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Abstract – A method is described for computing scattering cross sections that are weighted by energy-
finite-element (FE) basis functions, as an alternative to traditional multigroup. The weighted cross sections 
are needed for transport codes that use energy-FE for handling the energy dependence of the Boltzmann 
transport equation. The method is applied to electron inelastic scattering, where steep gradients in the 
cross-section energy dependence may make a multigroup treatment problematic. For electron scattering, a 
continuous-slowing-down (CSD) model is used for small energy-loss events in conjunction with a Boltz-
mann treatment for larger-energy-loss events. An electron inelastic scattering model is used to compute 
stopping powers that are compared with experimental values. Energy-FE weighted cross sections are used 
in several method-of-manufactured-solutions (MMS) test problems to demonstrate the validity of the cross 
sections and to show convergence with energy-mesh refinement.  

 
I. INTRODUCTION 

 
Electron scattering is extremely forward peaked, and 

the cross sections vary rapidly with energy, so that a Multi-
Group-Legendre (MG-L) energy/angular treatment intro-
duces error which is difficult to characterize. Using an En-
ergy-Finite-Element (FE) approximation, rather than MG, 
results in a more-accurate characterization of the electron 
transport. Developing group-to-group scattering cross sec-
tions for energy-FE requires energy integrations of cross 
sections and stopping powers weighted by energy basis 
functions, as will be described. 

A multi-year effort has begun to replace the legacy 
Coupled Electron Photon Cross Section (CEPXS) code [1, 
2] which has been widely used to generate MG-L elec-
tron/photon/positron cross sections for use by deterministic 
and MG Monte Carlo transport codes, with a new C++ code 
with a number of improvements, including the production of 
energy-FE weighted cross sections and stopping powers. 
The use of a single “step” energy basis function for 
weighting the cross sections results in standard MG cross 
sections. 

Another improvement in the generation of electron 
cross sections will be to provide a flexible partition between 
Continuous Slowing Down (CSD) (small energy loss and 
deflection) and “catastrophic” (large energy loss and deflec-
tion) scattering treatments. In the current CEPXS code, scat-
tering to an adjacent group is treated by CSD and scattering 
beyond an adjacent group (so-called “catastrophic” scatter-
ing) is treated by a standard MG-L approximation. The new 
code will allow for an arbitrary partition between CSD and 
MG-L treatments, specifying either a specific energy loss or 
specific angular deflection to demark the CSD and cata-
strophic-scattering treatments. Finally, the new code will 
have the capability of generating cross sections below the 
current minimum of 1 keV and use more accurate scattering 
models. 

II. BACKGROUND 
 
Electron transport is characterized by extremely for-

ward peaked angular dependence and rapidly varying cross-
section and stopping-power dependence with energy, mak-
ing a MG-L energy/angular approximation difficult. Using 
energy-FE rather than MG results in a more-accurate ap-
proximation with easier-to-characterize error. Parallel ef-
forts are underway to productize energy-FE capability in the 
SCEPTRE radiation transport code [3] and to develop a 
replacement to the legacy CEPXS [1] code that will provide 
energy-FE cross sections and stopping powers. 

Two distinct methods are used to handle the extreme 
forward-peaked scattering cross section dependence, 1) the 
CSD approximation and 2) the -down-scatter approxima-
tion [4].  In the CSD approximation, either a specific energy 
loss or a specific scattering angle is specified to demark the 
portion of the scattering handled by CSD and that handled 
by a standard MG-L approximation. In this manner, a re-
stricted stopping power is computed that includes only the 
most forward-peaked portion of the scattering, neglecting 
angular deflection, and “catastrophic” scattering that in-
cludes both energy loss and angular deflection which are 
handled by a standard MG-L approximation. 

The -down-scatter approximation is applied to the 
MG-L by separating out a -function in angle term from the 
MG-L down-scatter cross section moments, resulting in 
much less anisotropic scattering moments [4]. Both the CSD 
and -function approximations have a similar effect, that of 
reducing particle energy without direction change, but nu-
merical behavior is quite different. 

