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Abstract - In this paper, two distinct “nonclassical" particle transport theories – in which the distribution
function P(s) for the distance s between collisions is not exponential – are discussed. The two nonclassical
theories were developed to describe different physical problems, and the mathematical transport equations
that arise from the two theories are different. Nonetheless, we show in this paper that by means of a physically-
motivated transformation, it is possible to derive one of the theories from the other. Our analysis also includes
boundary conditions for finite media; previous publications on nonclassical transport have usually only
considered infinite media.

I. INTRODUCTION

During the previous decade, two distinct “nonclassi-
cal” theories of particle transport – in which the distance-
to-collision is not exponential – have been independently and
almost simultaneously developed. Both new theories require
an “expanded” phase space that includes an extra independent
variable s ≥ 0, having the dimension of space. In this paper,
we show that under certain circumstances, the two theories are
mathematically equivalent.

The two nonclassical theories were developed to mathe-
matically model different problems. One of the theories was
proposed to model an ensemble-averaged particle transport
process in a statistically random medium [1, 2, 3, 4, 5, 6, 7, 8].
[An often-considered random medium consists of a spe-
cific solid material containing randomly-distributed holes, or
“voids," which can have random sizes and shapes. Systems of
this type would be (i) a block of Swiss cheese, (ii) a container
of boiling water at an instant in time, or (iii) a large dense
fog or cloud. This is the type of random system considered
in this paper.] For each specific realization of this system,
the distance-to-collision is a piecewise exponential function,
but the ensemble-averaged distance-to-collision distribution
function P(s), where s is the distance between collisions, is
not exponential or piecewise-exponential. The idea underly-
ing this theory is to develop a particle transport equation in
which the distribution function for the distance-to-collision is
equal to the non-exponential P(s), while the collision process
is consistent with the correct physics. [If a particle experi-
ences a collision in the solid-with-random-voids, the collision
must occur in the solid. Therefore, the scattering law for the
solid should determine the scattering term in the nonclassical
transport equation.]

The resulting nonclassical theory preserves the correct
ensemble-averaged P(s) and the correct scattering physics,
but in no other sense is this theory known to be exact. The
nonclassical transport equation arising from this approach was
hypothesized; it was not derived by a rigorous mathematical
procedure. In this nonclassical equation, s is interpreted as the
distance from the previous collision, so we refer to this theory
as the backward nonclassical transport theory.

The other nonclassical theory arose by examining particle

transport problems in which the locations of the scattering
centers are not random – but instead, are located on a fixed,
spatially periodic grid – and taking a suitable “Boltzmann-
Grad” limit in which the the size of the scattering centers
and the distance between them simultaneously shrink to zero
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. In the resulting theory, s
is physically interpreted as the distance to the next collision, so
we refer to this theory as the forward nonclassical transport the-
ory. The stated motivation for the development of this theory
was that the researchers wanted to understand the effect that
would occur in kinetic theory if it could not be assumed that
the locations of the scattering centers occur randomly in space,
but rather, are strongly correlated: “The periodic Lorentz gas
... is one example of this type of situation. Assuming that
heavy particles [scattering centers] are located at the vertices
of some lattice in the Euclidean space clearly introduces about
the maximum amount of correlation between these heavy par-
ticles. This periodicity assumption entails a dramatic change
in the structure of the equation that one obtains under the same
scaling limit that would otherwise lead to a linear Boltzmann
equation" [16]. The new equation obtained in this work is
sometimes called a “generalized" Boltzmann equation. In this
paper, we refer to it as the “forward nonclassical" Boltzmann
equation.

(Note: The Boltzmann-Grad limit of a periodic Lorentz
gas does not perfectly model any common physical system.
Presumably, one could consider more realistic intermediate
scenarios in which the positions of the scattering centers are
random but correlated. However, this more difficult problem
has not been studied yet.)

Mathematically, the forward and backward nonclassical
transport theories are described by (different) linear transport
equations on an expanded phase space that includes the extra
independent variable s, which has a different interpretation in
the two theories. In a recent PhD thesis [19], Krycki showed
that for infinite medium problems, the backward nonclassical
problem is similar to the adjoint of the forward nonclassical
problem. However, the forward and backward nonclassical
equations are not strict adjoints of each other, and until now, it
was not known whether these two equations were related to
each other in a precise way.

