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Abstract - This paper summarizes improvements in the coarse mesh finite difference (CMFD) performance by focusing on 

the eigenvalue solution methodology. The current solution technique uses a shifted power iteration with the PETSc solver 

package. A generalized Davidson methodology has been implemented into MPACT using the Trilinos solver package. The 

new generalized Davidson solver shows significant improvements in the overall runtime for the CMFD acceleration scheme 

and the overall MPACT performance. The performance improves between 5 and 27 times for the CMFD runtime. This 

results in a speedup of between 2.5 to 5 times on the overall solution time for MPACT. 

  

 

I. INTRODUCTION 

 

In recent years, development of VERA-CS—the core 

simulator for the Consortium for the Advanced Simulation 

of Light Water Reactors (CASL) [1]—has focused on 

simulating multiple cycles of operating commercial nuclear 

power plants. Now that the VERA-CS capabilities have 

advanced to the point where they are being deployed to 

users, attention is now directed on improving the 

computational performance of various components in 

VERA-CS. The focus of this work is the coarse mesh finite 

difference [2,3] (CMFD) solution in MPACT [4]. CMFD 

serves multiple purposes in the 2D/1D solution 

methodology. First, it is a natural mechanism to tie together 

the 2-D radial method of characteristics (MOC) transport 

and the 1D axial NEM-P3 solution. Because the CMFD 

system solves the multigroup three-dimensional core in one 

system, it pulls together the global response of the system. 

In addition, the CMFD solution provides a framework to 

accelerate the convergence of the eigenvalue problem. 

The CMFD methodology is based on a finite-difference 

approximation of the zeroth angular-moment of the neutron 

transport equation homogenized onto a 3D Cartesian grid:  
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The CMFD methodology creates a finite-difference 

relationship between the surface current and flux as follows: 
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where + and - denote the cells on each side of any given 

surface s and   defines the distance between the two cells. 

This equation defines the relationship between the current 

and the cell average flux using a coarse mesh diffusion 

approximation; however, an additional term is added to 

correct errors in the approximation. The solution marching 

scheme used will approximate this correction coefficient 

using the transport solution (high-order MOC in the radial 

direction and the NEM-P3 in the axial direction) for the 

current iteration: 
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The iteration scheme in MPACT first assumes ˆ
sD is 

zero and solves the full-core CMFD equations. Once the 

coarse mesh fluxes are obtained, they are projected onto the 

fine MOC mesh and a single MOC sweep is performed. The 

MOC equations solve for the current on the boundaries of 

the coarse mesh, which are used to estimate a new value for 

ˆ
sD in the radial direction.  The coarse cells are then 

homogenized and the 1D P3 solution is used to compute the 

axial ˆ
sD .  This process is repeated until both the coarse and 

fine mesh solutions are converged. 

Another key purpose of CMFD is to accelerate the 

solution to the eigenvalue problem. To understand this, it is 

easier to consider the matrix notation of the CMFD system. 

There are four major components to the matrix notation: the 

diffusion operator D , the collision operator T , the 

scattering operator S , and the fission operator F . These 
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four terms are combined into the generalized CMFD 

eigenvalue problem 

 

  
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and is simplified to 

 
1

effk
 M F  , (5) 

where M is the migration matrix. 

The migration matrix for this case represents the 

movement of neutrons through space and energy. In 

MPACT, it is ordered such that there is a dense block matrix 

that represents the transfer of neutrons between energy 

groups caused by scatter, as seen in Fig. 1.  

 

 
Figure 1: 56 Energy Group Migration Matrix 

 

The scattering matrix as well as the nonlinear correction 

term creates a structural asymmetry in the migration matrix. 

Along with the scattering matrix, the nonlinear correction 

term introduces an asymmetry in the matrix. It should also 

be noted that the fission matrix is both asymmetric and rank 

deficient. 

The main focus of this work is to accelerate the 

convergence of this eigenvalue problem by looking at 

advanced solution schemes to solve for the dominant 

eigenvalue of this linear system. 

 

II. EIGENVALUE SOLUTION METHODOLOGIES 

 

Several methods have been proposed over the years to 

solve this generalized eigenvalue problem. This section 

highlights many of the different approaches but focuses on 

the current methodology (power iteration with a fixed shift) 

and the methodology used in this work (generalized 

Davidson).  

One of the most common methods for solving the 

CMFD eigenvalue system is to cast the generalized 

eigenvalue problem into a standard eigenvalue problem: 

 

 1

effk  M F  . (6) 

Since the migration operator is nonsingular, it can be 

inverted and moved to the left hand side of the equation. 

Once we have a standard eigenvalue problem, power 

iteration can be applied to obtain the dominant eigenvalue. 

