities
for detectors D1 and D2, respectively. We remark that the ad-
joint technique yields the detector response due to the interior
source and/or to the incoming boundary conditions by running
the Adjoint–SGF–CN method only once. On the other hand, if
it is required this information by solving the forward problem,
the code must be run at least twice. As we see, in all cases, the
results (including interior source and the boundary conditions)
generated with forward and adjoint techniques do agree, at
least, up to the sixth decimal place. We emphasize that the use
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of the adjoint technique to calculate the detector response is
convenient as it is possible to use the same adjoint solution
for various distinct intensities and/or locations of the interior
sources and/or type of boundary conditions, provided we do
not change the location and the type of the detector.

20 × 20 a R1 (cm−1 s−1) b R2 (cm−1 s−1) b

Forward {1; 1; 2} c 3.95677 × 10−1 6.83531 × 10−2

Adjoint {1; 0; 0} 3.95647 × 10−1 6.83082 × 10−2

{0; 1; 2} 3.04653 × 10−5 4.49492 × 10−5

{1; 1; 2} 3.95677 × 10−1 6.83531 × 10−5

40 × 40 a

Forward {1; 1; 2} c 3.95694 × 10−1 6.86079 × 10−2

Adjoint {1; 0; 0} 3.95663 × 10−1 6.85629 × 10−2

{0; 1; 2} 3.04652 × 10−5 4.50485 × 10−2

{1; 1; 2} 3.95694 × 10−1 6.86079 × 10−2

a Spatial grid: Number of nodes in the x direction × number
of nodes in the y direction.

b Absortion rate density per unit length.
c {Q; BCT ; BCR}: numerical values of the interior source Q

and the isotropic boundary conditions on the top and the
right–hand side boundaries, viz. Fig. 3.

TABLE I: Neutron detection for the Model Problem No 1.

Figures 4 and 5 shows the distributions of the importance
functions of neutrons from an adjoint source at the detector
position D1 and D2, respectively. Clearly, high importance
values appear near the adjoint sources.

Fig. 4: Importance function distribution for the Model Problem
No 1. (adjoint source D1).

2. Model Problem No 2

The second model problem represents an oil well–logging
problem for geophysics applications. This model problem was
considered in [5] and [6], where one numerical experiment
consisted in calculating the average scalar flux in region D1
due to an isotropic unit source located in region Q1 (Fig. 6).
The geometry and nuclear data for this test problem are shown
in Fig. 6.

In this model problem we consider four numerical experi-
ments to illustrate the efficiency of the adjoint technique for
the source–detector transport calculations. To solve the adjoint
problem we used the present Adjoint–SGF–CN method on
spatial grids composed of 56×64 and 112×128 nodes with the

Fig. 5: Importance function distribution for the Model Problem
No 1. (adjoint source D2).

0

D1

Limestone

Q1

Vacuum

VacuumVacuum

Reflective

Q2

Q3

8 24 32 56
0

8

16

24

64

56

48

Water

Steel

Fig. 6: Geometry and material distribution for Model Problem
No 2. Limestone ({σT ; σS 0}) = {0.330263; 0.314419}, water
= {0.694676; 0.634883} and steel = {0.499122; 0.314419}.
Width = 56 cm and height = 64 cm.

level symmetric S 6 and S 16 angular quadrature sets [7]. For
these experiments we also set the adjoint source numerically
equal to the detector absorption macroscopic cross section;
ie., Q† = 0.004662 and ran the adjoint problem considering
reflective boundary conditions at the bottom and zero outgoing
adjoint angular fluxes at the other three boundaries [7]. Table II
displays the numerical results for the D1 detector response due
to a unit source Q1, and then Q2, and then Q3 independently
and all together. We remark that we ran the Adjoint–SGF–CN
code only once and then used the adjoint numerical solution in
Eq. (18) to evaluate the detector response for each experiment.
This was possible because the detector was not changed nor
displaced.

On the other hand, if we were to run the forward S N
problems, we should run four times the forward SGF–CN
code, one for each location of the unit source in Fig. 6 and
one for all the three sources together, apart from the fact that
the latter is just the sum of the former three detector readings.
As we see, the results are very accurate with respect to the
forward calculations. Figure 7 shows the importance function
distribution for this model problem. As we see, the particles
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56 × 64 a S 6
b S 16

b

Forward {1; 1; 1} c 4.31868 × 10−2 4.32747 × 10−2

Adjoint {1; 0; 0} 3.01619 × 10−2 3.02205 × 10−2

{0; 1; 0} 9.33320 × 10−3 9.35334 × 10−3

{0; 0; 1} 3.69181 × 10−3 3.70093 × 10−3

{1; 1; 1} 4.31869 × 10−2 4.32748 × 10−2

112 × 128 a

Forward {1; 1; 1} c 4.33938 × 10−2 4.34765 × 10−2

Adjoint {1; 0; 0} 3.03046 × 10−2 3.03596 × 10−2

{0; 1; 0} 9.37859 × 10−3 9.39757 × 10−3

{0; 0; 1} 3.71067 × 10−3 3.71930 × 10−3

{1; 1; 1} 4.33939 × 10−2 4.34765 × 10−2

a Spatial grid: Number of nodes in the x direction × number
of nodes in the y direction.

b Level symmetric angular quadrature.
c {Q1; Q2; Q3}: numerical values of the interior sources Q1,

Q2 and Q3, viz. Fig. 6.
TABLE II: Neutron detection R (cm−1 s−1) for Model Problem
No 2.

Fig. 7: Importance function distribution for Model Problem
No 2. (adjoint source D1).

that migrate close to the detector have more importance for
the detector response than the ones that migrates farther.

VI. CONCLUDING REMARKS

We have developed a spectral nodal method, that we refer
to as the Adjoint–SGF–CN method for monoenergetic adjoint
S N problems in X,Y–geometry. In this method, the only ap-
proximation involved is in the transverse leakage terms of
the transverse–integrated adjoint S N nodal equations. The
terms involving the scattering events and the adjoint source
are treated analytically.

A negative feature of the Adjoint–SGF–CN method is that
it requires more storage than standard discretization methods.
This is due to the fact that the NBI iterative scheme requires the
storage of the node–edge average angular quantities. However,
this extra storage requirement can be compensated by the
possibility of using coarse spatial meshes.

According to the model problems considered in the previ-
ous section, the numerical results for the detector response, as
generated with forward and adjoint techniques, were identical
up to the sixth decimal place for the first problem and up to the
fifth decimal place for the second problem. We note that the
use of the adjoint technique to calculate the detector response
is convenient as it is possible to run the adjoint problem just
once, provided we do not change the location nor the type of
the detector. We stress at this point that, even though we can
generate adjoint S N solution artificially by use of the forward
S N numerical methods, we offer in this paper an accurate nodal
method for coarse–mesh, one–speed, adjoint S N calculations
in X,Y geometry with isotropic scattering.

We intend to apply these ideas to an arbitrary order L of
scattering anisotropy and energy multigroup S N problems in
X,Y–geometry to account for the energy transfer in scattering
events.
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