The purpose of this paper is to go beyond Krycki’s result
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and show that for finite-medium problems with suitably pre-
scribed internal sources and incident boundary fluxes, (i) the
forward nonclassical transport problem can be directly derived
from the backward nonclassical transport problem, by means
of a physically-motivated transformation, and (ii) the solutions
of the forward and backward problems yield the same physical
reaction rates at which particles collide with the scattering
centers.

Thus, the analysis in this paper shows that although the
forward and backward problems are described by different
mathematical equations that have different solutions, the two
theories are basically equivalent. Also, this paper is the first
to consider boundary conditions for nonclassical transport.
Previous papers on nonclassical transport methods have treated
only infinite media. (The analysis in this paper does not require
a finite medium; the medium can be infinite.)

The remainder of this paper is organized as follows.
In Section II we establish notation by describing a “classi-
cal" transport problem for a homogeneous, monoenergetic,
isotropically-scattering system. For this problem, the distribu-
tion function for distance-to-collision is exponential [see Eq.
(3)]. In Section III we describe the “backward" nonclassical
transport equation, which is based on the classical problem
from Sec. II but contains the extra independent variable s and
the non-exponential distribution function P(s). Section IV
presents the “forward" nonclassical transport equation, which
also contains s and P(s). In Section V, we show that when P(s)
is exponential, the two nonclassical Eqs. (8) and (13) reduce
to the classical transport Eqs. (1). In Section VI we formu-
late and use a physically-motivated transformation to derive
the Forward Nonclassical Transport Problem [Eqs. (13)] from
the Backward Nonclassical Transport Problem [Eqs. (8)]. A
concluding discussion is given in Section VII.

II. A CLASSICAL TRANSPORT PROBLEM

To set the stage, let us consider a specified 3D physical do-
main V , containing a known internal isotropic source Q(x) and
a known incident boundary angular flux Ψb(x,Ω). For simplic-
ity, the transport process in V is assumed to be monoenergetic,
with isotropic scattering. (The inclusion of energy-dependence
and anisotropic scattering would be straightforward.) If
Σt = total cross section and Σs = scattering cross section, the
classical Boltzmann transport equation and boundary condi-
tion for the angular flux Ψ(x,Ω) are given by:

Ω · ∇Ψ(x,Ω) + ΣtΨ(x,Ω) =
1

4π

[
ΣsΦ(x) + Q(x)

]
,

x ∈ V , Ω ∈ 4π , (1a)
Ψ(x,Ω) = Ψb(x,Ω) , x ∈ ∂V , Ω · n < 0 , (1b)

where

Φ(x) =

∫
4π

Ψ(x,Ω′)dΩ′ = scalar flux . (2)

For the classic transport process described by Eqs. (1), the
distribution function for the distance-to-collision s is easily
shown to be exponential:

P0(s) = Σte−Σt s , 0 ≤ s < ∞ . (3)

If V were to consist of disjoint homogeneous subregions,
the only change to Eq. (1a) would be that Σt and Σs would
become piecewise constant functions of x. In this situation, the
distribution function for distance-to-collision would become
piecewise-exponential, and space- and angle-dependent:

P0(x,Ω, s) = Σt(x + sΩ)e−
∫ s

0 Σt(x+s′Ω)ds′ . (4)

III. “BACKWARD” NONCLASSICAL PROBLEM

If the physical system V were to become a random union
of disjoint homogeneous subregions, and the distribution func-
tion P0(x,Ω, s) were to be ensemble-averaged over all possi-
ble realizations of the random system, the resulting distribution
function would become a non-piecewise-exponential function:

P(s) = 〈P0(x,Ω, s)〉 , (5)

where 〈·〉 denotes “ensemble average,” and we have assumed
that the ensemble-averaging process is sufficiently random
and uniform to remove all space and angle-dependence from
〈P0(x,Ω, s)〉.

