
M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

An Approach for Load Balancing Massively Parallel Transport Sweeps on Unstructured Grids

Tarek H. Ghaddar, Jean C. Ragusa

Dept. of Nuclear Engineering, Texas A&M University, College Station, TX, 77843-3133
tghaddar@tamu.edu, jean.ragusa@tamu.edu

Abstract - Load balancing refers to the practice of distributing approximately equal amounts of work among
processors so that all processors are kept busy all of the time. When running massively parallel codes, load
balancing is a priority in order to improve parallel efficiency. Load balancing is important in order to minimize
idle time for all processors by equally distributing (as much as possible) the work for each processor. Here,
we discuss load-balanced problems in terms of an (approximately) equal number of degrees of freedom
per processor, provided that we are employing a partitioning scheme that minimizes idle time. Recently ,
an unstructured meshing capability was implemented in PDT, Texas A&M University’s massively parallel
deterministic transport code, hence allowing the user to define more realistic problem geometries and to define
3D problems through the extrusion of 2D meshes. However, unstructured grids are significantly harder to load
balance than logically-Cartesian meshes. In this work, we propose a load balancing algorithm that is now
implemented in PDT in order to minimize a specific load-imbalance metric. Several numerical test cases are
provided.

I. INTRODUCTION

When running a massively parallel code, attaining load
balancing is a priority in order to improve parallel efficiency.
A load balanced problem has an equal number of degrees of
freedom per processor. This is attained by equally distributing
(as much as possible) the work load amongst the processors
so that they are all kept busy at all times.

To the best of our knowledge, the transport sweep is the
only scalable solution technique on the current leadership
class supercomputers. PDT, Texas A&M University’s mas-
sively parallel deterministic transport code, has been shown
to scale on logically Cartesian grids out to 768,000 cores [1].
Logically Cartesian grids are constructed with mesh cells that
are identified using integer triplets i jk (i.e., cubic cells), but
allow for vertex motion in order to conform to curved shapes.
PDT solves radiation transport problems (neutron, gamma,
coupled neutron-gamma, electron, coupled electron-photon,
and radiative transfer). It uses discrete ordinates for angular
discretization[2, 3], multi-group and FEDS[4] energy differ-
encing, and discontinuous finite elements in space.

A new unstructured meshing capability was implemented
in PDT in order to realistically represent certain geometries.
Cut lines (cut planes for 3D cases) are used to partition such
geometries into logically-Cartesian subdomains, which are
then individually meshed in parallel using the Triangle Mesh
Generator [5]. These subdomains are then “stitched” or “glued”
together in order to create a continuous geometry. 2D meshes
can be extruded in the z dimension for 3D problems.

However, unstructured meshes often create unbalanced
problems due to the way localized features are meshed, so a
load balancing algorithm was added into PDT.

II. THEORY

1. The Transport Equation

The steady-state neutron transport equation describes the
behavior of neutrons in a medium and is given by Eq. (1):

Ω · ∇ψ(r, E,Ω) + Σt(r, E)ψ(r, E,Ω) =∫ ∞
0

dE′
∫

4π
dΩ′Σs(r, E′ → E,Ω′ → Ω)ψ(r, E′,Ω′)

+ S ext(r, E,Ω), (1)

where Ω · ∇ψ is the leakage term and Σtψ is the total collision
term (absorption, outscatter, and within group scattering). The
right hand side of Eq. (1) represents the gain terms, where S ext

is the external source of neutrons and
∫ ∞

0 dE′
∫

4π dΩ′Σs(E′ →
E,Ω′ → Ω)ψ(r, E′,Ω′) is the inscatter term, which represents
all neutrons scattering from energy E′ and direction Ω′ into
energies about E and directions about Ω. We assumed a
non-multiplying medium and will further assume isotropic
scattering for simplicity and conciseness. We introduce the
scalar flux as the integral of the angular flux:

φ(r, E′) =

∫
4π

dΩ′ψ(r, E′,Ω′). (2)

Using the multigroup approximation yields:

Ω · ∇ψg(r,Ω) + Σt,g(r)ψg(r,Ω)

=
1

4π

∑
g′

Σs,g′→g(r)φg′ (r) + S ext,g(r,Ω), for 1 ≤ g ≤ G

(3)

where the multigroup transport equations now form a system
of G coupled equations. Next, we discretize in angle using
the discrete ordinates method, whereby an angular quadrature