Typically storing the full factorization of the migration 

operator is impractical for most problems; so instead, a 

linear system is solved each iteration: 

 ,y zM  (7) 

where z = Ff n  . 

 

Although this iteration scheme is straightforward, the 

convergence of power iteration is highly dependent on the 

dominance ratio 

 r =
k

2

k
1

 , (8) 

where k1 and k2 are the largest and second-largest 

eigenvalues of system, respectively. This convergence rate 

can be improved by introducing a shift (  ) to the 

eigenvalue system 

 

  , (9) 

where   is an approximation to the inverse of the 

dominant eigenvalue. It is straightforward to show that the 

eigenvalue of the original system relates to the eigenvalue 

of the shifted system by 

 

  , (10) 

and that the dominance ratio of the shifted system can be 

reduced significantly. However, shifted power iteration does 

not come without risk. First, an incorrect choice of shift 

could alter the convergence to an eigenvalue that does not 
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reflect the largest eigenvalue of the original system. Second, 

as the shift becomes closer to the true solution of the 

original system, the linear system becomes more and more 

difficult to solve. The obvious extreme is if the shift is 

exactly the inverse of the true eigenvalue of the system; 

 M F is a singular matrix, so care must be taken when 

trying to solve shifted systems.  

Traditionally in MPACT, a fixed shift of 2/3 is used. 

This was determined to be an acceptable balance between 

performance of the solver and ensuring that the system is 

not overshifted, which is unstable. Another approach that 

has been used in many other places is to have a variable 

shift based on the current eigenvalue iteration and 

potentially previous iteration. PARCS [5] uses a variable 

shift based on iteration history: 
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where C0, C1, and min  are constants (0.02, 10, and 1/3, 

respectively). This method tries to keep enough margin 

from the actual eigenvalue to ensure stability of the method.  

Another common iteration-dependent approach is the 

Rayleigh Quotient Iteration (RQI) [6], which uses the 

current eigenvalue estimate as the shift. The RQI iteration 

strategy becomes 
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where , denotes the inner product of two vectors. The 

main advantage of RQI is that the convergence is quadratic; 

thus very few iterations are required for convergence. 

However, the linear system becomes increasingly more 

difficult to solve because the shifted matrix approaches a 

singularity. RQI is also not guaranteed to converge to the 

dominant eigenvalue. 

Thus far, all of the methods discussed here have been 

fixed-point methods; that is, the next estimate of the 

solution depends only on the estimate immediately 

preceding it. A set of alternatives to fixed-point iterations 

are subspace eigenvalue solvers in which information from 

several previous vectors is used to generate the next 

approximate solution. One such method that has been used 

successfully for the solution of both the discrete ordinates 

and SPN forms of the transport equation is the generalized 

Davidson method [7,8]. The advantage of this method 

relative to other approaches (such as Arnoldi’s method) is 

that it can be applied directly to a generalized eigenvalue 

problem without requiring conversion to a standard 

eigenvalue problem. It accomplishes this by using a 

Rayleigh-Ritz procedure, which solves the projected 

eigenvalue problem 

 

 
T Ty yV MV V FV  , (13) 

where V  contains a set of (typically orthogonal) basis 

vectors for the current subspace. For an appropriate 

selection of the subspace, the eigenvalues of the projection 

problem will closely approximate the original system and 

the vectors of yV  will approximate the eigenvector. New 

vectors are added to the subspace by applying a 

preconditioner to the current eigenvalue residual: 

 

 Pv = -r(n). (14) 

 

Further details about the generalized Davidson solver 

can be found in [7,8]. The Davidson method is extremely 

attractive because unlike the methods discussed previously, 

a linear system solve is not required. Instead, only a 

preconditioner application that approximates the solution of 

a linear system is needed. The choice of preconditioner is 

important for the Davidson solver to quickly converge. To 

avoid singularities in the preconditioner system, the 

preconditioner is chosen based on the migration operator   

M  rather than the shifted operator 
  n

M F . 

 

III. MPACT ITERATION SCHEME 

 

The iteration scheme used in MPACT consists of three 

major components: (1) the radial MOC solver, which 

captures the radial heterogeneity; (2) the axial PN solver, 

which captures axial streaming, and (3) the CMFD solver, 

which consists of the mechanics to set up the migration and 

fission matrices and the actual eigenvalue solve. Figure 2 

shows the flow chart that MPACT uses to iterate between 

the three components. 
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Figure 2: Eigenvalue Iteration Strategy in MPACT 

 

First, the CMFD system is set up with the nonlinear 

correction factor set to zero, and the eigenvalue system is 

then solved. The axial solvers and then the radial solvers are 

used to compute fine mesh fluxes and currents on the coarse 

mesh. If the solution is converged, the simulation is 

complete; but if the solution has not met the convergence 

criteria, the nonlinear correction terms are computed and the 

CMFD system is reconstructed. This “outer” iteration is 

continued until the system is complete. 