In the following section, the energy-FE formulation of 
the Boltzmann equation will be described, including both 
the CSD treatment and the -down-scatter approximation. 
Then, a particular form of the electron inelastic scattering 
cross section, the Relativistic Binary Encounter Dipole 
(RBED) cross section [5], will be described and used to 
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compute stopping powers. These will be compared with 
experimental values, followed by the results of several 
Method of Manufactured Solutions (MMS) test problems to 
demonstrate the validity of the cross sections and to show 
convergence with energy-mesh refinement. For simplicity, 
all of the test problems presented are one-dimensional in 
space. However, there is nothing to prevent the energy-FE 
weighted cross sections from also being used in multi-
dimensional problems. 

 
III. ENERGY FE-WEIGHTED CROSS SECTIONS 
 

The Boltzmann transport equation is 

  ∇   tr,, E  Qr,, E
 

 
E

Emax 
4
s′ → , E′ → Er,′, E′d ′dE′, 1

 
where r,  and E are the spatial position, direction of mo-
tion, and energy, respectively, and Emax is the global upper-
energy limit. The energy limits of integration assume no 
upscatter.  is the angular flux and Q is a source term, and 
s is the scattering cross section. The scattering cross sec-
tion may be written in terms of 0, the cosine of the angle 
between the pre- and post-scattered direction of motion, 

s′ → , E′ → E  1
2

s0, E′ → E, 2a
  

and integrating over angle results in the energy scattering 
cross section, 

sE → E′  
−1

1
s0, E → E′d0. 2b

 
The stopping power may be computed from 

SE ≡ 
E/2

E
E − E′sE → E′dE′. 3

 
The lower integration limit is E/2 since, in an inelastic elec-
tron-electron collision, two electrons emerge, and by con-
vention, the higher-energy scattered electron is considered 
the primary and the lower-energy scattered electron is con-
sidered a secondary.  

The restricted stopping power, SR, is computed by spec-
ifying a maximum energy loss, , to be included in the re-
stricted stopping power 

SRE ≡ 
E−Δ

E
E − E′sE → E′dE′. 4

 
The Boltzmann-CSD equation may then be written as 

  ∇   tr,, E − ∂SR
∂E  Qr,, E

 

 
EΔ

Emax 
4
s0, E′ → Er, ′, E′d′dE′. 5

 
The catastrophic scattering is expanded in Legendre 

moments 

slE′ → E  
−1

1
Pl0s0, E′ → Ed0, 6a

 
resulting in an approximation of the angle/energy scattering 
cross section of 

s0, E′ → E ≅ ∑
l0

L

2l  1Pl0slE′ → E. 6b

 
With the -down-scattering cross section removed, the scat-
tering moments are 

slE′ → E ≡ slE′ → E − sLE′ → E, 7a
 

resulting in an approximation of the catastrophic scattering 
of 

s0, E′ → E ≅ ∑
l0

L−1

2l  1Pl0
slE′ → E

 

 2L  1sLE′ → E1 − 0. 7b
 

The Boltzmann-CSD equation with -down-scatter is 

  ∇   tr,, E − ∂SR
∂E  Qr,, E

 

∑
l,m

Yl,m 
4

Yl,m ′ 
EΔ

Emax slE′ → Er,′, E′dE′d ′

 

2L  1 
EΔ

Emax

sLE′ → Er,, E′dE′, 8
 

with the 2l+1 factors included in the spherical harmonics 
functions. 

Applying an energy-FE approximation is done by ex-
panding the angular flux in energy basis functions and ex-
pansion coefficients 

r,, E ≅ ∑
i ′

g
i ′r,g

i ′E, E ∈ Eg,l, Eg,u , 9a

  
where g

i(E) are the energy basis functions for energy ele-
ment (energy group) g and energy basis function i, and 
g

i(r,) are the expansion coefficients as a function of 
space and angle. Eg,l and Eg,u are the lower and upper energy 
bounds, respectively, of the energy element (group). For 
example, linear energy basis functions are 

g
1E 

Eg,u − E
ΔEg

, E ∈ Eg,l, Eg,u  9b
 

and 

g
2E 

E − Eg,l

ΔEg
, E ∈ Eg,l, Eg,u . 9c

 
The weak form of the Boltzmann-CSD equation is ob-

tained by substituting the expression for the angular flux, 
Eq. (9a), into Eq. (8), multiplying by an energy basis func-
tion, integrating over E and integrating the CSD term by 
parts, resulting in a discontinuous-FE (DFE) formulation 
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∑
i ′