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

(Ωm,wm)1≤m≤M is used to solve the above equations along a
given set of directions Ωm:

Ωm · ∇ψg,m(r) + Σt,g(r)ψg,m(r)

=
1

4π

∑
g′

Σs,g′→g(r)φg′ (r) + S ext,g,m(r), (4)

where the subscript m is introduced to describe the angular
flux in direction m. The scalar flux integral is numerically
evaluated

φg(r) ≈
m=M∑
m=1

wmψg,m(r). (5)

From Equation (3), it is clear that we are solving a sequence of
transport equations, one equation per group and per direction.
Therefore, all transport equations are of the following form:

Ωm·∇ψm(r)+Σt(r)ψm(r) =
1

4π
Σs(r)φ(r)+qext+inscat

m (r) = qm(r),

(6)
where the group index notation is omitted for brevity. In order
to obtain the solution for this discrete form of the transport
equation, source iteration is introduced, for instance.

Ωm · ∇ψ
(l+1)
m (r) + Σtψ

(l+1)
m (r) = q(l)

m (r), (7)

where the right hand side terms of Eq. (4) have been combined
into one general source term, qm. The angular flux of iteration
(l + 1) is calculated using the (lth) value of the scalar flux.

After the angular and energy dependence have been ac-
counted for, Eq. (7) must be discretized in space as well. We
use a discontinuous Galerkin approximation in space, and the
solution across a cell interface is connected based on an up-
wind approach, where face outflow radiation becomes face
inflow radiation for the downwind cells. The solution is ob-
tained by meshing the domain and solving the spatial problem
one cell at a time for a given direction and a given group. Fig-
ure 1 shows the sweep ordering for a given direction on both a
structured and unstructured mesh.

The number in each cell represents the order in which
the cells are solved. All cells must receive the solution down-
wind from them before solving for their own solution. This
dependency can be represented and stored as a directed task
dependence graph, shown in Fig. 2.

The order in which radiation in a cell is solved is given
by a task dependence graph. Transport sweep can be per-
formed on parallel architectures in order to obtain the solution
faster, as well as distribute the memory to many processors for
memory intensive cases. Provably-optimal transport sweep-
ing has been described in [6] and demonstrated in PDT using
logically-Cartesian meshes. Our work utilizes that transport
sweep machinery but adapts it to unstructured meshes. Per-
forming a transport sweep on an unstructured mesh presents
two challenges: (1) performing a transport sweep on a mas-
sively parallel scale in an efficient manner and (2) keeping
non-concave sub-domains due to leverage fromt he provably-
optimal transport sweep algorithms.

Fig. 1. A demonstration of a sweep on a structured and un-
structured mesh.

Fig. 2. A task dependence graph of the unstructured mesh
example in Fig. 1.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

2. The Parallel Transport Sweep

A parallel sweep algorithm is defined by three properties
[6] :

• partitioning: dividing the domain among available pro-
cessors

• aggregation: grouping cells, directions, and energy
groups into tasks

• scheduling: choosing which task to execute if more than
one is available

The basic concepts of parallel transport sweeps, partition-
ing, aggregation, and scheduling, are most easily described
in the context of a structured transport sweep. A structured
transport sweep takes place on a Cartesian mesh. Furthermore,
the work proposed utilizes aspects of the structured transport
sweep.

If M is the number of angular directions per octant, G is
the total number of energy groups, and N is the total number
of cells, then the total fine grain work units is 8MGN. The
factor of 8 is present as M directions are swept for all 8 octants
of the domain. The finest grain work unit is the calculation of
a single direction and energy groups unknowns in a single cell,
or ψm,g for a single cell.

In a regular grid, we have the number of cells in each
Cartesian direction: Nx,Ny,Nz. These cells are aggregated
into “cellsets”. If M is the total number of angular directions,
G is the total number of energy groups, and N is the total
number of cells, then the total fine grain work units is 8MGN.
The factor of 8 is present as M directions are swept for all
8 octants of the domain. The finest grain work unit is the
calculation of a single direction and energy groups unknowns
in a single cell, or ψm,g for a single cell.

Fine grain work units are aggregated into coarser-grained
units called tasks. A few terms are defined that describe how
each variable is aggregated.