The “Solve for Eigenvalue” box in Fig. 2 is the main 

point of interest for this paper. The following three sections 

describe the methods compared in this work. 

 

1. Fixed Shift Power Iteration 

 

Historically, MPACT has used a fixed-shift power 

iteration by constructing the shifted matrix with full spatial 

and energy detail in parallel and using the GMRES solver in 

PETSc [9] with a block-ILU preconditioner. Figure 3 shows 

the structure of the full migration matrix with fixed shift. 

The remaining fission source is computed with each 

power iteration, and the previous flux solution is provided 

as an initial guess to the Krylov solver with each power 

iteration. 

 
Figure 3: Migration Matrix Structure 

 

It can be observed in this matrix that a component of the 

fission matrix appears to account for the fixed shift, but this 

term goes to zero as the shift approaches zero. 

 

2. Red-Black Successive Over-Relaxation 

 

In an attempt to achieve a more efficient solution of the 

CMFD eigenvalue problem, a red-black Gauss-Siedel 

scheme was implemented into MPACT [10]. The red-black 

scheme tags each coarse cell as red or black to produce a 

checkerboard pattern (as in Fig. 4 for a simple 7 × 7 

problem). 

 

 

 
 

Figure 4: Red-Black Indexing 
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Because the inner iteration convergence for Gauss-

Seidel solvers tends to be slower than that for many other 

iterative solvers, each CMFD eigenvalue update iteration is 

restricted to performing a user-specified maximum number 

of iterations.  

To increase the applicability of the solver, both 

message passing interface (MPI) and open multiprocessing 

(OpenMP) are available to provide parallelization. When 

MPACT is executed, the user provides inputs specifying the 

number of processors used for spatial decomposition (MPI), 

MOC angle decomposition (MPI), and MOC ray 

decomposition (OpenMP). The current solver takes 

advantage of the processors used for spatial decomposition, 

as well as the OpenMP threads, which are repurposed from 

the application to MOC to provide additional spatial 

decomposition during the sweeps over the red and black 

indexes. One advantage of this approach is that PETSc is 

restricted to using MPI, though a hybrid MPI/OpenMP 

approach is being considered by the PETSc development 

team. 

Gauss-Seidel is a special case of the successive over-

relaxation (SOR) solver, where the relaxation factor equals 

unity. However, SOR typically applies a relaxation factor 

larger than unity to accelerate the convergence of the 

system, as in Eq. 15 [11]: 
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where i denotes the iteration index, n denotes the cell index, 

and g denotes the group index. 

The determination of optimal relaxation factors has 

been studied extensively. This implementation uses adaptive 

relaxation factors based on the Cyclic Chebyshev Semi-

Iterative (CCSI) method [12] where the red and black fluxes 

use different relaxation factors (Eqs. 16–17), which 

eventually converge to the same value. Equation 16 shows 

the initial relaxation factors, and Eq. 17 shows the 

relaxation factor for subsequent iterations: 
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These equations make use of the Jacobi spectral radius, 

which, in this work, is estimated during the first 10 inner 

iterations, applying no relaxation, to obtain the Gauss-Seidel 

spectral radius. The Gauss-Seidel spectral radius is then 

converted to the Jacobi spectral radius.  

 

3. Generalized Davidson Method 

 

The previous two implementations use the same 

underlying shifted power-iteration methodology but alter the 

solution methodology for the linear system. The generalized 

Davidson solver alters this mechanism. The Anasazi 

package in Trilinos is used primarily because of the 

availability of a wide range of preconditioners. MPACT 

directly provides the migration and fission matrices to 

Anasazi at every outer iteration.  

The generalized Davidson solver in Anasazi is used 

with the algebraic multigrid preconditioner package ML 

[13], which is a smoothed aggregate preconditioner. The 

preconditioner is allowed up to eight total levels and thee 

smoothing sweeps per level. An ILU smoother with a 

parallel domain overlap of one is used on each level. 

Although ML allows the user to define sets of coupled 

equations, each spatial and energy matrix entry is 

considered uncoupled from the others. Attempts were made 

to define the matrix as having 47 coupled equations to 

capture the energy dependency of the system, but the 

uncoupled preconditioner significantly outperformed the 

same cases when all groups were coupled. 

 

IV. RESULTS 

 

Results from this work demonstrate the performance of 

MPACT and the CMFD solver on a range of cases and core 

counts on two different machines. The majority of the cases 

for this work are run on the Titan computer maintained by 

the Oak Ridge Leadership Computing Facility at Oak Ridge 

National Laboratory. 

