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Abstract - Parallel Block Jacobi - Integral Transport Matrix Method (PBJ-ITMM) is a previously developed
transport iterative solution method which allows for solution of S N equations on massively parallel computer
systems without the use of complex sweep algorithms. Theory and experiments have shown PBJ-ITMM to
suffer severe iterative slowdown in problems with optically thin cells. We conjecture that this slowdown occurs
due to the asynchronous spatial domain decomposition which PBJ-ITMM employs becoming increasingly
ineffective as optically thin cells make the converged solutions in distant cells more coupled to each other. We
use the Source Iteration (SI) iterative method to precondition PBJ-ITMM both to assess the viability of the
combined method (which we term PBJ-ITMM-SI) for mitigating this iterative slowdown as well as to study the
iterative properties of PBJ-ITMM to help aid in future development of acceleration methods. We study the
spectral radius of PBJ-ITMM-SI theoretically using a Fourier analysis as well as computationally to show that
for a given scattering ratio, the spectral radius no longer approaches unity as the cells become optically thin.
Our study enhances our general understanding of PBJ-ITMM’s iterative process and establishes PBJ-ITMM-SI
to be most effective in heterogeneous problems which contain both optically thin and optically thick cells.

I. INTRODUCTION

PBJ-ITMM allows for a massively parallel transport so-
lution to be obtained in unstructured grids without the use of
complex sweep algorithms.[1] This is accomplished by divid-
ing the spatial domain into multiple sub-domains, all of which
are mathematically decoupled over a single iteration. With
lagged incoming angular fluxes, full transport solutions are ob-
tained over each sub-domain. The incoming angular fluxes are
then updated using the outgoing angular fluxes from adjacent
sub-domains and this iterative process repeats until conver-
gence of the sub-domain interface fluxes is observed. While
the benefit of a massively parallel solution in unstructured
grids without highly complex sweep algorithms is alluring,
it has been previously demonstrated through a Fourier anal-
ysis as well as computational experiments that PBJ-ITMM’s
spectral radius approaches unity as the cell size tends towards
zero, increasing the required number of iterations without
bound.[2] We conjecture that the cause of PBJ-ITMM’s itera-
tive slowdown in optically thin cells is due to the mathematical
decoupling of distant sub-domains which become more phys-
ically coupled with optically thin cells due to the increased
path length which particles travel.

We introduce SI preconditioning to study this slowdown
and as a potential tool for reducing it. Before formulating
the PBJ-ITMM-SI method, it is important to address the fact
that parallel execution of SI in unstructured grids requires the
complex sweep algorithms that PBJ-ITMM was introduced to
avoid.[3],[4] For this reason, we assume that all mesh sweeps
conducted for SI preconditioning are to be computed using
standard serial sweeps. Therefore, we preface this study with
the disclosure that improvement to PBJ-ITMM’s iterative prop-
erties due to SI preconditioning comes at the cost of only half
of the iterative process being computed in a massively parallel
system. Although this is an admittedly steep penalty, it comes
with the potential of eliminating the approach of PBJ-ITMM’s
spectral radius towards unity as cell size decreases, preventing

the required number of iterations from becoming arbitrarily
large.

In addition to studying the viability of PBJ-ITMM-SI, we
analyze the results from this study in order to enhance our un-
derstanding of the underlying causes of PBJ-ITMM’s iterative
slowdown. Eventually, an acceleration method for PBJ-ITMM
which does not inhibit it’s parallel nature as much would be
desirable. But due to the PBJ-ITMM’s input requiring angular
fluxes current acceleration methods which are used for acceler-
ating SI cannot be used, as they only update scalar fluxes. We
provide the observed evidence of PBJ-ITMM’s iterative behav-
ior in order to aid in the future development of acceleration
methods for PBJ-ITMM.

To analyze the iterative performance of PBJ-ITMM-SI we
observe the spectral radius trends. We do this theoretically
using a Fourier analysis which we then verify computationally.
We then provide additional computational experiments to as-
sess the effectiveness of SI preconditioning, including studies
in heterogeneous problems.