• Ax = Nx
Px

, where Nx is the number of cells in x and Px is
the number of processors in x

• Ay =
Ny

Py
, where Ny is the number of cells in y and Py is

the number of processors in y

• Ng = G
Ag

• Nm = M
Am

• Nk =
Nz

PzAz

• NkAxAyAz =
NxNyNz

PxPyPz

It follows that each process owns Nk cell-sets (each of
which is Az planes of AxAy cells), 8Nm direction-sets, and Ng
group-sets for a total of 8NmNgNk tasks.

One task contains AxAyAz cells, Am directions, and Ag
groups. Equivalently, a task is the computation of one cellset,
one groupset, and one angleset. One task takes a stage to
complete. This is particularly important when comparing
sweeps to the performance models.

Equation (8) approximately defines parallel sweep ef-
ficiency. This can be calculated for specific machinery and
partitioning parameters by substituting in values calculated
using Eqs. (12), (13), and (14).

ε =
TtaskNtasks

[Nstages][Ttask + Tcomm]

=
1

[1 +
Nidle
Ntasks

][1 +
Tcomm
Ttask

]

(8)

Equations (9) and 10 show how Tcomm and Ttask are cal-
culated:

Tcomm = MLTlatency + TbyteNbytes (9)

Ttask = AxAyAzAmAgTgrind (10)

where Tlatency is the message latency time, Tbyte is the time
required to send one byte of message, Nbytes is the total number
of bytes of information that a processor must communicate to
its downstream neighbors at each stage, and Tgrind is the time
it takes to compute a single cell, direction, and energy group.
ML is a latency parameter that is used to explore performance
as a function of increased or decreased latency. If a high
value of ML is necessary for the performance model to match
computational results, improvements should be made in code
implementation.

A. KBA Partitioning for Structured Grids

Several parallel transport sweep codes use KBA partition-
ing in their sweeping, such as Denovo [7] and PARTISN [8].
The KBA partitioning scheme and algorithm was developed
by Koch, Baker, and Alcouffe [8].

The KBA algorithm traditionally chooses Pz = 1, Am =
1,G = Ag = 1, Ax = Nx/Px, Ay = Ny/Py, with Az being the
selectable number of z-planes to be aggregated into each task.
With Nk = Nz/Az, each processor performs Ntasks = 8MNk
tasks. With the KBA algorithm, 2MNk tasks are pipelined
from a given corner of the 2D processor layout. The far corner
processor remains idle for the first Px + Py − 2 stages, which
means that an octant-pair (or quadrant) sweep completes in
2MNk + Px + Py − 2 stages. If an octant-pair sweep does not
begin until the previous pair’s finishes, the full sweep requires
8MNk + 4(Px + Py − 2) stages, which means the KBA parallel
efficiency is:

εKBA =
1

[1 +
4(Px+Py−2)

8MNk
][1 +

Tcomm
Ttask

]
(11)

B. The Structured Transport Sweep in PDT

The minimum possible number of stages for given parti-
tioning parameters Pi and A j is 2Nfill + Ntasks. Nfill is both the
minimum number of stages before a sweepfront can reach the
center-most processors and the number needed to finish a di-
rection’s sweep after the center-most processors have finished.
Equations (12), (13), and (14) define Nfill, Nidle, and Ntasks:

Nfill =
Px + δx

2
− 1 +

Py + δy

2
− 1 + Nk(

Pz + δz

2
− 1) (12)

Nidle = 2Nfill (13)

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Fig. 3. Three different partitioning schemes in 2D, from left
to right: KBA, volumetric non-overloaded, and volumetric
overloaded [1].

Ntasks = 8NmNgNk (14)

where δu is 1 for Pu odd, and 0 for Pu even.
When using KBA, Pz is fixed to 1, and with hybrid KBA,

Pz is fixed to 2. Volumetric partitioning means that Pz is
greater than two. Figure 3 shows three different partitioning
schemes used in transport sweeps, KBA (which is defined in
the previous section), volumetric non-overloaded, and volu-
metric overloaded. Volumetric non-overloaded requires that all
cells owned by a processor are contiguous, where as volumet-
ric non-overloaded partitioning does not have this restriction.

For a thorough and complete description of partitioning,
aggregation, and scheduling in PDT, please refer to [1].

