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Abstract - Presented here is a Response Matrix method for the solution of multigroup slab-geometry discrete
ordinates (S N) problems with anisotropic scattering in non-multiplying media. This method generates numer-
ical solutions that are completely free from spatial truncation errors and originates from the local general
solution within a homogenized layer of the slab that is obtained from a spectral analysis of the S N equations.
Numerical results to two test problems are given to illustrate the accuracy of the present method.

I. INTRODUCTION

Described here is an analytical numerical method that we
refer to as response matrix (RM) method for slab-geometry
discrete ordinates (S N) problems in non-multiplying media
using the multigoup model with an arbitrary number of energy
groups (G). The present RM method with the one-node block
inversion (NBI) iterative scheme generates numerical results
for the group node-edge angular fluxes that are absolutely free
of spatial truncation errors, as they coincide with the numerical
results obtained from the analytical solution of the given S N
problem, apart from finite arithmetic considerations. A com-
panion method, named the spectral Green’s function (SGF)
method [1], also generates numerical solutions that are free
from spatial truncation errors; nevertheless the SGF method
makes use of the discretized S N spatial balance equations [2]
together with the SGF auxiliary equations, wherein N2 ×G2

parameters need be determined for each discretization node
of the spatial grid set up on the domain. As N and G increase,
computer storage and computation of these parameters may
become cumbersome, even with modern computers.

In the next section we describe the offered RM method. In
section III we present numerical results to two model problems
and we conclude in section IV by offering a brief dicussion.

II. THE RM METHOD

To describe the RM method, we first consider a spatial
grid wherein each discretization node Γi, i = 1 : I, has width
hi, constant group macroscopic cross sections and uniform
and isotropic interior source (Fig. 1). The RM method has

Fig. 1. Discretization node Γi.

three essential ingredients: (i) a complete set of N ×G basis
functions is determined by a spectral analysis to span the

local solution space of the S N equations in each spatial node;
(ii) by using the group node interior source and the group
incoming fluxes at the node edges in the local general solution,
we determine the response matrix to evaluate the group node-
edge outgoing fluxes; (iii) by using the response matrix, the
NBI iterative scheme is implemented to evaluate the group
node-edge exiting fluxes by using the interior source and the
most recent estimates for the group node-edge incoming fluxes.
Next we briefly describe these three ingredients.

To begin, we consider the multigoup S N equations for
x ∈ Γi, i = 1 : I

µm
d
dx
ψm,g(x) + ΣTg,iψm,g(x) =

1
2

G∑
g′=1

N∑
n=1

ΣS g′→g,iψg′,n(x)ωn + Qg,i, (1)

where g = 1 : G and m = 1 : N. The notation is standard
[2]: ψm,g(x) is the flux of particles migrating in direction µm
in energy group g; ΣTg,i is the total macroscopic cross section
of node Γi in energy group g; ΣS g′→g,i is the macroscopic differ-
ential scattering cross section from energy group g′ to group g
of node Γi; Qg,i is the node-interior isotropic source emitting
particles in energy group g; and ωn is the weight of the angular
direction µn in the S N quadrature set.

Now we write the local general solution of Eq. (1) as

ψm,g(x) = ψh
m,g(x) + ψ

p
m,g(x), x ∈ Γi, (2)

where the superscript p denotes the particular solution and
the superscript h indicates the homogeneous solution. For
Qg,i = 0, we seek a basis function of the form

ψh
m,g(x) = am,g(ν) fν(x), m = 1 : N, g = 1 : G, (3)

where we have defined

fν(x) =

 e−
(x−xi)
ν se ν > 0,

e−
(x−xi+1)

ν se ν < 0.
(4)
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By substituting Eq. (3) into Eq. (1), after some algebraic
manipulation, we obtain

N∑
n=1

G∑
g′=1

(
Σtg,i

µ
δm,nδg,g′ −

Σsg′→g,iωn

2µm

)
an,g′ (ν) =

1
ν

am,g(ν), (5)

which, in matrix formulation, is an eigenvalue problem, whose
solution are N ×G eigenvalues 1/ν and N ×G linearly inde-
pendent eigenvectors of dimension equal to N ×G.