II. THEORY

1. FORMALISM OF ITERATIVE SCHEMES

For this study, we consider the case of one cell per sub-
domain as this maximizes the amount of lagged information,
and hence, represents the worst case scenario from an iterative
robustness standpoint. Additionally, we consider the AHOT-
N0 method for obtaining the needed auxiliary equations. For a
2-D problem with these specifications, the corresponding trans-
port equation for a non-multiplying medium with an isotropic
external source becomes the following, written for PBJ-ITMM
iteration (s+1/2). [5] Note that these equations must also be
supplemented by boundary conditions.
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The subscript m denotes the discrete ordinate index and
subscripts k and j correspond to cell (k, j). Additionally, wm
corresponds to the quadrature’s mth angular weight, c is the
scattering ratio, and the u+ and u- superscript on the angular
flux variables denote evaluation on outgoing and incoming
edges, respectively, on the edges of cell (k,j), u = x or y. These
equations are valid for any Weighted Diamond Difference
(WDD) scheme. In particular, we are interested in the AHOT-
N0 method, for which we use the following equation.[6]

αu,m,k, j = coth
(
Σt,k, j∆uk, j

2|Ωu,m|

)
−

2|Ωu,m|

Σt,k, j∆uk, j
(3)

Note that in Eqs. (1), the only quantities that are lagged to
iteration s are the incoming angular fluxes. Hence, this repre-
sents a full transport solution over each sub-domain, assuming
a prescribed incoming boundary angular flux.

To implement SI preconditioning, we then introduce the
following equations which, like Eqs. 1, must also be supple-
mented by boundary conditions.
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To implement the PBJ-ITMM-SI iterative method, Eqs.
(1) are solved for each sub-domain simultaneously by con-
structing and solving the matrix associated with the local sys-
tem of equations. The result from this solution which is then
passed to the SI iterative scheme in Eqs. (4) is the cell aver-
aged scalar flux, φ(s+ 1

2 )
k, j . Equations (4) are then solved globally

using a single mesh sweep per direction. From the SI solu-
tion, the cell outgoing angular fluxes, ψx+(s+1)

m,k, j and ψy+(s+1)
m,k, j are

passed to the next iteration as the incoming angular fluxes to
adjacent sub-domains. These are also the values which are
tested for convergence at the conclusion of each iteration.

2. PBJ-ITMM-SI Fourier Analysis

To theoretically analyze the iterative performance of PBJ-
ITMM-SI, we employ a Fourier analysis. For this analysis,
we consider an infinite homogeneous medium. We then use
this problem to determine the scaling of the error from the
combined iterative sequence. For simplicity, in the theoretical
analysis we determine the scaling of the error in the cell aver-
aged scalar flux due to SI followed by PBJ-ITMM. We verify
computationally that this scaling is the same as the scaling
of the error in the outgoing angular fluxes from PBJ-ITMM
followed by SI, which is the practical order of execution for
the method. By executing the theoretical analysis with SI fol-
lowed by PBJ-ITMM though, we eliminate the angular shape
of the error, thereby making the results cleaner.

To perform this Fourier analysis, we begin by subtracting
Eqs. (4) from their converged form to obtain,
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where,

δψ(s) ≡ ψ(∞) − ψ(s) (6)

Note that the iteration indexes in these equations are 1
2

lower that in normal SI equations to reflect that SI is being
performed first in the Fourier analysis. We now introduce the
following Fourier ansatz.
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In these equations, Φ(λx, λy) represents the magnitude of
the iterative error in the scalar flux at the specified frequencies,
fm represents the angular shape of the iterative error in the cell
averaged angular flux, and gu

m represents the angular shape of
the cell edge angular flux on the u face of the cell. Additionally,
sg is the signum function.
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We now substitute this Fourier ansatz into the residual
auxiliary equation, Eq. (5b), solve for fm, employ Euler’s
formula, and simplify to obtain the following expression.
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We now substitute the ansatz into the residual balance
equation, Eq. (5a). As we do this, we use the identity for
fm we just obtained as well as Euler’s formula to obtain the
following equation after simplifying.
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Note that in this equation we use the general indexes
u = x, y and v = y, x. We do this so that we obtain a general
expression for gu

m as opposed to separate expressions for gx
m

and gy
m.