C. The Unstructured Transport Sweep

In an unstructured mesh, the number of cells cannot be
described in the same way as a structured mesh. In PDT, the
2D geometry is first subdivided into subsets, which are just
rectangular subdomains. Within each subset, an unstructured
mesh is generated (using Triangle) and then extruded in 3D.
These subsets become the Nx,Ny,Nz equivalent for an struc-
tured mesh. The spatial aggregation in a PDT unstructured
mesh is done by aggregating subsets into cellsets.

While the PDT transport sweep on structured grids has
scaled well out to 768,000 cores, similar levels of parallel
scaling have not been achieved using unstructured sweeps
yet. Further work is being done to determine how well PDT
scales on unstructured meshes. The load balancing algorithm
described in this paper was the first step to scaling on unstruc-
tured meshes.

III. LOAD BALANCING METHOD

The capability for PDT to generate and run on an unstruc-
tured mesh is important because it allows us to run problems
without having to conform our mesh to the problem as much.
The idea is to have a logically Cartesian grid (creating orthog-
onal “subsets”) with an unstructured mesh inside each subset.
These logically Cartesian subdomains are obtained using cut
planes in 3D and cut lines in 2D. Figure 4 demonstrates this
functionality. It is decomposed into 3 subsets in x and 3 in
y, with the first two subsets meshed using the Triangle Mesh
Generator[5], a 2D mesh generator.

This orthogonal grid is superimposed and each subset is
meshed in parallel. Subsets are now the base structured unit
when calculating our parallel efficiency. Discontinuities along
the boundary are fixed by “stitching” hanging nodes, creat-

Fig. 4. A PSLG describing a fuel lattice, and with an orthogo-
nal “subset" grid imposed on the PSLG.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

ing degenerate polygons along subset boundaries. Because
PDT’s spatial discretization employs Piece-Wise Linear Dis-
continuous (PWLD) finite element basis functions, there is no
problem solving on degenerate polygons.

When using the unstructured meshing capability in PDT,
the input geometry is described by a Planar Straight Line
Graph (PSLG)[5]. After superimposing the orthogonal grid,
a PSLG is created for each subset, and meshed. Because the
input’s and each subset’s PSLG must be described and meshed
in 2D, the mesh can be extruded in the z dimension in order to
give us the capability to run on 3D problems. Obviously, this
is not as good as general an unstructured grid as a tetrahedral
grid, but for many problems (e.g., reactor problems), it is a
useful capability to have and it can be employed to assess
load-balancing algorithm.

When discussing the parallel scaling of transport sweeps,
a load balanced problem is of great importance. A load bal-
anced problem has an equal number of degrees of freedom per
processor. Load balancing is important in order to minimize
idle time for all processes by equally distributing (as much
as possible) the work on each process. For the purposes of
unstructured meshes in PDT, we are looking to “balance” the
number of cells. Ideally, each process will be responsible for
an equal number of cells.

If the number of cells in each subset can be reasonably
balanced, then the problem is effectively load balanced. The
Load Balance algorithm described below details how the sub-
sets will be load balanced. In summary, the procedure of the
algorithm involves moving the initially user specified x and y
cut planes, re-meshing, and iterating until a reasonably load
balanced problem is obtained. Equation 15 shows the equation
for calculating the load balancing metric, which dictates how
balanced or unbalanced the problem is.

f =

max
i j

(Ni j)

Ntot
I·J

, (15)

where f is the load balance metric, Ni j is the number of cells
in subset i, j, Ntot is the global number of cells in the problem,
and I and J are the total number of in the x and y direction,
respectively. The metric is a measure of the maximum number
of cells per subset divided by the average number of cells per
subset.

The load balancing algorithm moves cut planes based on
two sub-metrics, fI and fJ . Equation (16) defines these two
parameters:

fI = max
i

[
∑

j

Ni j]/
Ntot

I

fJ = max
j

[
∑

i

Ni j]/
Ntot

J
. (16)

fI is calculated by taking the maximum number of cells
per column and dividing it by the average number of cells
per column. f j is calculated by taking the maximum num-
ber of cells per row and dividing it by the average number
of cells per row. If these two numbers are greater than pre-
defined tolerances, the cut lines in the respective directions

are redistributed. Once redistribution and remeshing occur, a
new metric is calculated. This iterative process occurs until a
maximum number of iterations is reached, or until f converges
within the user defined tolerance. The Load Balance algorithm
behaves as follows:

/ / I , J s u b s e t s s p e c i f i e d by u s e r
/ / Check i f a l l s u b s e t s meet t h e t o l e r a n c e
whi le (f > t o l _ s u b s e t)
{

/ / Mesh a l l s u b s e t s
i f (f _ I > t o l _ c o l u m n)
{

R e d i s t r i b u t e (X) ;
}
i f (f _ J > t o l _ r o w)
{

R e d i s t r i b u t e (Y) ;
}

}
/ / Remesh t o g e t t h e f i n a l mesh .