  ∇g
i ′ g

i E,g
i ′E  g

i ′r, g
i E, tEg

i ′E

 

g
i ′r,

dg
i

dE
, SREg

i ′E  SREg,l g
ilr,

  

 SREg−1,l g−1
i l r, ∑

i ′

Qg
i ′r, g

i E,g
i ′E

 

∑
l,m

Yl
m 

4
Yl

m′∑
g′

g′
i ′ r,′

 
g

i E, slE′ → E,g′
i ′ E′ d′

 

2L  1∑
g′

g′
i ′ r, g

i E, sLE′ → E,g′
i ′ E′ . 10

 
Energy-FE weighted stopping powers 

SR,g
i,i ′ 

dg
i

dE
, SREg

i ′E 11a

and scattering cross sections 

sl,g→g′
i,i ′  g

i E, slE′ → E,g′
i ′ E′ 11b

 
 

are computed by the cross-section processing code by using 
an adaptive integration routine. 

In order to test the validity of the energy-FE weighted 
cross sections, a particular form of the inelastic electron-
electron scattering kernel is chosen. The Relativistic Binary 
Encounter Dipole (RBED) differential scattering cross sec-
tion is [5] 

RBEDE → E′ ∑
j

4  1024a0
24Zjm0c2N

 t
2  u

2  b
2bj

2

 

−
4m0c22E  m0c2bj

2

E  2m0c22E − E′E′  bj 
 


bj

2

E − E′2 
bj

2

E′  bj 
2 

4bj
2

E  2m0c2 2

 


bj

3

E′  bj 
3 ln

EE  2m0c2 

m0c2 2

 

−
EE  2m0c2

E  m0c22 − ln
2bj

m0c2 , 12a

 
where a0 is the Bohr radius,  is the fine-structure constant, 
Zj is the occupancy of level j, m0c2 is the electron rest mass, 
N is the number density of the material, and bj is the binding 
energy of the level. t

2+u
2+b

2 plays the role of the focus-
ing factor, as described in Ref. [5]. Kinetic and binding en-
ergies for use in Eq. (12a) are obtained from the Lawrence 
Livermore National Laboratory (LLNL) database [6]. 

Eq. (12a) was obtained from Kim, et al. (Ref. [5]) by 
introducing a couple of approximations to Kim’s RBED 

model. Starting from Kim et al. Eq. (19), the BEQ simplifi-
cation is introduced, 

df
dw BEQ

 Ni

w  12 , 12b

which is Kim et al. Eq. (7). Furthermore, the Binary-
Encounter-Bethe (BEB) simplification [5] is introduced by 
setting 

Ni

N
 1. 12c

 
Fig. 1 shows the RBED differential scattering cross sec-

tion for gold from 0.1 MeV to scattered electron energies 
down to 1 keV, showing the extreme energy dependence of 
the cross section for near-zero energy loss and for small 
scattered electron energy. 

  
Fig. 1. RBED differential scattering cross section for gold, 

illustrating the extreme dependence of the cross section with 
energy. 

 
From the relativistic scattering kinematics, the cosine of 

the angle between the source electron and primary scattered 
electron (neglecting the shell binding energy) is  

0E → E′ 
E′E  2m0c2

EE′  2m0c2
, 13a

 
resulting in the fully-differential scattering cross section 

RBED0, E → E′ 
 

 0 −
E′E  2m0c2

EE′  2m0c2
RBEDE → E′, 13b

 
with scattering moments given by 

 lE → E′  Pl

E′E  2m0c2

EE′  2m0c2
RBEDE → E′. 13c
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As a test of the validity of the RBED cross section 
model, the RBED cross section can be used to compute 
stopping powers that can be compared with experimental 
values. Because the RBED cross section contains a singular-
ity in the limit of zero energy loss, the upper integration 
limit in Eq. (3) must be truncated to some value less than 
the primary electron energy. It would seem that reasonable 
lower and upper integration limits for Eq. (3) would be (E-
bj)/2 and E-bj, respectively, where bj is the binding energy 
of the level. It turns out, however, that better agreement with 
experimental stopping-power values for aluminum and gold 
are obtained by using lower and upper integration limits of 
E/2 and E-bj/2, resulting in a stopping power computed 
from, 

