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Abstract – TIGER is a 2D/1D coupling 3D transport code developed by Nuclear Power Institute of China 

based on large-scale parallel computation. It employs 2D domain-decomposed parallel Matrix MOC in the 

radial direction and 1D finite difference diffusion in the axial direction. 2D domain-decomposed parallel 

Matrix MOC is accelerated with multi-group and multi-domain coupled PGMRES algorithm. Generally, 

2D planar problem are solved independently and parallel degree is natural in the axial direction. 

Combination of the parallel degrees of both radial and axial directions is used in TIGER to achieve the 

large-scale parallel computation. In this paper, a few variations of C5G7 benchmarks were created in the 

base of the published benchmarks. Reference results of these variations were provided by the Monte Carlo 

code RMC. To demonstrate the accuracy and efficiency of TIGER, C5G7 benchmarks and these relevant 

variations were calculated by TIGER, and the comparisons were made with the published results and 

Monte Carlo results. 

 

 

I. INTRODUCTION 

 

For typical nuclear reactors, geometry is much 

heterogeneous in the radial direction while relatively 

homogenous in the axial direction. Due to this 

geometrical advantage, a number of 2D/1D coupling 3D 

neutron transport codes have been developed in recent 

years, such as CRX
[1]

, nTRACER
[2]

, and MPACT
[3]

. In 

2D/1D methods, a 3D problem is transformed into a 

combination of 2D planar problems and 1D axial 

problems, which have a smaller computational burden 

than the original problem. 2D planar problems and 1D 

axial problems are coupled with axial and transverse 

leakage sources. Generally, these methods employ 2D 

MOC in the radial direction and 1D diffusion or 1D 

transport in the axial direction. 

TIGER
[4]

 is a 2D/1D coupling 3D transport code 

developed by Nuclear Power Institute of China based on 

large-scale parallel computation. TIGER employs 2D 

Matrix MOC in the radial direction and 1D finite 

difference diffusion method in the axial direction. Parallel 

degrees in both directions are combined via domain 

decomposition. 

In this paper, a few variations of C5G7 benchmarks 

were created in the base of the published benchmarks. 

TIGER was verified by the C5G7 benchmarks and these 

relevant variations. The keff results of all cases were 

calculated by TIGER, and the comparisons were made 

with the benchmark results or Monte Carlo results. 

Additionally, comparisons of pin by pin powers were 

made for some cases. 

The present paper is organized as follows. Section II 

describes in detail the methodologies of TIGER. Section 

III presents the description of C5G7 variations and the 

numerical results. Section IV provides the summary and 

conclusions. 
 

II. THEORY 

 

1. 2D/1D Coupling Scheme 

 

Starting from the 3D Boltzmann transport equation for 

a particular angle m and energy group g: 
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where  

 ,g m Ωr  = angular flux of angle m and energy group g 

 ,t g r  = total cross section of energy group g 

 , ,m m m m  Ω  is the angle of angular flux 

 , ,x y zr =  is the position 

 ,g mQ r Ω  = the sum of the fission and scattering sources. 

 

Integrating Eq. (1) over a 2D plane axially and 

moving the axial streaming to the right hand side, the 2D 

transport equation for plane k is yielded as Eq. (3). 
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In Eq. (3), the axial leakage source is denoted by 

neutron currents at the top (T) and bottom (B) of each 
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plane as in Eq. (4). The axial leakage source is assumed to 

be isotropic. 
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 , , ,Axial

g m kTL x y  = the axial leakage source of plane k 

kz  = the thickness of the plane k 

 ,

T

g kJ z  = net current of the top surface of the plane k 

 ,

B

g kJ z =net current of the bottom surface of the plane k 

 

Eq. (3) is a transport equation of 2D heterogeneous 

planes, which are solved by 2D Matrix MOC. Then, cells 

are homogenized by the 2D solutions of the planar 

problems. 

Similarly, integrating radially over homogenized cell 

p, we obtain 1D transport equation 
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where 

 , ,t g p z  = the homogenized cross section of cell p 

 , , , ,Radial

g m p m mTL z    = the transverse leakage source of cell p. 