In order to eliminate the gv
m term from this equation, we

take into account that the left hand side of the residual aux-
iliary equation, Eq. (5b) does not depend on the choice of u.
Therefore, we equate the right hand side of this equation with
superscript u to the right hand side with superscript v. We then
substitute the ansatz, Eq. (7c), and solve for gv

m to obtain the
following expression.
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We now substitute Eq. (10) into Eq. (9) to eliminate gv
m.

With this term eliminated, we can now solve the resulting
equation to obtain the following expression to represent the
iterative error in the outgoing angular fluxes.
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With an expression for the scaling of the iterative error
due to the SI step, we now examine the PBJ-ITMM step.
PBJ-ITMM with AHOT-N0 has been examined previously
by Fourier analysis.[5] During this analysis, the following
expression is obtained for the mapping of the error in the in-
coming angular flux to the resulting error in the cell averaged
scalar flux after the PBJ-ITMM iteration. Since scalar flux is
what PBJ-ITMM passes to SI and we are not interested in the
angular shape of the error, we begin with this expression to
determine the mapping of the error in the scalar flux before
the SI step to the error in the scalar flux after the two step
iterative process. The derivation of the following expression
is available in [5].
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We now introduce the following ansatz for the PBJ-ITMM
step.
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We substitute these two expressions into Eq. (13) and
simplify to obtain,
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Recall that from the SI step we obtained an expression
for Φ(s+ 1

2 )(λx, λy)gu
m, Eq. (12). Therefore, to obtain the scal-

ing of the error in the scalar flux after the combined iterative
sequence, we substitute this expression into the previous equa-
tion and divide by Φ(s)(λx, λy) to obtain,

Φ(s+1)(λx, λy)
Φ(s)(λx, λy)

=

M∑
m=1

[
γx

mχ
x,y
m exp

(−iΣtλxsg(Ωx,m)∆x
2

)
+ γ

y
mχ

y,x
m exp

(−iΣtλysg(Ωy,m)∆y
2

)]
(17)

where we define,
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Equation (17) is the final result of the Fourier analysis of
PBJ-ITMM-SI, providing the scaling of the error in the cell
average scalar flux as a function of the two Fourier variables
for the combined iterative sequence. We will also refer to this
expression as the eigenvalues, as the scaling of the combined
iterative sequence represents the eigenvalues of the iterative
operator.

III. RESULTS AND ANALYSIS

We compliment our theoretical analysis with a series of
computational experiments. First, we verify the PBJ-ITMM
capabilities of our FORTRAN code by comparing the spectral
radius estimates produced to those previously presented for
PBJ-ITMM with AHOT-N0. We then use this code to compu-
tationally verify the Fourier analysis for PBJ-ITMM-SI. With
the analysis verified, we provide additional computational ex-
periments including a study of PBJ-ITMM-SI’s performance
in heterogeneous mediums. We aim the analysis at exploring
the strengths and weaknesses of PBJ-ITMM-SI, as well as
demonstrate where the results give insight which expands our
overall understanding of PBJ-ITMM.

1. PBJ-ITMM Code Verification

Before presenting the results for PBJ-ITMM-SI, we briefly
verify the PBJ-ITMM capabilities of our code, as well as pro-
vide visual aid for the previously discussed iterative slowdown
in optically thin cells. We display the computationally esti-
mated spectral radii for PBJ-ITMM in Fig. 1. For this simu-
lation, we use a one cell problem with all reflective boundary
conditions to model the infinite homogeneous medium of the
Fourier analysis. Note that all computational spectral radius
esimates in this paper are obtained as the ratio of the L2 norms
of the iterative change in the outgoing angular fluxes for two
successive iterations.

Fig. 1. Numerically estimated spectral radius of PBJ-ITMM
for one cell with all reflective boundary conditions.