The first case considered is the VERA Progression 

Problem [14] 5-2D. A 2D slice of a quarter-core 

pressurized-water reactor (PWR) is shown in Fig. 5.  
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Figure 5: Core Layout for Problem 5 Cases 

 

This case is run with a 15-core, 73-core (assembly based), 

and 257-core (fully decomposed) core count. The 15-core 

partition is not necessarily optimal, but it is as close as 

possible to obtaining a ~1,000-core solution for a 3D quarter 

core problem. Table I shows the number of iterations, the 

total run time for MPACT, and the CMFD solve time. Three 

cases are shown: (1) a shifted power iteration with a 

constant shift of 1.5 using the GMRES solver from PETSc 

for a linear solver with a block ILU preconditioner; (2) a 

shifted power iteration with a constant shift of 1.5 using a 

red-black successive over-relaxation (RBSOR) linear solver; 

and (3) the generalized Davidson solver from Trilinos, 

preconditioned with algebraic multigrid (AMG) from ML.  

 

TABLE I. Problem 5-2D Performance on Titan 

 15 procs 

 Its. Total CMFD 

Shift = 1.5, PETSc GMRES 12 46:51 35:58 

Shift = 1.5, RBSOR 12 22:56 12:13 

Gen. Davidson, AMG  9 09:54 01:20 

 73 procs 

Shift = 1.5, PETSc GMRES 11 10:15 07:26 

Shift = 1.5, RBSOR 11 06:51 04:09 

Gen. Davidson, AMG 11 02:16 00:18 

 257 procs 

Shift = 1.5, PETSc GMRES 15 05:13 04:08 

Shift = 1.5, RBSOR 15 02:14 01:134 

Gen. Davidson, AMG 17 01:14 00:13 

 

It can be seen that across all problems, the CMFD run 

time is significantly decreased, which results in run times 

reduced by 4 to 5 times. 

The second case considered is the full-height, quarter-

core VERA Progression Problem 5a. This case is run on 870 

cores with 15 radial partition and 4,234 core with assembly 

radial partition). This is the target capability for MPACT to 

solve. The 15-core radial partition with 58 axial planes 

yields a less than 1,000-core solution to quarter-core PWR 

geometry, which is the target platform for VERA-CS. The 

1,000-core solution is important because it is a 

computational resource that CASL believes will be 

available to the nuclear industry in coming years.  

Table II shows the problem 5a performance on Titan. 

Again, the three solution methods are evaluated at the 

~1,000-core solution and the current 4,234-core solution. 

The RBSOR result for the 4,234-core solution was not run 

to reduce computational resources. As with the 2D cases, 

significant decreases in CMFD and total run times are 

observed in all cases. 

 

TABLE II. Problem 5a Performance on Titan 

 870 procs 

 Its. Total CMFD 

Shift = 1.5, PETSc GMRES 13 1:05:25 47:24 

Shift = 1.5, RBSOR 14 37:55 19:57 

Gen. Davidson, AMG 12 19:28 03:48 

 4234 procs 

Shift = 1.5, PETSc GMRES 12 19:58 12:19 

Shift = 1.5, RBSOR -- -- -- 

Gen. Davidson, AMG 12 08:55 02:11 

 

An extension to this problem is to run in full core to 

determine the difference in performance as the problem size 

is increased. These cases used 4,408 processors on Titan 

[15]. Only the default method and the generalized Davidson 

method were used for this case. As seen in Table III, the 

performance is consistent with the previous cases. 

 

TABLE III. Problem 5 Full-Core Performance on Titan 

 Its. Total CMFD 

Shift = 1.5, PETSc GMRES 13 1:04:55 43:46.4 

Gen. Davidson, AMG 12 0:27:03 08:46.8 

 

 

V. CONCLUSIONS 

In this work, a new eigenvalue solution method was 

implemented into the CMFD solver in MPACT. Overall, the 

CMFD solve time was reduced from the default MPACT 

methods by approximately 13 times, which yields an overall 

reduction in MPACT solve times of approximately 3.5 

times. This allows MPACT and VERA-CS production runs 
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to require ~1,000 cores instead of the 4,000+ cores currently 

required without a significant change in run time. VERA-

CS can also be solved significantly faster if the same core 

count is used.  

Although significant improvements in run time are 

observed, additional work remains. Further testing is needed 

for full-core coupled depletion problems to ensure 

robustness and stability. Additionally, there are minor 

performance tuning activities that can be made in CMFD 

such as adaptive iteration control, optimization of how often 

the preconditioner is updated, and optimization of 

parameters in the preconditioners.  This has become 

especially important in continuing assessment of the 

Davidson Method because during reactor depletion, there 

are observed cases where the preconditioner breaks down 

which can lead to slow or even non-convergence.  There is 

also an optimization needed with depletion because power 

iteration converges very rapidly when the initial guess from 

previous time steps are used but the cost of the Davidson 

method remains approximately the same. 
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