It has been shown [1, 2] that a particle transport process,
having (non-exponential) P(s) as its distribution function for
distance to collision, has an s-dependent total cross section
Σt(s) satisfying:

Σt(s)ds = the probability that a particle, having traveled
path length s since initiating a flight path,

will collide with a scattering center
while traveling the extra path length ds . (6)

Here, a particle specifically “initiates a flight path” at the
instant (i) it is born in V from the internal source Q, (ii) it
enters V through the outer boundary ∂V , or (iii) it scatters.
At these instants, s = the path length the particle has traveled
= 0, and s increases in a timelike manner as the particle streams
along its flight path. The path-length-dependent Σt(s) and non-
exponential P(s) are related by:

Σt(s) =
P(s)∫ ∞

s P(s′)ds′
, (7a)

and
P(s) = Σt(s)e−

∫ s
0 Σt(s′)ds′ . (7b)

A “nonclassical” transport problem describing this trans-
port process, applied to the problem described by Eqs. (1),
was formulated in [1, 2] as:

∂ f
∂s

(x,Ω, s) + Ω · ∇ f (x,Ω, s) + Σt(s) f (x,Ω, s)

=
δ(s)
4π

F(x) , x ∈ V , Ω ∈ 4π , 0 < s , (8a)

F(x) = c
∫

4π

∫ `(x,Ω′)

0
Σt(s′) f (x,Ω′, s′)ds′dΩ′ + Q(x) . (8b)

This equation is supplemented with the boundary condition:

f (x,Ω, s) = Ψb(x,Ω)δ(s) ,
x ∈ ∂V , Ω · n < 0 , 0 < s . (9)
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In Eqs. (8a) and (9), δ(s) is the usual delta function. In
Eq. (8b),

c = scattering ratio

= probability that when a particle collides with

a scattering center, the particle will scatter , (10)

and

`(x,Ω) = the distance from x to ∂V in the

direction of −Ω [see Fig. 1] . (11)

In Eqs. (8), all particles initiate flight paths (from either the
boundary source, the internal source, or the scattering source)
with s = 0. As a particle streams away from the beginning of
its flight path, the path-length traveled s increases in a timelike
manner, and Σt(s)ds = the probability that a particle has an
interaction with a scattering center between s and s + ds.
When a particle collides with a scattering center, classical
transport physics applies: the particle scatters isotropically
with probability c.

Figure 1: The System V and the Function `(x,Ω)

In Eq. (8b), c is assumed to be independent of s. [If c de-
pended on s, c(s′) would occur within the integral in Eq. (8b).]
We refer to Eqs. (8) as the “backward" nonclassical version
of the classical problem defined by Eqs. (1), because for any
phase space point (x,Ω, s), the variable s refers “backward"
to the spatial point x − sΩ at which the particle initiated its
flight path.

Remark: Previous papers on the backward nonclassical
transport equation have usually considered steady-state prob-
lems in an infinite medium with a localized source, in which
the neutron flux→ 0 as |x| → ∞. Here we consider steady-
state backward nonclassical transport in a bounded system
V , in which particles that enter the system through the outer
boundary ∂V are treated by the same random process to deter-
mine distance-to-collision as particles that are born internally
(due to the source Q) or that scatter.

IV. “FORWARD” NONCLASSICAL PROBLEM

An alternative nonclassical theory has also been formu-
lated. The extra independent variable s > 0 occurs in this
theory as well, but it has a different physical interpretation.

The alternative theory arises by considering a macroscopic
transport process in which macroscopic scattering centers are
placed in a 2D or 3D system at fixed, regular positions. (The
scattering centers form a periodic lattice, called a “Lorentz
gas.") Then a macroscopic “ball" or “sphere" is set in motion
between the scattering centers. The ball travels in a straight
line until it collides with a scattering center. When a collision
occurs, the ball reflects specularly away from the scattering
center, with no loss of energy. (In 2D, the resulting transport
process would resemble the one generated by a pinball ma-
chine.) After the mathematical equations are set up to describe
this process, a “Boltzmann-Grad" limit is taken in which (i)
the size of the scattering centers, (ii) the size of the “ball" or
“sphere", and (iii) the distance between the scattering centers
all limit to 0. The result of performing this strict mathematical
limit is the following particle transport equation:

−
∂ψ

∂s
(x,Ω, s) +Ω · ∇ψ(x,Ω, s)

=
P(s)
4π

[
c
∫

4π
ψ(x,Ω′, 0)dΩ′ + Q(x)

]
,

x ∈ V , Ω ∈ 4π , 0 < s . (12a)

This equation is supplemented with the boundary condition

ψ(x,Ω, s) = Ψb(x,Ω)P(s) ,

x ∈ ∂V , Ω · n < 0 , 0 < s . (12b)

In Eqs. (12), particles do not initiate a flight path with
s = 0, but rather with s ≥ 0 randomly determined by the
distribution function P(s). (This is the case for particles that
enter the system through the outer boundary, particles that are
born from the internal source, and particles that scatter.) As a
particle streams along its flight path, s decreases, and at the
instant when s = 0, the particle collides with a scattering cen-
ter. When this collision occurs, the physical scattering physics
applies: the particle isotropically scatters with probability c.