Furthermore for constant isotropic node interior source
Qg,i, the particular solution ψ

p
g,i is obtained by solving the

linear system

N∑
n=1

G∑
g′=1

(
Σtg,iδm,nδg,g′ −

1
2

Σsg′→g,iωn

)
ψ

p
g,i = Qg,i. (6)

Therefore, the expression of the local general solution is

ψm,g(x) =

NG∑
l=1

αlam,g(νl) fνl (x) + ψ
p
g,i, x ∈ Γi, i = 1 : I. (7)

Here we note that the entries of the particular solution column
matrix is constant for all angular directions in each energy
group since we have assumed uniform and isotropic group
interior source. Therefore, in matrix form, Eq. (7) appears as

Ψ(x) = ADiag( f (x))α +Ψ
p
i . (8)

Here Ψ(x) is the column matrix whose entries are the group
angular fluxes; A is a square matrix of order N × G, whose
columns are the eigenvectors; Diag( f (x)) is a diagonal matrix
of order N×G; α is a column matrix whose entries are the N×
G constants of the linear combination of the basis functions;
and Ψp

i is the particular solution in Γi. In order to calculate α,
we use the incoming group node-edge fluxes at x = xi (µm > 0)
and x = xi+1 (µm < 0), as illustrated in Fig. 1. That is,

α = M−1(Ψin −Ψ
p
i ), (9)

where we have defined matrix M as

M = A
[

Diag( f (xi)) 0
0 Diag( f (xi+1))

]
. (10)

By substituting Eq. (10) into Eq. (8), we determine an expres-
sion for the outgoing group node-edge fluxes

Ψout = RΨin + (I − R)Ψp
i . (11)

Here we have defined the response matrix

R = A
[

Diag( f (xi+1)) 0
0 Diag( f (xi))

]
M−1. (12)

Equation (11) is the essence of the present RM method.
By considering the boundary conditions to the S N problem,
we use Eq. (11) to apply node-block inversions to iteratively
converge numerical solutions, which are completely free of
spatial truncation errors, regardless of the spatial grid set up
on the domain.

At this point we remark that we have considered two
algorithms for the NBI iterative scheme: the full NBI scheme
and the partial NBI scheme. As with the full NBI iterative
scheme, we use the boundary conditions or the most recent
estimates for the group incoming node-edge fluxes to evaluate
all outgoing node-edge fluxes in all energy groups in node Γi,
before moving to the next node Γi+1. The partial NBI scheme
uses the boundary conditions or the most recent estimates for
the group incoming node-edge fluxes to calculate the exiting
node-edge angular fluxes, which constitute the incoming fluxes
for the adjacent nodes in the directions of the transport sweeps
across the slab: from left to right (µ > 0) and from right to left
(µ < 0).

III. NUMERICAL RESULTS

Now we consider two model problems. Model problem
No 1 consists of an iron slab, 10 cm thick and with isotropic
scattering. To solve this problem, we consider a multigroup
Gauss-Legendre S 16 model with nineteen energy groups (G
= 19) and a unit isotropic flux of gamma rays incident at the
left boundary (x = 0) only for the first energy group (g =
1). The multigroup macroscopic cross sections for this iron
slab are given in [3]. Table I displays the scalar fluxes at the
boundaries for three energy groups: g = 1, g = 10 and g = 19 as
generated by the fine-mesh diamond difference (DD) method
with the source iteration (SI) scheme [2] and by the offered

a Diamond Difference method with the source iteration sheme
b Response Matrix with the partial NBI sheme
c 4GB RAM, Intel(R) Core(TM)i7 Q720@1.60GHz
d Read as 5.080x10−1

DD - SIa RM - Partial NBIb

Iterations 28 2
Time (s)c 62.6 3.9
Energy
group x=0 x=10 x=0 x=10

1 5.080E-1d 7.050E-4 5.080E-1 7.050E-4
10 1.339E-2 1.450E-4 1.339E-2 1.450E-4
19 4.164E-6 6.853E-8 4.164E-6 6.853E-8

TABLE I. Numerical results for the model problem

RM method with the partial NBI iterative scheme. In this
numerical experiment we used one node for the whole domain
with the RM method and a discretization grid composed of
10000 nodes with the DD method, so the relative deviations
between the boundary value scalar fluxes for all energy groups
did nod exceed 15 ppm (parts per million). We remark that the
NBI iterative scheme converged the solution in 3.9 seconds
(2 iterations), while the SI scheme converged the fine-mesh
results in 62.6 seconds (28 iterations) for a stopping criterion
requiring that the relative deviations between two iterates did
not exceed 10−6.