SE ≡ ∑
j

Zj 
E/2

E−bj /2
E − E′RBED,jE → E′dE′, 14

 
where RBED,j is the portion of the RBED cross section for 
energy level j. Calculated stopping powers tend to be quite 
sensitive to the limits chosen for the energy integrations. 
This warrants further investigation. 

Kinetic and binding energies for aluminum and gold for 
use in Eqs. (12a) and (14) are obtained from the LLNL da-
tabase [6]. Fig. 2a. shows a comparison of the aluminum 
stopping power computed using the RBED differential scat-
tering cross section with NIST data [7] and experimental 
values from the Joy database [8]. The Joy references refer to 
the references in the Joy report [8]. The RBED values are 
obtained from Eq. (14) by applying an adaptive integration 
routine to perform the energy integral. The agreement is 
very good for electron energies down to 20 eV with the Joy 
Ref. 89 data, using E- bj/2 as an upper bound of the integra-
tion. 

 
Fig. 2a. Comparison of Al stopping power computed from 
RBED differential scattering cross section with NIST and 

experimental values. 
 

Fig. 2b. shows a similar comparison for gold. Agree-
ment for gold with the Joy Ref. 47 data is very good for 
energies down to 1 keV and tolerable below for energies 
below 1 keV. Without error bars on the experimental values, 
it is difficult to say whether the differences are due to model 
uncertainty, experimental uncertainty or both.   

 

 
Fig. 2b. Comparison of Au stopping power computed from 
RBED differential scattering cross section with NIST and 

experimental values. 
 
IV. MMS RESULTS 
 

Several MMS test problems are presented in this sec-
tion to investigate the utility of the energy-FE-weighted 
cross sections. In the first MMS test problem, standard MG 
cross sections and stopping powers, computed by using a 
step-discontinuous energy basis, are utilized. A simple 
MMS angular flux solution is used that is expected to pro-
vide a numerically “exact” solution (to within round-off and 
iterative convergence errors). The test geometry consists of 
two regions (gold-aluminum) in one spatial dimension, with 
cross sections and stopping powers obtained from the 
RBED scattering kernel. 

The second test problem uses energy-FE-weighted 
cross sections computed from linear energy bases. The 
MMS angular flux solution is 7th-order in angle, designed to 
test scattering moments up to 7th order. Like the previous 
test problem, this test problem uses the RBED scattering 
kernel and should provide numerically exact solutions. The 
third and final test problem utilizes a simpler scattering ker-
nel so that an analytic MMS source term may be computed. 
This test problem is designed to be exactly representable in 
space and angle, but not in energy, so that the solution con-
vergence with energy-mesh refinement can be investigated. 
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1. Numerically Exact Test Problem Using RBED MG 
Cross Sections 

 
In this test problem, standard MG cross sections are uti-

lized, computed by using step-discontinuous energy basis 
functions. The spatial geometry is two-region aluminum-
gold in one spatial dimension. Electrons with maximum 
energy of 1 MeV are modeled using 40 uniform energy el-
ements, SN angular treatment using S8 angular quadrature, 
DFE-spatial discretization and P1 scattering. Energy-FE 
scattering cross sections are computed from Eq. (11b) using 
step energy basis, using an adaptive integration routine to 
evaluate the energy integrals. Group-average restricted 
stopping powers are computed from Eq. (14), also using an 
adaptive integration routine. A maximum energy loss of 20 
keV is used to demark the CSD and MG-Legendre treat-
ments.  

The MMS solution for this test problem is 

MMSx,, E  x1  E, 15a
 

and the corresponding MMS fixed source is 

QMMSx,, E    x t,g 1  E − x1  SR,g
 

− xE0,g  31,g , E ∈ Eg,l , Eg,u , 15b

where Eg,l and Eg,u are the lower- and upper-energy bounds 
of energy element g. 