We refer to Eqs. (12) as the “forward" nonclassical version
of the classical problem defined by Eqs. (1), because at any
phase space point (x,Ω, s), the variable s refers “forward" to
the spatial point x + sΩ where the particle will experience its
next collision.

Remark: Previous papers on the forward nonclassical
transport equation have usually considered a time-dependent
problem in an infinite medium, with no internal sources. Here
we consider a steady-state problem for a finite medium con-
taining internal and boundary sources. In the forward transport
Eq. (12a), particles that are born from Q or scatter begin their
flight paths by sampling the distance to collision s from the dis-
tribution function P(s). The boundary condition (12b) treats
particles that enter the system through ∂V the same way: their
flight paths in V begin with s sampled from P(s).

V. EXPONENTIAL PATH LENGTH DISTRIBUTION

If P(s) is exponential:

P(s) = Σte−Σt s , (13)
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where Σt = constant, then Eq. (7a) gives

Σt(s) = Σt = constant ,

and the backward nonclassical Eqs. (8) and (9) become:

∂ f
∂s

(x,Ω, s) +Ω · ∇ f (x,Ω, s) + Σt f (x,Ω, s)

=
δ(s)
4π

[
cΣt

∫
4π

∫ `(x,Ω′)

0
f (x,Ω′, s′)ds′dΩ′ + Q(x)

]
,

x ∈ V , Ω ∈ 4π , 0 < s < `(x,Ω) , (14a)

f (x,Ω, s) = Ψb(x,Ω)δ(s) ,

x ∈ ∂V , Ω · n < 0 , 0 < s . (14b)

Operating on these equations by

lim
ε→0

∫ `(x,Ω)+ε

−ε

(·)ds ,

using
f (x,Ω,−ε) = f (x,Ω, `(x,Ω) + ε) = 0 ,

and defining

Ψ(x,Ω) =

∫ `(x,Ω)

0
f (x,Ω, s)ds , (15)

we obtain:

Ω · ∇Ψ(x,Ω) + ΣtΨ(x,Ω)

=
1

4π

[
Σs

∫
4π

Ψ(x,Ω′)dΩ′ + Q(x)
]
,

x ∈ V , Ω ∈ 4π , (16a)

Ψ(x,Ω) = Ψb(x,Ω) , x ∈ ∂V , Ω · n < 0 . (16b)

Eqs. (16) are identical to Eqs. (1). Therefore, when P(s) is
exponential, the solution f (x,Ω, s) of the backward Eqs. (8)
yields the solution Ψ of Eqs. (1).

Also, if P(s) is exponential [Eq. (13)], then it is very
easy to show that the exact solution ψ(x,Ω, s) of the forward
nonclassical Eqs. (12) is:

ψ(x,Ω, s) = Ψ(x,Ω)P(s) , (17)

where Ψ(x,Ω) is the solution of Eqs. (1).
Thus, if P(s) is exponential, then the solutions of both

the forward and the backward nonclassical transport equa-
tions become fully consistent with the solution of the classical
transport Eqs. (1).

Next, we show that (i) a physically-motivated transfor-
mation allows one to directly derive the forward nonclassical
problem from the backward nonclassical problem, and (ii) the
physical reaction rates predicted by the backward Eqs. (8) and
the forward Eqs. (13) are identical. This transformation effec-
tively shows that the forward and the backward nonclassical
transport problems (13) and (8) are equivalent.

VI. ANALYSIS

We begin the analysis with the backward nonclassical
transport problem, Eqs. (8). The operator on the left side of
Eq. (8a) is a standard first-order partial differential operator, so
Eqs. (8) can be solved for f by the method of characteristics.
For 0 ≤ s′ ≤ `(x,Ω), this solution is:

f (x,Ω, s′) =
1

4π
F(x − s′Ω)e−

∫ s′

0 Σt(s′′)ds′′

+ Ψb(x − `(x,Ω)Ω,Ω
)
δ
(
s′ − `(x,Ω)

)
e−

∫ `(x,Ω)
0 Σt(s′′)ds′′ .