Model problem No 2 is described in [4]. This is a 20-
group, 5-region slab with a 10’th order Legendre expasion of
the scattering law. This slab is 20 cm thick and has an isotropic
incident distribution of radiation only in the first energy group
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and only at the left-hand side boundary (x = 0, µm > 0).
Vacuum boundary conditions apply at x = 20 cm. In addition,
the thickness of each layer is defined by ∆r = r + 1, r = 1 : 5.
The group cross sections are given in [4] and we used the same
stopping criterion as the previous model problem. Table II
displays the results for the group albedos

Ag = 2
N∑

n= N
2 +1

|µn|Ψn,g(0)ωn (13)

and the group transmission factors

Bg = 2

N
2∑

n=1

µnΨn,g(20)ωn, (14)

g = 1 : 20, which can be found in [4]. We used the S 64 Gauss-
Legendre angular quadrature set [2] to model this problem and
generated the results with the present RM method on a spatial
grid composed of one discretization node per region. The
maximum relative deviations of the RM results with respect
to reference results were 0.38% and 0.0083% for Ag and Bg,
respectively.

As with the efficiency of the computer codes, we remark
tha we implemented both serial and parallel architectures to
solve the eigenvalue problem (1280 × 1280) given in Eq. (5)
for each layer of the slab.

For the serial code, the RM method generated the numeri-
cal results in 1, 582 seconds and spent 991 seconds to solve
the five eigenvalue problems, i.e., roughly 63% of the total
running time. For the parallel code, the RM method generated
the numerical values for Ag and Bg, g = 1 : 20, in 864 sec-
onds, yielding a speed up of 45%, whose running time for the
eigenvalue problems were 339 seconds.

IV. DISCUSSION

We have developed the multigroup RM method and have
shown that it yields solution with no spatial truncation error.
Therefore, one may be able to solve multigroup S N problems
with many fewer spatial cells than standard numerical methods,
e.g., the DD method.

We remark that the shifting strategy as given in Eq. (4) is
not essential for the spectral analysis; however, due to com-
putational finite arithmetic it is necessary to include it in the
algorithm for coarse-mesh calculations with discretization
nodes of several group mean free paths in extent, high order
angular quadratures and many energy groups.

It is well known that solving eigenvalue problems on a
digital computer is no trivial and, above all, it is a very costly
task. Therefore, we also implemented a parallel version of the
RM code. According to model problem No 2, that we consid-
ered in the previous section, the parallel architecture yielded
a speed up of 45% at solving five 1280 × 1280 eigenvalue
problems given in Eq. (5).

The present multigroup RM method can be used to im-
prove the accuracy of standard multigroup nodal methods ap-
plied to multidimensional S N problems in rectangular geome-
try. Specifically, we propose to use the present multigroup RM

a Group albedo according to Eq. (13).
b Group transmission factor according to Eq. (14).
c Read as 5.881x10−3

Energy Ref. [4] RM method - S 64
group Aga Bgb Ag Bg

1 5.881E-3c 1.045E-2 5.900E-3 1.045E-2
2 2.279E-3 1.999E-4 2.286E-3 1.999E-4
3 1.294E-3 6.901E-5 1.298E-3 6.901E-5
4 8.628E-4 3.539E-5 8.655E-4 3.539E-5
5 8.517E-4 3.535E-5 8.540E-4 3.535E-5
6 4.966E-4 1.490E-5 4.982E-4 1.490E-5
7 3.971E-4 1.072E-5 3.983E-4 1.072E-5
8 3.276E-4 8.086E-6 3.287E-4 8.087E-6
9 2.767E-4 6.320E-6 2.776E-4 6.320E-6

10 2.796E-4 6.127E-6 2.804E-4 6.127E-6
11 2.099E-4 4.184E-6 2.106E-4 4.184E-6
12 1.849E-4 3.489E-6 1.856E-4 3.489E-6
13 1.648E-4 2.955E-6 1.653E-4 2.955E-6
14 1.481E-4 2.533E-6 1.487E-4 2.533E-6
15 1.342E-4 2.195E-6 1.347E-4 2.195E-6
16 1.224E-4 1.920E-6 1.229E-4 1.920E-6
17 1.123E-4 1.693E-6 1.127E-4 1.693E-6
18 1.035E-4 1.503E-6 1.039E-4 1.503E-6
19 9.586E-5 1.343E-6 9.622E-5 1.343E-6
20 8.913E-5 1.206E-6 8.946E-5 1.207E-6

TABLE II. Group albedo and transmission factors.

method to solve numerically the multigroup one-dimensional
transverse-integrated S N nodal equations that arise in S N nodal
methods, with an approximation for the transverse leakage
terms.
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