 

For the transverse leakage source, isotropic 

assumption is also used, and it is expressed by net current 

as follows. 
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where  

x y  = side length of cell p 

,

p

g iJ = net current of i surface of cell p. 

 
Adopting diffusion approximation and solving Eq. (5) 

by finite difference method, we yield Eq. (7). 
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Solving Eq. (3) and Eq. (7) alternately, and 

transferring transverse and axial leakage terms between 

them in the framework of 3D CMFD formulation, results 

of Eq. (1) can be obtained.  

 

2. The Matrix Method of Characteristic and Spatial 

Domain Decomposition 

 

In the 2D/1D coupling scheme, the principal 

computational burden mostly lies in the solution of 2D 

planar problems. The reason is that typical reactors are 

very heterogeneous in the radial direction, and neutron 

transport equations are essential. Therefore, the 2D 

transport solver is important for the accuracy and 

efficiency of the 2D/1D coupling methods. In this work, 

2D planar problem Eq. (3) is solved by 2D Matrix MOC 

based on spatial domain decomposition.  

Matrix MOC (MMOC) 
[5]

 was proposed by Dr. Zhang. 

In Matrix MOC, a linear algebraic equation system 

(Eq.(8)) represented by coefficient-matrix is formed by 

sweeping only once, and then solving the linear system 

takes the place of repeatedly characteristics sweeping.  

 

 fx qA B  (8) 

 

In Eq. (8), A and B are coefficient-matrices with good 

numerical features, such as sparsity and symmetry. x is 

the vector containing scalar fluxes and angular fluxes at 

outer boundary in all energy groups. qf is only the fission 

source, while the scattering source is embedded in matrix 

A. Benefiting from the numerical features, the 

construction computation and memory demand of the 

coefficient-matrices can be reduced significantly. 

Once the spatial domain is decomposed as in Fig. 1, 

Eq. (8) for the whole problem domain is changed into Eq. 

(9) and Eq. (10) for each subdomain, where in and out

are incoming and outgoing angular fluxes at inner 

boundary, qs is the scattering source and C D E F are 

corresponding matrices. Eq. (11) is the continuous 

boundary condition at inner boundary. Matrices C D E F 

have good numerical features, too. 

 

 
 

Fig. 1. Illustration of spatial domain decomposition 
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Eq. (9), Eq. (10), and Eq. (11) are fundamental 

equations of MMOC based on domain decomposition. As 

we can see, incoming angular fluxes at inner boundary 

in  are unknown when each subdomain is solved 

independently and in parallel. Initial guesses of 
in  and 

corresponding iterations are needed. In the ordinary way, 

in  iteration is fundamentally the slow Jacobi iteration. 

When the whole problem is divided into finer sub-

domains, the iteration cost of 
in

 
is significant. For this 

reason, we propose the multi-group and multi-domain 

coupled Parallel GMRES (MGMD PGMRES) algorithm 

to solve 2D planar problems with energy upscattering and 

domain decomposition. 

 

3. The Multi-Group and Multi-Domain Coupled 

PGMRES Algorithm 

 

Setting  ,
T

outx   in each subdomain as unknowns, Eq. 

(9) and Eq. (10) are transformed into Eq. (12). In Eq. (12), 

the scattering sources are all moved to the left hand side.  
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PGMRES is the parallel version of GMRES algorithm, 

one of the Krylov subspace iterative methods for linear 

systems. Like most Krylov methods, only multiplication 

operator of a matrix on a vector should be provided to the 

PGMRES interface. Specific to Eq. (12),  ,
T

outx  of each 

subdomain is input vector, and the left hand side 

represents the result of the multiplication operator, where 

in  is got from the neighboring subdomain by 

communication according to the continuous boundary 

condition at inner boundary, i.e. Eq. (11).  

In the MGMD PGMRES algorithm, convergence of 

iterations of 
in  at inner boundaries is improved 

compared with the ordinary Jacobi iteration. In this work, 

the PGMRES implementation is from PETSc 
[6]

 library, 

which is flexible and friendly to the users with reverse 

communication interfaces and matrix-free data structure. 

 

4. 1D Solver Embedded Into 3D CMFD  

 

Moving the radial leakage term to the left hand side of 

Eq. (7), we get Eq. (13). 
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Eq. (13) turns out to be the 3D CMFD equation. Thus, 

the 1D axial diffusion solver is embedded or hidden into 

the 3D CMFD formulation. 