These computationally estimated spectral radii show
agreement with the previously obtained results shown in the
literature.[5]

2. PBJ-ITMM-SI Fourier Analysis Results

With the PBJ-ITMM capabilities of our code verified as
well as a frame of reference provided for comparison, we
examine the performance of PBJ-ITMM-SI. The theoretical
results were obtained using Mathematica. We begin by plot-
ting the real component of Eq. (17), the eigenvalues which
govern the iterative performance of PBJ-ITMM-SI versus λy
for various values of λx, Figs. 2 - 5.

From these eigenvalues, we are able to conclude that the
flat mode (λx = λy = 0) is the slowest converging mode
for PBJ-ITMM-SI. This is easily seen as the eigenvalues are
maximized for any given λx at λy = 0 Additionally, if we were
to chose any λy value and compare the eigenvalues between
the four graphs, we see that the graph for λx = 0 clearly has
the largest magnitude eigenvalue for all cases. One final note
is that we only display the real component of the eigenvalues
despite Eq. (17) having an imaginary component. We expect
the eigenvalues for PBJ-ITMM-SI to be only real and that the
imaginary components all cancel out. This was confirmed
by plotting each of these graph for the imaginary component,
verifying that they were all zero.
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Fig. 2. Theoretical PBJ-ITMM-SI eigenvalues for λx = 0.

Fig. 3. Theoretical PBJ-ITMM-SI eigenvalues for λx = π
8 .

Confirming that the flat mode is in fact the dominant
mode for PBJ-ITMM-SI, we plot this eigenvalue versus cell
size to observe the effect of SI preconditioning. In this graph,
Fig. 6, the lines represent the theoretical predictions generated
using Mathematica and the points represent the computational
estimates. These computational estimates were obtained using
a single cell, all reflective boundary condition problem to
simulate the conditions of the Fourier analysis.

Before analyzing these results, it is important to note two
facts about the method in which these computational estimates
were obtained. Firstly, recall that the Fourier analysis was
performed to obtain the scaling of the error in the cell averaged
scalar flux due to an SI iteration followed by a PBJ iteration.
In application, the iterative steps are the reverse of this, and
the convergence of PBJ-ITMM is formally based on the sub-
domain interface angular fluxes. To confirm that our Fourier
analysis is valid for the practical implication of PBJ-ITMM-
SI, the computational estimates were obtained by executing
PBJ-ITMM followed by SI, then estimating the spectral radius
using the outgoing angular fluxes.

Additionally, the SI operator only lags the scalar flux in
the scattering source. In practice however, the incoming an-
gular flux at the boundaries must also be lagged in the case
of reflective boundary conditions. This eliminates the syn-
chronous behavior of SI desired and in the case of our single
cell test problem, actually makes SI equivalent to Inexact Par-

Fig. 4. Theoretical PBJ-ITMM-SI eigenvalues for λx = π
4 .

Fig. 5. Theoretical PBJ-ITMM-SI eigenvalues for λx = π
2 .

allel Block Jacobi (IPBJ).[7] As we will present later, this has
a negative impact on the iterative performance. To avoid this
and represent the SI step as dictated by Eqs. (4), we modify the
SI routine in our code to converge the incoming angular fluxes
to balance with the lagged scattering source before proceeding
to the PBJ-ITMM step.

Upon analyzing Fig. 6, the first thing we note is that the
computational results confirm the theoretical predictions. We
also see that for all c values less than one, the spectral radius
no longer approaches unity as cell size decreases. Without SI
preconditioning, as the cell size is decreased, cells become

Fig. 6. Theoretically predicted (lines) and numerically esti-
mated (points) flat mode eigenvalues of PBJ-ITMM-SI.
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more mathematically coupled to distant cells (i.e. two distant
cells’ solutions become more dependent on each other). Since
PBJ-ITMM exchanges information between sub-domains only
in between iterations, this significant coupling between cells
that become separated by a number of cells which grows un-
bounded as the cell size decreases indicates that the number
of iterations required for these two cells to become "aware" of
a change to the others’ solution also grows without bound, re-
sulting in a lack of robustness. We see that SI preconditioning
achieved the desired iterative properties. While the spectral
radius is still larger in optically thin cells than in uniformly
thicker cells, the spectral radius remains bounded below unity
for all scattering ratios < 1, thereby achieving the desired ro-
bustness. As stated previously, we conjecture that this is due
to SI’s synchronous nature which allows all cells to become
"aware" of a change to another cell’s solution, on which its
own solution is dependent.