Redistribute: A function that moves cut lines in either X or Y.

Input:CutLines (X or Y vector that stores cut lines).
Input: num_tri_row or num_tri_col, # of tri in each row/col
Input: The total number of triangles in the domain, Ntot

stapl::array_view num_tri_view, over num_tri_row/column
stapl::array_vew offset_view
stapl::partial_sum(num_tri_view) {Perform prefix sum}
{We now have a cumulative distribution stored in offset_view}
for i = 1 :CutLines.size()-1 do

vector <double> pt1 = [CutLines(i-1), offset_view(i-1)]
vector <double> pt2 = [CutLines(i), offset_view(i)]
ideal_value = i · Ntot

CutLines.size()−1
{Calculate X-intersect of the line formed by pt1 and pt2}
{and the line y = ideal_value.}
X-intersect(pt1,pt2,ideal_value)
CutLines(i) = X-intersect

end for

IV. RESULTS AND ANALYSIS

The following sections will showcase the metric behavior
and convergence for three test cases, solution verification for
pure absorber and pure scatterer 2D slab problems, and the
new unstructured meshing capability both in 2D and 3D.

1. Description of Test Cases

In order to showcase the behavior of the load balancing
metric, calculated by Eq. 15 three test cases are presented.
Figure 5 shows the first test case, a 20 cm by 20 cm domain
with two pins in opposite corners of the domain. Figure 6
shows the same size domain but with the pins on the same
side.These are two theoretically very unbalanced cases, as
geometrically there are two features located distantly from
each other with an empty geometry throughout the rest of the
domain. Figure 7 shows a lattice and reflector, which due
to it’s denser and repeated geometry, theoretically is a more
balanced problem.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Fig. 5. The first test case used in order to test effectiveness
and convergence of the load balancing metric.

A series of 162 inputs was constructed for each case.
These inputs are constructed by varying the maximum triangle
area from the coarsest possible (refers to Triangle utilizing the
fewest possible triangles to mesh the geometry) to 0.01 cm2

and the number of subsets, N from 2×2 to 10×10.

2. Load Balancing Analysis

For each test case, the 162 input inputs are run twice,
once with no load balancing iterations, and once with ten load
balancing iterations. The best metric is reported and recorded.
Three figures for each test cases are presented below: the
first figure will show the metric behavior for no iterations, the
second figure will show the metric behavior for each input
run with ten load balancing iterations, and the third figure will
show a ratio of the ten iteration runs over the no iteration runs.

Figure 8 shows the metric behavior for Fig. 5. The maxi-
mum metric value is 24.7650, and occurs when Fig. 5 is run
with 8x8 subsets and a maximum triangle area of 1.6 cm2. The
minimum metric value is 1.0016 and occurs when Fig. 5 is run
with 4x4 subsets and a maximum triangle area of 0.04 cm2.
The z axis in all figures is the value of the metric.

Figure 9 shows the metric behavior for Fig. 5 after 10 load
balancing iterations. The maximum metric value is 5.0538 and
occurs when Fig. 5 is run with 10x10 subsets and a maximum
triangle area of 1.2 cm2. The minimum metric value is 1.0017
and occurs when Fig. 5 is run with 4x4 subsets and a maximum
triangle area of 0.04 cm2.

Figure 10 shows the metric behavior for Fig. 6. The
maximum metric is 22.6654 and occurs when Fig. 6 is run
with 8x8 subsets with a maximum triangle area of 1.8 cm2.
The minimum metric is 1.0024 and occurs when Fig. 6 is run
with 2x2 subsets with a maximum triangle are of 0.01 cm2.

Figure 11 shows the metric behavior for Fig. 6 after ten

Fig. 6. The second test case used in order to test effectiveness
and convergence of the load balancing metric.

Fig. 7. The third test case used in order to test effectiveness
and convergence of the load balancing metric.

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

101

Maximum Triangle Area

100

Metric Behavior with no Load Balancing Iterations

10!1

10!210

8

p
N Total Subsets

6

4

2

5

10

15

20

25

0

Fig. 8. The metric behavior of the first test case run with no
load balancing iterations.