For each energy element, a linear system is constructed 
from the spatial and angular discretization of the Boltz-
mann-CSD equation, which is solved iteratively with a 
GMRES algorithm with a convergence tolerance of 10-12. 
The maximum relative and absolute error norms over all of 
the energy elements are listed in Table I. The error norms 
are near the convergence tolerance of the GMRES itera-
tions, indicating that the algorithm has been implemented 
correctly. 

 
Table I. Max error norms of test problem 1 

 
Error metric L2 error norm 

Absolute 9.85x10-11 
Relative 1.97x10-10 

 
2. Numerically Exact Test Problem Using RBED FE-
Weighted Cross Sections 
 

In this section, energy-FE weighted cross sections using 
linear energy basis functions from the RBED scattering ker-
nel are utilized. Cross sections are computed for electrons 
with a maximum energy of 1 MeV in aluminum, with a log-
arithmic energy mesh, including 10 energy elements. A 
scattering cosine of 0=0.99 is used to demark the CSD and 
MG-Legendre treatments, with scattering events with scat-
tering cosines greater than 0 included in the restricted stop-
ping power and those with scattering cosines less than 0 
included in the catastrophic scattering. 

The MMS angular flux solution is linear in space and 
energy, and 7th-order in angle, in order to test scattering 
cross section moments up to 7th order. The angular depend-
ence of the MMS angular flux is shown in Fig. 3. 

MMSx,, E  xE∑
n0

7

n. 16a

 
The angular dependence of the MMS angular flux solution 
is shown in Fig. 3. 

 
Fig. 3. Angular dependence of the MMS angular flux solu-

tion for test problem 2. 
 

The MMS source term for this test problem is fairly 
complicated, and has been computed by Maple [8] and is 
given in Eq. (16b), 

QMMSx,, E  E  xE〈 t   xE〈SR   

 xEuSR
u − xElSR

l ∑
n0

7

n

− xE 176
105

〈s,0   248
105

〈s,1   18
7
2 − 6

7
〈s,2 

 

 314
99

3 − 314
165

 〈s,3   26
11

4 − 156
77

2  78
385

〈s,4 
 

 34
13

5 − 340
117

3  170
273

 〈s,5 
 

 6 − 15
11

4  5
11

2 − 5
231

〈s,6 
 

 7 − 21
13

5  105
143

3 − 35
429

 〈s,7  . 16b
 

The angle brackets < > indicate energy-FE weighted stop-
ping-power and cross-section values. 

A linear system is constructed by using an SN angular 
treatment with S16 quadrature, DFE spatial differencing and 
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DFE energy differencing, resulting in a linear system for 
each energy element. The linear systems for each energy 
element are solved successively using a GMRES iterative 
algorithm. The convergence tolerance of the GMRES itera-
tions is 10-12. Table II lists the global error norms for this 
test problem, which are near the convergence tolerance 
specified for the GMRES iterations, indicating that the algo-
rithm is implemented correctly. 

 
Table II. Error norms of test problem 2. 

 
Error Metric L2 Error Norm 

Absolute 4.28x10-12 
Relative 1.02x10-11 

 
3. Numerically Inexact Test Problem Using Energy-FE 
Weighted Cross Sections from a Simpler Scattering 
Kernel 

 
This test problem makes use of a simpler scattering 

kernel than the RBED model, in order to facilitate the ana-
lytic computation of an MMS source term. In order to mim-
ic electron scattering, a cross section kernel is desired that is 
highly forward peaked and large for small energy transfers. 
Eq. (17) shows a differential scattering cross section with 
these properties, 

s0, E → E′ 
0 − 1 − E  E′

E   − E′ , E  E′, 17

where  is a small parameter chosen to tune the gradient of 
the function for small energy loss. The energy dependence 
of the scattering kernel is shown in Fig. 4. for =0.01. 

 
 

Fig. 4. Scattering kernel for test problem 3 for =0.01. 
 