(18)

In Eq. (18), we replace s′ by s′ + s, x by x + sΩ, and `(x,Ω)
by `(x + sΩ,Ω) = `(x,Ω) + s to obtain

f (x + sΩ,Ω, s′ + s) =
1

4π
F(x − s′Ω)e−

∫ s′+s
0 Σt(s′′)ds′′

+ Ψb(x − `(x,Ω)Ω,Ω
)
δ
(
s′ − `(x,Ω)

)
e−

∫ `(x,Ω)+s
0 Σt(s′′)ds′′ .

(19)

Next, we multiply Eq. (19) by Σt(s′ + s) and operate by∫ `(x,Ω)
0 (·)ds′, obtaining:∫ `(x,Ω)

0
Σt(s′ + s) f (x + sΩ,Ω, s′ + s)ds′

=
1

4π

∫ `(x,Ω)

0
F(x − s′Ω)P(s′ + s)ds′

+ Ψb(x − `(x,Ω)Ω,Ω
)
P
(
`(x,Ω) + s

)
. (20)

At this point, we define the left side of Eq. (20) to be
ψ(x,Ω, s):

ψ(x,Ω, s) ≡
∫ `(x,Ω)

0
Σt(s′ + s) f (x + sΩ,Ω, s′ + s)ds′ .

(21)
The integral in Eq. (21) is representative of the collision rate
at the point x + sΩ, due to particles that initiated their flight
paths on the line x − s′Ω, 0 ≤ s′ ≤ `(x,Ω). [See Figure
2.] All these particles would of necessity stream through the
point x. Therefore, ψ(x,Ω, s) represents the particles at x,
traveling in direction Ω, that will collide with a scattering
center at x + sΩ (i.e. after traveling a further path length s).
This interpretation is consistent with the interpretation of the
solution of the forward nonclassical transport problem.

We now show that ψ(x,Ω, s), defined by Eq. (21), satisfies
the forward nonclassical transport Eqs. (12).

First, we set s = 0 in Eq. (21):

ψ(x,Ω, 0) =

∫ `(x,Ω)

0
Σt(s′) f (x,Ω, s′)ds′ ,

and then we operate by
∫

4π(·)dΩ′, obtaining∫
4π
ψ(x,Ω′, 0)dΩ′

=

∫
4π

∫ `(x,Ω′)

0
Σt(s′) f (x,Ω′, s′)ds′dΩ′ . (22)
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Figure 2: Streaming from x − s′Ω to x + sΩ

This shows that the physical scattering rate terms (the rates at
which particles collide with scattering centers) in the backward
Eq. (8b) and the forward Eq. (12a) are equal. Eqs. (8b) and
(22) allow us to write for both the forward and backward
problems:

F(x) = c
∫

4π
ψ(x,Ω′, 0)dΩ′ + Q(x) . (23)

We now combine Eqs. (20) and (21) to get

ψ(x,Ω, s) =
1

4π

∫ `(x,Ω)

0
F(x − s′Ω)P(s′ + s)ds′

+ Ψb(x − `(x,Ω)Ω,Ω
)
P
(
`(x,Ω) + s

)
, (24)

where F(x) is defined in terms of ψ by Eq. (23).
Replacing x by x − sΩ in Eq. (24), we get

ψ(x−sΩ,Ω, s)

=
1

4π

∫ `(x,Ω)−s

0
F(x − sΩ − s′Ω)P(s′ + s)ds′

+ Ψb(x − `(x,Ω)Ω,Ω
)
P
(
`(x,Ω)

)
=

1
4π

∫ `(x,Ω)

s
F(x − s′′Ω)P(s′′)ds′′

+ Ψb(x − `(x,Ω)Ω,Ω
)
P
(
`(x,Ω)

)
.

Operating on this result by − d
ds yields

−
d
ds
ψ(x − sΩ,Ω, s) =

1
4π

F(x − sΩ)P(s) ,

or

Ω ·∇ψ(x− sΩ,Ω, s)−
∂ψ

∂s
(x− sΩ,Ω, s) =

1
4π

F(x− sΩ)P(s) .