It should be noted that the 3D CMFD equation is 

decomposed completely both in radial and axial directions, 

making it rough to handle. Similarly as the domain-

decomposed MMOC, MGMD PGMRES algorithm in 

matrix free mode is also used. The input vectors are the 

scalar fluxes of homogenized cells of each sub-domain. 

The left hand side of Eq. (13) represents the result of the 

matrix-vector multiplication operator. The matrix-vector 

multiplication operator is denoted by direct finite 

difference instead of explicit matrix. In other words, for 

the surface 1

2
c   in Fig. 2, the net current in Eq. (13) is 

expressed as Eq. (14). 

 

 
 

Fig. 2. Illustration of net current by direct finite difference  
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1
2
, ,c g CMFD

J


= net current at surface 1

2
c   

, ,c g CMFD = the CMFD scalar flux of cell c 

1
2
,c g

D


= effective diffusion coefficient based on diffusion 

theory 

1
2
,

ˆ
c g

D


= the current correction factor 

cD = the diffusion coefficient of cell c 

cx = the length of cell c. 

 

For surface 1

2
c   at the inner boundary resulting from 

the domain decomposition, cell 1c   belongs to the 

neighboring sub-domain. Therefore, scalar flux 1, ,c g CMFD   

is obtained by communication from neighboring process. 

 

5. Large-scale Parallel Computation Model 

 

In this 2D/1D coupling scheme, 2D planar problems 

are solved independently, and the axial parallel degree is 

natural. For the 2D planar problems, domain-decomposed 

MMOC is used, so the radial parallel degree exists. 
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Straightforwardly, large-scale parallel computation can be 

realized by combination of the parallel degrees of both 

radial and axial directions. According to the theory, 

TIGER code is developed. 

In TIGER, each MPI process deals with a sub-domain 

of a 2D planar problem. All the processes are mapped into 

3D structure based on the domain decomposition. Radial 

and axial MPI communicators are defined to manage the 

message passing. For typical PWR reactors, the height is 

about 3.5m, and there are about 157 assemblies. Dividing 

the 3D reactor into 30 planes in the axial direction, and 

each process dealing with 1/4 assembly, totally 18840 

computing cores can be utilized. 

The calculation flowchart of TIGER code is shown in 

Fig. 3. 

 

 
 

Fig. 3. Flowchart of 2D/1D coupling code TIGER  

 

III. NUMERICAL RESULTS 

 

1. Benchmark Description and Computational 

Condition 

 

The C5G7 benchmarks 
[7,8]

 were published by the 

Organization for Economic Cooperation and 

Development Nuclear Energy Agency (OECD/NEA) to 

test the ability of modern deterministic transport methods 

and codes to treat such reactor core problems without 

spatial homogenization. A seven group set of cross 

sections were collapsed from WIMS-AECL 69 group 

library by DRAGON. The seven group cross sections are 

transport corrected and isotropic scattering.  

In 2003, the original benchmark specified a 2D and 

3D problem. In 2005, a second benchmark was created as 

an extension of the first which included multiple control 

rod configurations and were more challenging. In these 

two benchmarks, fuel, gap, and cladding materials were 

homogenized into “Fuel-Clad Mix”. In 2015, a more 

heterogeneous modification 
[1]

 of C5G7 benchmark was 

proposed, in which claddings were attached. Furthermore, 

the realistic C5G7 benchmark was mirrored by the 

reflective bottom to be more practical. 

The C5G7 benchmarks and relevant variations are 

analyzed using the TIGER code. The computational 

condition is: 6 polar angles in (0, ), 32 azimuths in (0,
2 ), ray spacing ~0.01 cm, ~30 meshes in each fuel cell. 

The calculation platform is a cluster with Intel 

SandBridge E5-2670 CPU linked by Infinite band 

network. 

 

2. 2D C5G7 Problem 

 

The benchmark model 
[7]

 consists of four 17 × 17 

PWR UO2/MOX assemblies distributed in a checkerboard 

pattern, as shown in Fig. 4.The overall dimensions of the 

2D configuration are 64.26 cm × 64.26 cm, while each 

assembly is 21.42 cm × 21.42 cm.  