The total cross section is for this scattering kernel is 
given by 

 tE  
Ecut

E dE′

E   − E′  ln E   − Ecut
 , 18

 
where Ecut is the lower-energy cutoff. The scattering mo-
ments are given by 

s
l E′ → E 

Pl1 − E′  E
E′   − E

. 19
 

For this scattering kernel, the MMS source term is given by 

QMMSx,, E  
∂MMS

∂x   tEMMSx,, E
 

−∑
l0

L
2l  1

2
Pl 

−1

1
Pl′

 


E

Emax Pl1 − E′  E
E′   − E

MMSx,′, E′d′dE′, 20
 

where Emax is the maximum energy. For an MMS angular-
flux solution of  

MMSx,, E 
x1  

E
21

 
the MMS source term may be computed analytically, 

QMMSx,, E  ln E   − Ecut


x1  
E  

1  
E

− ln E
Emax

Emax   − E


x
E −   

− x
E −  E  1 ln E

Emax
 1   ln Emax   − E

 . 22
 

 
Fig. 5. Convergence of error with energy-mesh refinement. 

 
For a value of  of 0.01 MeV, an upper energy Emax=1 

MeV, and a lower-energy cutoff, Ecut=20 keV, S8 angular 
quadrature, and DFE energy and spatial approximation, the 
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numerical angular flux solution is obtained with a GMRES 
algorithm. The error norms as a function of number of ener-
gy elements is shown in Fig. 5. Results are shown for both a 
linear energy mesh and for a logarithmically-distributed 
energy mesh. For a linear energy mesh, most of the error is 
from the lowest-energy group. Using a logarithmically-
distributed energy mesh, substantially reduces the error 
norm, as shown in Fig. 5. The convergence rates for the 
linear and log mesh results are 1.36 and 1.29, respectively, 
somewhat less than the order-2 convergence rate expected 
for energy-DFE discretization with linear basis functions. 
 
V. SUMMARY AND COMMENTS 
 

The evaluation and application of energy-FE weighted 
scattering cross sections has been described. A particular 
form of the electron inelastic scattering kernel, the RBED 
formula, has been used to compute stopping powers and 
cross sections for an energy-DFE discretization of electron-
scattering cross sections for electron transport applications. 
Stopping powers computed with the RBED formula have 
been compared to experimental values for two elements, 
aluminum and gold. Comparison with additional elements 
would be enlightening. The computed stopping-power val-
ues are sensitive to the limits of integration used, and this 
behavior could be investigated further. Furthermore, since 
the error information on the measured stopping powers tend 
to be lacking, further evaluation of the stopping power data 
is in order. 

Applying both MG and energy-FE weighted cross sec-
tions to MMS test problems shows that basically “exact” 
results may be obtained for MMS test problems where the 
algorithm should be able to exactly model the problem pa-
rameters. Furthermore, a test problem than is not exactly 
modelable shows convergence with energy-mesh refine-
ment, though with a convergence rate less than the expected 
value of two. 

The partition between a Boltzmann treatment and a 
CSD treatment is determined either by specifying an ener-
gy-loss value of a scattering cosine value to demark the two 
treatments. It would be instructive to attempt to determine 
optimal values of this partition, providing the most accurate 
possible results. Furthermore, the relationship between the 
CSD term and the -function down-scatter term could be 
investigated. Both terms decrease energy without direction 
change, but are numerically very different. 

For simplicity, all of the test problems considered here 
are one dimensional in the spatial variable, and it would be 
instructive to test the energy-FE weighted cross sections in 
some two- and three-dimensional test problems. Also, the 
test problems considered here used linear energy basis func-
tions, and it would be interesting to use quadratic energy 
basis functions, and determine convergence rates with ener-
gy mesh refinement. 

In this work, only the electron inelastic scattering was 
considered. In order to generate useful electron scattering 

cross all of the electron physics will need to be considered, 
include electron elastic scattering. The Fokker-Planck (FP) 
angular redistribution term has been neglected in this work. 
This term is thought to be small, but could be investigated 
for the elastic scattering cross sections. 
 
ENDNOTES 
 
aSandia National Laboratories is a multi-mission laboratory 
managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the 
U.S. Department of Energy’s National Nuclear Security 
Administration under contract DE-AC04-94AL85000. 
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