101

100

Maximum Triangle Area

Metric Behavior with 10 Load Balancing Iterations

10!1

10!210p
N Total Subsets

8

6

4

1.5

1

2

2.5

3

3.5

4

4.5

5

5.5

2

Fig. 9. The metric behavior of the first test case run with 10
load balancing iterations.

101

100

Maximum Triangle Area

Metric Behavior with no Load Balancing Iterations

10!1

10!210

8

p
N Total Subsets

6

4

5

10

15

20

25

0
2

Fig. 10. The metric behavior of the second test case run with
no load balancing iterations.

load balancing iterations. The maximum metric is 3.9929 and
occurs when Fig. 6 is run with 10x10 subsets with a maximum
triangle area of 1.8 cm2. The minimum metric is 1.0024 and
occurs when Fig. 6 is run with 2x2 subsets with a maximum
triangle are of 0.01 cm2.

Figure 12 shows the metric behavior for Fig. 7. The
maximum metric is 2.6489 and occurs when Fig. 7 is run with
10x10 subsets with a maximum triangle area of 1.8 cm2. The
minimum metric is 1.0179 and occurs when Fig. 7 is run with
2x2 subsets with a maximum triangle are of 0.08 cm2.

Figure 13 shows the metric behavior for Fig. 7 after ten
load balancing iterations. The maximum metric is 2.2660 and
occurs when Fig. 7 is run with 10x10 subsets with a maximum
triangle area of 0.4 cm2. The minimum metric is 1.0021 and
occurs when Fig. 7 is run with 2x2 subsets with the Triangle’s
coarsest possible mesh.

Because Fig. 7 has more features and is more symmetric
of a problem, the initial load balancing metric will not be as
large as the load balancing metric of Figs. 6 and 5. As a
result, the improvement in the load balancing metric after 10
iterations will not be as great in problems similar to Fig. 7.

Good improvement is seen throughout all three test cases
for all three inputs, particularly the first two test cases, which
were initially very unbalanced. However, there were many
inputs run that had problems with f > 1.1, which means
many problems were unbalanced by more than 10%. The
user will not always have the luxury of choosing the number
of subsets they want the problem run with, as this directly
affects the number of processors the problem will be run with.
Certain problems will require more processors and will require
minimizing the total number of cells in the domain for the
problem to complete running in a reasonable amount of time.
As a result, improvements to the algorithm must be made.

This can be done by changing how the cut lines are redis-
tributed. Instead of changing entire row and column widths,

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

101

100

Maximum Triangle Area

Metric Behavior with 10 Load Balancing Iterations

10!1

10!210p
N Total Subsets

8

6

4

1

1.5

2.5

3

3.5

4

2

2

Fig. 11. The metric behavior of the second test case run with
10 load balancing iterations.

101

Metric Behavior with no Load Balancing Iterations

100

Maximum Triangle Area

10!1

10!2p
N Total Subsets

10

8

6

4

2.2

2.8

2.6

2.4

1

2

1.8

1.6

1.4

1.2

2

Fig. 12. The difference in metric behavior of the third test case
with no load balancing iterations.

101

100

Maximum Triangle Area

Metric Behavior with 10 Load Balancing Iterations

10!1

10!210p
N Total Subsets

8

6

4

1.2

1

1.4

1.6

1.8

2

2.4

2.2

2

Fig. 13. The difference in metric behavior of the third test case
after ten load balancing iterations.

the cut lines can be moved on the subset level. However, this
can sacrifice the strict orthogonality that PDT currently utilizes
to scale so well on a massively parallel scale[1]. Changes to
the performance model and the scheduler would have to be
made.

Another option is to implement domain overloading[1],
which is the logical extension of the work presented in this pa-
per. This would involve processors owning different numbers
of subsets, with no restriction on these subsets being contigu-
ous. This would be the most effective method at perfecting this
algorithm, and would lead to less problems being unbalanced
by more than 10%.

3. 2D and 2D Extruded Meshing Capability

To illustrate the newly implemented unstructured meshing
capability in PDT, a neutron graphite experiment, modeled at
Texas A&M University as part of the DOE’s NNSA PSAAP
program, is used as an example. Figure 15 shows the 2D
mesh of the IM1 problem before and after 7 load-balancing
iterations. The metric before any load balancing iterations is
42.15, and 2.99 after 7 iterations. The 3D extruded mesh is
shown in Fig. 16.