A feature of the PBJ-ITMM-SI spectrum which must be
noted is that SI preconditioning is far more effective at reduc-
ing the spectral radius for low scattering ratios. This is to be
expected as the lagged scalar flux in the scattering source of
the SI equations is known to cause ineffectiveness in problems
with scattering ratios close to unity. This unfortunately leads
to the smallest amount of benefit from SI preconditioning in
the slowest converging problems. Returning to the physical in-
terpretation of the PBJ-ITMM-SI iterative process, PBJ-ITMM
resolves particle collisions locally within a sub-domain, and
the SI step then allows these particles to stream through the
medium until their next collision. In a problem with a high
scattering ratio and optically thin cells though, particles can
scatter and consequently travel far across the domain many
times. The inability of SI to resolve collisions over the course
of a single iteration renders it ineffective at accounting for
this effect. For this reason, the ideal acceleration method for
PBJ-ITMM would be one which allows for information to be
transmitted synchronously across the entire spatial domain and
also for the resolution of collisions. Despite this shortcoming
though, SI preconditioning achieves iterative robustness for
all problems where c < 1, preventing the number of required
iterations from increasing without bound as cell size decreases.

Recall that the computational test problem used to verify
the Fourier analysis used one cell with all reflective boundary
conditions. A problem with one cell only excites the flat error
mode. Although observation of the individual modes shows
the flat mode to be the limiting mode, we conduct a finite
medium test to ensure that this is the case. From Table I, we
see that as the number of cells increases, the spectral radius
approaches the value estimated for the infinite medium by the
one cell test problem with reflective boundary conditions. This
confirms that the flat mode is the dominant mode, and hence,
governs convergence rate.

3. PBJ-ITMM-SI with Reflective or Periodic Boundary
Conditions

We must make note of an effect observed when these
spectral radius estimates were obtained with lagged boundary
incoming angular fluxes, as would be the case in actual imple-
mentation of a code to a problem with periodic or reflective

boundary conditions. When we estimate the spectral radius
of PBJ-ITMM-SI with lagged boundary conditions, we obtain
the spectral radius estimates shown in Fig. 7 for the infinite
homogeneous medium.

Fig. 7. Computational spectral radius estimations for PBJ-
ITMM-SI with lagged boundary conditions.

As expected, when the boundary conditions are lagged,
we lose robustness in optically thin cells. This is due to the
fact that the SI step is no longer completely synchronous. If
we consider a quadrant-symmetric nuclear reactor core which
is modeled by a quarter core with two reflective boundary
conditions, these reflective boundary conditions are lagged by
an iteration, effectively decoupling the four quadrants of the
reactor core over the course of an iteration, allowing them to
exchange information once between two consecutive iterations.
This generates the same mathematical decoupling of cells
which are physically coupled in SI that we are implementing
SI preconditioning to alleviate. This phenomenon renders
SI preconditioning ineffective for problems with reflective or
periodic boundary conditions.

From this behavior, we make note of another important
quality which a method must have in order to effectively accel-
erate PBJ-ITMM. If the solution method is to be applicable to
problems with reflective or periodic boundary conditions, then
the acceleration method must be one which does not lag these
boundary conditions. We see from Fig. 7 that the lagging of
this boundary condition eliminates the synchronous nature and
consequently, the robustness in optically thin cells.

While this does impose a restriction on the methods which
can be used to effectively accelerate PBJ-ITMM, it also sup-
ports our theory of the underlying cause of its iterative slow-
down. We attribute the slowdown in optically thin cells to
PBJ-ITMM’s asynchronous nature, and the reduction of this
slowdown in PBJ-ITMM-SI to the synchronous nature of SI.
These results further support this theory, as the removal of SI’s
synchronous nature caused it to be ineffective at speeding up
PBJ-ITMM in optically thin cells, suggesting that the speedup
observed when the boundary conditions were not lagged was
chiefly due to the synchronicity of SI.
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c = 0.1 c = 0.5 c = 0.9
0.5m f p 1m f p 5m f p 0.5m f p 1m f p 5m f p 0.5m f p 1m f p 5m f p