 

 

(a) 

 

(b) 

Fig. 4. Geometries of 2D C5G7 problem. (a) Assembly 

configuration, (b) Core and pin-cell configuration 
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The 2D benchmark model was established in a 

thickness of 1 cm slice with a reflective boundary on its 

top and bottom to form a 3D problem to be calculated by 

TIGER. 

The mesh divisions of fuel cells and reflector cells are 

demonstrated in Fig. 5. As the interference effect between 

fuel and reflector are strong, finer mesh division is 

essential as in (b) of Fig. 5. If there is no special note, 

mesh divisions of following benchmarks are the same as 

Fig. 5. 

 

     
         (a)                      (b)                        (c) 

Fig. 5. Mesh division of C5G7 benchmarks with fuel-clad 

mix. (a) Fuel cells , (b) Fuel cells near reflector, (c) 

Reflector cells 

 

The eighth symmetric reactor was calculated with 55 

computer cores. The numerical results for 2D C5G7 

benchmark are demonstrated in Table I. The keff and pin 

power distribution agree well with the benchmark results. 

 

Table I. Numerical results of 2D C5G7 problem 

keff-Error (pcm) 37 

Assembly Power Error (%) 

Inner UO2 -0.035 

MOX 0.050 

Outer UO2 -0.031 

Pin Power Error (%) 

Max. Power Pin -0.052 

Min. Power Pin 0.585 

Max. Pin Power Error 0.966 

Pin Power Distribution Error (%) 

Mean 0.197 

RMS 0.265 

MRE 0.162 

Computational Time ( s ) 7.15 

 

3. The Original 3D C5G7 Problem 

 

For the 3D configuration 
[7]

 , the fuel assemblies are 

192.78 cm in the z direction (as shown in Fig. 6) and an 

additional 21.42 cm water reflector is added axially. The z 

boundary conditions are reflected below and vacuum 

above. 

10 planes were divided axially, and 100 computer 

cores were used. The computational time is 163.9 s. The 

numerical results for the original 3D C5G7 problem are 

demonstrated in Table II, in which the TIGER results 

agree well with the benchmark results. 

 

 
Fig. 6. Axial configuration of the original 3D C5G7 problem 

 

Table II. Numerical results of the original 3D C5G7 problem 

 Reference TIGER Error 

keff 1.18381 1.18419 38 pcm 

Inner UO2 492.9 492.6 -0.062% 

MOX 211.8 211.8 0.018% 

Outer UO2 139.6 139.7 0.094% 

Max. Power Pin 2.5000 2.4962 -0.151% 

Min. power pin 0.2300 0.2332 1.391% 

 

4. The Extended 3D C5G7 Problem 

 

For the extended benchmark 
[8]

, which includes 

control rods, the core geometry was reduced axially as 

shown in Fig. 7. Three cases named Unrodded, Rodded A, 

and Rodded B with different control rod positions were 

defined.4 planes were divided axially, and 220 computer 

cores were used. The computational time is about 10.5 s.  

 

Table III. Numerical results of the extended 3D C5G7 problem 

Benchmark  

Case 

Unrodded 

Case 

Rodded 

A Case 

Rodded 

B Case 

Eigenvalue Error  

(pcm) 
-97 -62 -110 

Pin Power 

Error (%) 

Max. 1.50 1.13 1.37 

Mean 0.26 0.22 0.28 

RMS 0.37 0.30 0.39 

MRE 0.18 0.18 0.24 

Assembly 

Error (%) 

Inner  -0.08 0.01 -0.23 

MOX 0.01 -0.03 0.11 

Outer 0.24 0.05 0.20 

Computational  

Time (s) 
10.2 10.4 10.7 

 

The numerical results for the extended 3D C5G7 

problem are demonstrated in Table III. The eigenvalue 

UO2 MOX
Reflector

re
fl
ec
ti
ve

vacu
u
m

vacuum

reflective
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errors are separately -97 pcm, -62 pcm, -110 pcm for 

unrodded, rodded A, rodded B cases. For all three cases, 

the maximum axially integrated pin power error is 1.50%, 

and the maximum slice integrated pin power error is 4.0% 

located at slice #3. These results agree well with the 

benchmark reference. 
 