V. CONCLUSIONS

In conclusion, the load balancing algorithm outlined in
the Load Balancing Method section works well for more sym-
metric problems with a lot of features, and even works well
for particularly unbalanced problems. As shown in the results,
its effectiveness depends on the maximum triangle area used,
and the number of subsets the user chooses to decompose the
problem domain into.

Good improvement is seen throughout all three test cases
for all three inputs, particularly the first two test cases, which
were initially very unbalanced. However, there were many
inputs run that had problems with f > 1.1, which means

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

Fig. 14. The 2D mesh of the IM1 problem with no load
balancing iterations.

Fig. 15. The 2D mesh of the IM1 problem with 7 load balanc-
ing iterations.

Fig. 16. The 3D extruded view of the IM1 problem (HDPE
cylinder with AmBe source; graphite block; detector and de-
tector shroud).

many problems were unbalanced by more than 10%. The
user will not always have the luxury of choosing the number
of subsets they want the problem run with, as this directly
affects the number of processors the problem will be run with.
Certain problems will require more processors and will require
minimizing the total number of cells in the domain for the
problem to complete running in a reasonable amount of time.
As a result, improvements to the algorithm must be made.

This can be done by changing how the cut lines are redis-
tributed. Instead of changing entire row and column widths,
the cut lines can be moved on the subset level. However, this
can sacrifice the strict orthogonality that PDT currently utilizes
to scale so well on a massively parallel scale[1]. Changes to
the performance model and the scheduler would have to be
made. This method is currently being implemented.

Another option is to implement domain overloading[1],
which is the logical extension of the work presented in this pa-
per. This would involve processors owning different numbers
of subsets, with no restriction on these subsets being contigu-
ous. This would be the most effective method at perfecting this
algorithm, and would lead to less problems being unbalanced
by more than 10%.

VI. ACKNOWLEDGMENTS

This material is based upon work supported by the De-
partment of Energy, National Nuclear Security Administration,
under Award Number(s) DE-NA0002376.

REFERENCES

1. M. A. ET AL, “Provably Optimal Parallel Transport
Sweeps with Non-Contiguous Partitions,” in “ANS
MC2015-Joint International Conference on Mathematics
and Computation (M&C), Supercomputing in Nuclear Ap-
plications (SNA) and the Monte Carlo (MC) Method,”

M&C 2017 - International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering,
Jeju, Korea, April 16-20, 2017, on USB (2017)

(2015).
2. J. C. RAGUSA, “Discontinuous finite element solution

of the radiation diffusion equation on arbitrary polygonal
meshes and locally adapted quadrilateral grids,” Journal of
Computational Physics, 280, 195–213 (2015).

3. T. S. BAILEY, M. L. ADAMS, B. YANG, and M. R. ZIKA,
“A Piecewise Linear Discontinuous Finite Element Spatial
Discretization of the S N Transport Equation for Polyhedral
Grids in 3D Cartesian Geometry,” Journal of Computa-
tional Physics, 227, 3738–3757 (2008).

4. A. T. TILL, Finite Elements with Discontiguous Support for
Energy Discretization in Particle Transport, Ph.D. thesis,
Texas A&M University, College Station, TX (2015).

5. J. SHEWCHUK, “Triangle: Engineering a 2D Quality
Mesh Generator and Delaunay Triangulator,” in M. C. LIN
and D. MANOCHA, editors, “Applied Computational Ge-
ometry: Towards Geometric Engineering,” Springer-Verlag,
Lecture Notes in Computer Science, vol. 1148, pp. 203–222
(May 1996), from the First ACM Workshop on Applied
Computational Geometry.

6. M. A. ET AL, “Provably Optimal Parallel Transport
Sweeps on Regular Grids,” in “International Conference
on Mathematics and Computational Methods Applied to
Nuclear Science & Engineering,” (2013).

7. T. E. ET AL., “Denovo: A New Three-Dimensional Parallel
Discrete Ordinates Code in Scale,” Nuclear Technology,
171, 171–200 (2010).

8. R. ALCOUFFE, R. BAKER, S. TURNER, and J. DAHL,
“PARTISN manual,” Tech. rep., LA-UR-02-5633, Los
Alamos National Laboratory (2002).