N = 2 0.0191 0.0233 0.0107 0.1043 0.1369 0.0814 0.2059 0.2980 0.3086
N = 4 0.0424 0.0451 0.0179 0.2294 0.2639 0.1362 0.4518 0.5734 0.5158
N = 8 0.0623 0.0585 0.0210 0.3386 0.3424 0.1601 0.6677 0.7448 0.6074
N = 16 0.0744 0.0639 0.0219 0.4046 0.3760 0.1677 0.7985 0.8187 0.6380
N = 32 0.0792 0.0657 0.0222 0.4321 0.3867 0.1699 0.8534 0.8431 0.6466
N = 64 0.0807 0.0663 0.0224 0.4406 0.3897 0.1708 0.8713 0.8500 0.6490
N = 128 0.0812 0.0667 0.0224 0.4431 0.3908 0.1711 0.8762 0.8518 0.6500
∞ 0.0813 0.0661 0.0201 0.4453 0.3913 0.1715 0.8781 0.8531 0.6505

TABLE I. Spectral Radius Estimates for Finite Medium Approaching That of Infinite Medium as Number of Cells Increases. (∞
corresponds to the spectral radius estimate of the infinite medium).

4. Comparison of SI, PBJ-ITMM, and PBJ-ITMM-SI

Since PBJ-ITMM-SI is the combination of two iterative
transport solution methods, we compare the combined itera-
tive method to each of the individual methods to determine
the added benefit of combining them in different problems.
We begin with the spectral radius trends for PBJ-ITMM-SI in
Fig. 6. We see that for the combined iterative method, the
spectral radius approaches the scattering ratio as the cell size
decreases. We also know the spectral radius of SI to be the
scattering ratio.[8] This indicates that as the cell size decreases,
the PBJ-ITMM iterations begin to have no effect on the rate
of convergence. To explain this phenomenon, we refer to our
physical interpretations of the iterations, that the PBJ-ITMM
iteration simulates particles scattering within a sub-domain
until they leave, and an SI iteration simulates particles stream-
ing across the medium until they collide. With this in mind,
for particles which stream uncollided through a sub-domain,
the PBJ-ITMM produces no additional information, as the SI
iteration would have accounted for this uncollided streaming
anyway. Therefore, as the cell size decreases and the fraction
of particles which travel uncollided through a sub-domain
tends towards 1, the PBJ-ITMM iteration contributes nothing
to the combined iterative process and the convergence becomes
based solely on SI. Analogously, we can predict the opposite
to be true as well; as the cell size increases, the spectral ra-
dius of PBJ-ITMM-SI should approach that of PBJ-ITMM.
To defend this claim, we return to our physical interpreta-
tion of the iterative sequence. Based on this interpretation,
SI contributes nothing to the simulation of particles which
enter the sub-domain and collide before exiting, as this event
would be simulated by the PBJ-ITMM iteration. Therefore,
as the cell size increases and the fraction of particles enter-
ing a sub-domain which then interact within that sub-domain
approaches 1, the SI iteration contributes nothing to the com-
bined sequence, causing the PBJ-ITMM-SI spectral radius to
tend towards that of PBJ-ITMM. We demonstrate this behav-
ior using the spectral radius of an infinite medium in Fig. 8
and the iteration counts required to converge a finite medium
problem to a stopping criterion of 10−12 in Table II. (Note that
the SI spectral radius is omitted from the graph as we know it
to be the scattering ratio).

From this graph and table we observe the trend just de-

Fig. 8. Spectral radius for PBJ-ITMM and PBJ-ITMM-SI.

scribed, where the convergence rate PBJ-ITMM-SI approaches
that of SI in optically thin cells and that of PBJ-ITMM in opti-
cally thick cells. We therefore see that when cells are optically
thin enough or thick enough, the addition of an extra step
in the iteration becomes irrelevant to the convergence rate.
The appropriate single step iterative method would be more
effective in these cases. However, we see from the graph and
table that there exists a range of cell sizes, specific to each
scattering ratio, over which PBJ-ITMM-SI yields a significant
reduction in spectral radius and required iterations over both
of the individual methods.