   
A-A cross section                               A-A cross section                            A-A cross section 

   
B-B cross section                               B-B cross section                            B-B cross section 

Unrodded                                          Rodded A                                        Rodded B 

Fig. 7. Control rod configurations of the extended 3D C5G7 problem 

 

5. The Modified 3D C5G7 Problem 

 

For the modified 3D C5G7 problem 
[1]

, claddings are 

attached explicitly to all fuel and guide tube pins as 

shown in Fig. 8, making it more heterogeneous. The 

computational conditions were the same as the 

extended one with the mesh division in Fig. 9. The 

computational time is about 14.5 s. 
 

 
 

Fig. 8. Pin-cell of the modified 3D C5G7 problem 

 

The keff results for the modified 3D C5G7 problem are 

demonstrated in Table IV, where the reference solutions 

were provided by Monte Carlo code RMC developed in 

Tsinghua University. As this problem is more 

heterogeneous, keff errors of TIGER increase from ~100 

pcm to ~150 pcm. 

 

     
         (a)                      (b)                        (c) 

Fig. 9.Mesh division of C5G7 benchmarks with explicit clad. 

(a) Fuel cells , (b) Fuel cells near reflector, (c) Reflector 

cells 

 

Table IV. keff results of the modified 3D C5G7 problem 

 Reference Error*, pcm TIGER Error, pcm 

Unrodded 1.09928 ±5 1.09777 -151 

Rodded A 1.08371 ±5 1.08250 -121 

Rodded B 1.03234 ±5 1.03072 -162 

* RMC standard deviation 
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6. The Realistic 3D C5G7 Problem 

 

The realistic 3D C5G7 problem was mirrored through 

the lower symmetry boundary of the extended and 

modified 3D C5G7 problems. To be realistic, no control 

rods were inserted from the bottom, as shown in Fig. 10 

(taking Rodded B as an example). 

 

 
A-A cross section           B-B cross section 

 

Fig. 10. Axial configuration of the realistic 3D C5G7 problem 

(Rodded B) 

 

8 planes were divided axially, and 440 computer cores 

were used. The computational times are respectively 

~11.0s and ~16.0s for the realistic extended and realistic 
modified problems. The keff results are demonstrated in 

Table V and Table VI. These results agree well with the 

reference results, with the maximum relative error 118 

pcm and 173 pcm. As the realistic modified 3D C5G7 

problems are more heterogonous, the keff errors are 

larger than those of the realistic extended 3D C5G7 

problems. 
 

Table V. keff results of the realistic extended 3D C5G7 

problem with fuel-clad mix 

 Reference Error*, pcm TIGER Error, pcm 

Unrodded 1.14387 ±5 1.14281 -106 

Rodded A 1.13742 ±5 1.13636 -106 

Rodded B 1.12166 ±4 1.12048 -118 

 

Table VI. keff results of the realistic modified 3D C5G7 

problem with explicit clad 

 Reference Error*, pcm TIGER Error, pcm 

Unrodded 1.10033 ±4 1.09865 -168 

Rodded A 1.09355 ±5 1.09194 -161 

Rodded B 1.07739 ±5 1.07566 -173 

* RMC standard deviation 

 

IV. CONCLUSIONS 

 

TIGER is a 2D/1D coupling whole-core transport 

code based on large-scale parallel computation, in which 

spatial domain decomposition was radially adopted and 

combined with the natural axial parallel degree. In this 

paper, TIGER code was verified with the C5G7 

benchmarks and relevant variations. The overall accuracy 

of TIGER is encouraging, while the computation time is 

significantly reduced because of large-scale parallel 

computation. However, the errors increased for problems 

with much more heterogonous geometry. The reason 

might be the accuracy of 1D diffusion solvers in the 

axial direction. 
Future work will include implementing 1D SN or 1D 

MOC solver in the axial direction to improve the accuracy 

and testing TIGER on larger clusters. For the relevant 

variations of C5G7 benchmarks, pin power distributions 

should be tallied by Monte Carlo code and comparison 

should be made to evaluate the accuracy of pin power 

distribution by TIGER. 
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