Replacing x by x + sΩ, we obtain:

−
∂ψ

∂s
(x,Ω, s) +Ω · ∇ψ(x,Ω, s) =

1
4π

F(x)P(s) . (25)

This is the forward nonclassical transport Eq. (12a), with F(x)
defined by Eq. (23).

Finally, we set x ∈ ∂V in Eq. (24), with Ω · n < 0. Then
`(x,Ω) = 0, and Eq. (24) simplifies to

ψ(x,Ω, s) = Ψb(x,Ω)P(s) . (26)

This is the forward nonclassical boundary condition (12b).
Thus, the preceding analysis shows that if f (x,Ω, s) is

the solution of the backward nonclassical transport Eqs. (8),
and ψ(x,Ω, s) is defined in terms of f by Eq. (21), then ψ
satisfies the forward nonclassical transport Eqs. (12). Also,
the physical scattering rates obtained for the two problems are
identical. [This follows from Eq. (22).]

Alternatively, if we are given the forward problem defined
by Eqs. (12), then using the same geometry, the same Q(x),
and the same P(s), we can define the backward problem de-
fined by Eqs. (8). Then all of the above results again hold, and
the forward problem can (as before) be re-derived from the
backward problem. In this way, a backward problem can be
derived from a forward problem, and the solutions of these
two problems yield the same physical reaction rates.

Thus, the forward and backward nonclassical transport
problems are fully equivalent. The forward problem can be
derived from the backward problem, and vice versa.

VII. DISCUSSION

To summarize, the physically-motivated transformation
given by Eq. (21) yields:

• Eq. (22), which shows that the rates at which particles
experience collisions in the backward Eqs. (8) and the
forward Eqs. (12) are identical.

• Eq. (25), which is the forward nonclassical transport
equation (12a) for ψ.

• Eq. (26), which is the forward nonclassical boundary
condition (12b) for ψ.

Therefore, Eq. (21) explicitly (i) defines the solution of the
forward nonclassical problem ψ in terms of the backward
nonclassical problem f , and (ii) shows that the solutions of
the forward and backward problems yield the same physical
rate at which particles collide with scattering centers. In effect,
Eq. (21) allows one to show that the forward and backward
problems are equivalent.

We have assumed that the path-length distribution P(s) is
identical for scattered, internal source, and boundary source
particles. In more general problems, this assumption may not
be valid. (The topic of boundary – and material interface – con-
ditions for nonclassical transport problems has received scant
attention in the literature.) For example, particles that scat-
ter or are born by the internal source might have path length
distributions determined by P(s), while particles that enter V
through ∂V might be subject to a different path length distribu-
tion Pb(s). It is currently an open question as to whether the
equivalence between the forward and backward theories holds
when Pb(s) , P(s).

Another point is that in previous papers, the forward
nonclassical theories have usually been considered for time-
dependent problems, while the backward nonclassical theory
has been considered only for steady-state problems. It would
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be of interest to develop a time-dependent backward theory,
and then to show whether (or not) this theory is equivalent to
the corresponding forward theory.

If the forward and backward nonclassical transport theo-
ries for a given problem are equivalent, then is there any benefit
to working with one theory versus the other? The answer to
this question may depend on the nature of the work being
contemplated. The backward theory has the possible disadvan-
tage of being more “singular”; the backward Eqs. (8) and its
boundary condition Eq. (9) both contain delta functions, while
the forward Eqs. (12) do not. On the other hand, the back-
ward nonclassical problem is quite similar to a time-dependent
classical problem, and numerical methods for the classical
problem might be more easily adaptable to the nonclassical
backward problem.

To briefly pursue this line of thought, a deterministic sim-
ulation of a nonclassical transport problem would probably be
analogous in difficulty and cost to solving a time-dependent
classical transport problem. [The distance from (or to) colli-
sion variable s in the nonclassical theories would be analogous
to time t in a classical theory.] Monte Carlo could be the
most straightforward way to numerically simulate nonclassi-
cal problems. One “simply” has to take an existing Monte
Carlo code and change P(s) from its currently exponential
form to its non-exponential form. A practical issue is that
it is also necessary to find an efficient way to sample from
the non-exponential P(s). First experiments in this effort are
described in a companion paper [20].
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