This provides our final insight into guidelines for devel-
oping future acceleration methods for PBJ-ITMM. As we have
discussed, the favorability of SI over PBJ-ITMM-SI in very
thin cells comes from the fact that the way in which SI precon-
ditioning alleviates PBJ-ITMM’s lack of robustness ultimately
begins to include all of the effects captured by PBJ-ITMM as
the cells become optically thin. Therefore, for a future accel-
eration method, it would be beneficial to investigate a method
involving a low-order operator which involves approximations
in order to allow streaming between cells and multiple scat-
tering interactions to be modeled in a single iteration. This
would allow for PBJ-ITMM to still have an effect in approach
to convergence by resolving local imperfections in the approx-
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0.5m f p 1m f p 5m f p 10m f p

SI 15 15 14 14
c = 0.1 PBJ-ITMM 96 49 15 12

PBJ-ITMM-SI 14 13 9 8

SI 46 45 42 41
c = 0.5 PBJ-ITMM 140 73 23 16

PBJ-ITMM-SI 40 34 18 14

SI 289 286 270 264
c = 0.9 PBJ-ITMM 687 350 80 47

PBJ-ITMM-SI 238 193 70 43

TABLE II. Iterations required for 100x100 problems of various composition for SI, PBJ-ITMM, and PBJ-ITMM-SI. c = 1 is
neglected from this table as it was not seen to converge in 1000 iteration for any of these cases. Stopping Criterion: 10−12

imate solution, while also potentially reducing the slowdown
due to increased scattering ratio.

5. PBJ-ITMM-SI in Heterogeneous Problems

Given the previous comparison of PBJ-ITMM-SI to its
individual iterative methods, we appear to have somewhat of
a problem. We proposed SI preconditioning in order to make
PBJ-ITMM robust in optically thin cells, which it did; but as
we saw, in optically thin cells, unaccelerated SI is actually a
better option. This analysis was only conducted on homoge-
neous test problems though. Almost any real-world problem
will be heterogeneous, where PBJ-ITMM-SI has the potential
to be an effective iterative method. If a problem contains both
optically thin and thick cells, then our physical interpretation
of the iterations tells us that the PBJ-ITMM iterations will
allow the numerous local collisions in the optically thick cells
to be resolved saving many SI iterations, and particles can be
simulated streaming across the optically thin cells in a single
SI iteration, saving the many PBJ-ITMM iterations required
for this to be modeled.

To test this theory, we develop a problem with optically
thick cells adjacent to optically thin cells. The geometry of
this problem is shown in Fig. 9. A 100x100 cell mesh is
imposed on this problem, making each stripe 10 cells wide.
Each cell within the "thick" regions is 10 mfp thick and each
cell within the "thin" region is 0.1 mfp thick. All boundary
conditions are vacuum. We observe the required number of
iterations to converge this problem using SI, PBJ-ITMM, and
PBJ-ITMM-SI for various scattering ratios. The iterations
required to converge the solution to a stopping criterion of
10−12 are tabulated in Table III.

From the iteration table, we confirm that PBJ-ITMM-SI
shows a significant improvement over each of the individual
methods. As we have discussed, we attribute this to the fact
that the two iterative methods do not rely on one another
to resolve parts of a problem which the other is ineffective
at. Each method simply resolves the parts of the simulation
which it is more effective at with little to no aid from the
other method. We can see from the required number of PBJ-
ITMM iterations that optically thin cells within a problem
cause significant iterative slowdown even if the entire domain

Fig. 9. Geometry of the heterogeneous stripe problem. "Thick"
regions contain cells which are 10 mfp thick and "thin" regions
contain cells which are 0.1 mfp thick. A 100x100 cell mesh
is used making each stripe 10 cells wide. All boundary condi-
tions are vacuum.

is not optically thin. SI preconditioning is seen to dramatically
reduce this slowdown by allowing SI to simulate the streaming
of particles through the optically thin regions and PBJ-ITMM
to simulate the local scattering of particles within the optically
thick regions.

Since most realistic problem will contain cells of a variety
of optical thicknesses, we conclude that SI preconditioning
is an effective method for alleviating the iterative slowdown
PBJ-ITMM experiences due to optically thin cells. In homoge-
neous problems, we saw that there was a relatively small range
of cell sizes over which PBJ-ITMM-SI showed a significant
improvement on both of the individual methods for c > 0.5.
With a realistic heterogeneous problem containing cells from
the two regions of cell sizes where each of the two individual
iterative methods are most favorable though, we see that each
part of the two step method is able to resolve the portion of the
simulation for which it is intended, resulting in a significant
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c SI PBJ-ITMM PBJ-ITMM-SI

0.1 14 113 12
0.2 20 132 16
0.3 26 150 19
0.4 33 169 22
0.5 43 191 26
0.6 58 217 31
0.7 82 252 37
0.8 130 305 46
0.9 272 414 67
1.0 N/C N/C N/C

TABLE III. Required number of SI, PBJ-ITMM, PBJ-ITMM-SI iterations for convergence of the heterogeneous stripe problem
depicted in Fig. 9. N/C indicates lack of convergence in 1000 iterations. Stopping Criterion: 10−12

improvement over each individual method. We also note that
the largest improvement due to SI preconditioning was seen
to occur in problems with larger scattering ratios (other than
c = 1). This is an excellent result, as it indicates that for real-
istic problems, SI preconditioning provides the largest amount
of acceleration in problems which are the slowest converging.

IV. CONCLUSIONS

We have studied the effects of SI preconditioning on the
iterative properties of PBJ-ITMM through theoretical analysis
and a variety of computational experiments. Through this
analysis we have determined SI preconditioning to be effective
at reducing PBJ-ITMM’s iterative slowdown in problems with
optically thin cells due to SI’s synchronous nature. Through
our studies of homogeneous problems, we determined that
each method of the two step process was more effective than
the other at simulating cells of certain optical thicknesses, and
that this resulted in the other method contributing little or
nothing to the iterative convergence of these cells. However,
when we expanded our study to observe the effect of SI pre-
conditioning in heterogeneous problems which contain cells
of varying optical thickness, we observed that the methods
executed in sequence were able to converge the problems with
higher scattering ratios in far fewer iterations than either of the
methods could independently, rendering SI preconditioning
an effective acceleration method for PBJ-ITMM in realistic
problems.

We must mention once more though, that this reduction
in required iterations comes at the cost of only half of the
iterative sequence being solved on a massively parallel system,
due to the complex sweep algorithms which SI requires to
be executed in parallel on unstructured grids being the very
feature PBJ-ITMM was invented to avoid. We see though,
that although PBJ-ITMM-SI does not provide a fully paral-
lel method, it allows for half of the iterative sequence to be
executed in a massively parallel fashion, while avoiding the
unbounded increase in required iterations as cells become op-
tically thin that is associated with PBJ-ITMM. Additionally,
each direction’s mesh sweep in SI can be conducted simulta-
neously, making it parallel.

Finally, we note challenges that still remain. Most ob-

viously, development of an acceleration method which has a
less steep penalty to the level of parallelization would be ideal
and we have provided comments throughout our study which
could aid in the development of such a method. Through our
study of SI preconditioning, we have determined that the math-
ematical decoupling of distant sub-domains over the course of
an iteration is the cause of PBJ-ITMM’s iterative slowdown in
optically thin cells, as this becomes increasingly inaccurate as
these sub-domains become more physically coupled. While SI
preconditioning eliminates this behavior, it does not allow for
resolution of scattering collisions. We have made note that an
acceleration method which attempts to approximate the full
transport solution, simulating both the long-distance streaming
of particles as well as the resolution of collisions, would be a
valuable study. Such a method would then rely on PBJ-ITMM
to resolve the local inaccuracies of the acceleration method’s
solution. Lastly, we note that although SI preconditioning
greatly improved the iterative effectiveness of PBJ-ITMM in
realistic problems, it still remains ineffective in problems with
a scattering ratio of 1. Resolving this issue remains as a future
challenge.
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