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Abstract - An assessment of the approximation in a two-dimensional transport/one-dimensional diffusion 

(2D/1D) variational nodal method for pin-resolved pressurized water reactor (PWR) core calculations is 

presented. The derivation of the response matrices on which the solution algorithms are based is modified 

to include a more efficient inclusion of the quasi-reflected interface conditions that are essential to the 

method’s success. The accuracy of the angular approximations is summarized, and a series of test 

problems based on the C5G7 benchmarks is examined to determine the level of discretization error 

compared to multi-group Monte Carlo reference solutions. Errors resulting from finite element and 

orthogonal polynomial approximations to the spatial variables in the lateral plane as well as axial 

discretization are analyzed. Results for the two- and three-dimensional C5G7 benchmarks illustrate the 

resulting tradeoffs between accuracy and cost.  

Accuracy for two-dimensional problems proves to be excellent; while in three-dimensions the axial 

diffusion theory limits accuracy. It is found that removing the axial diffusion limitation will require 

abandoning the 2D/1D formulation and basing the method on the three-dimensional even-parity transport 

equation, in which cross derivatives between the lateral plane and axial direction are present. Preliminary 

theoretical work indicates no insurmountable impediments to the development of such a fully three-

dimensional pin-resolved variational nodal method.  

 

I. INTRODUCTION 

 

The objective of this work is to assess the 

approximations contained in generalizing the variational 

nodal method (VNM) implemented in the VARIANT code 

[1] for application to pin-resolved whole-core PWR 

problems. A 2D/1D VNM method without spatial 

homogenization has been formulated and implemented in 

the PANX (Purdue - Argonne - Northwestern - Xi’an) code 

[2-4]. It employs diffusion theory in the axial direction, 

combined with two-dimensional transport in the x-y plane. 

Unlike 2D/1D MOC methods, this approach does not 

require iteration between the x-y plane and the axial 

direction [5, 6]. In our initial work, we employed the 

standard spherical harmonics method [2]. More recently [3, 

4], we have made two refinements to improve accuracy and 

to reduce computational cost: First, the even-parity integral 

method [7] within the nodes reduces the computational 

effort required to form the response matrices. Second, the 

use of quasi-reflected interface conditions [8] reduces the 

dimension of the resulting response matrices and therefore 

the CPU time required to solve the resulting equations. As a 

result we have successfully utilized PANX 2D/1D model to 

solve two- and three-dimensional C5G7 benchmark 

problems [9]. In what follows we report on efforts to further 

increase the accuracy and reduce the computational cost of 

2D/1D VNM pin-resolved calculations.  

In section II we update the theory to include a more 

streamlined implementation of the quasi-reflected interface 

conditions than is contained in reference [4]. Section III first 

examines refinement of key spatial approximations on a 

series of small two-dimensional test problems to determine 

their effects on cost and accuracy, and then applies the 

results to the two-dimensional C5G7 benchmark. Retaining 

the axial diffusion approximation, we then turn to the 

2D/1D formulation. We first test it on a small problem to 

analyze the convergence properties of axial mesh refinement 

and axial interface approximations. Then the refined 

approximations are applied to the three-dimensional, C5G7 

benchmark problem to evaluate their effects. In section IV 

we discuss the results and point to future research 

directions.  

 

II. THEORY 

 

The response matrices employed in this work are 

derived from the 2D/1D even parity approximation to the 

within-group transport equation, detailed elsewhere [4]: 
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(1) 

where    and   are the even-parity angular flux and scalar 

flux,   and 
s

 
are transport corrected total and isotropic 

scattering cross sections, and q is the group source. The 
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planar and axial gradients are defined by ˆ ˆ
p i x j y        

and ˆ
z k z    . Thus Eq. (1) differs from its three-

dimensional equivalent in that the axial gradients operate 

only on the scalar flux, and the cross derivatives between 

the lateral plane and the axial direction have been 

eliminated. If   , and thus , is independent of z, the two 

dimensional transport equation is obtained; besides, if they 

are independent of x and y, then Eq. (1) may be integrated 

over angle to obtain a one-dimensional diffusion equation. 

If diffusion holds in all three dimensions, integrating Eq. (1) 

over angle results in the three-dimensional diffusion 

equation since d    . 

The variational functional corresponding to Eq. (1) is 

 , ,v

v

F F              (2) 

where the problem domain is the superposition of the nodal 

volumes vV . The nodal functional is  
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 (3) 

In local coordinates, the nodal volume is defined in 

/ 2 / 2z z z    , the planar area is A x y   , ˆ
pn being 

the outward normal to the lateral interfaces extending over 

the periphery  ;   is the odd-parity flux, and zj  
are 

axial currents. 

Requiring this functional to be stationary with respect 

to variations in  

 
within vV ,

 
yields Eq. (1) as the Euler-

Lagrange equation. Across the interfaces,  

 
and zj  

are 

defined to be continuous. Requiring Eq. (3) to be stationary 

with respect to variations in  

 
and zj , yields additional 

continuity conditions across lateral and axial interfaces. 

 

1. DISCRETIZATION 

 

We discretize Eq. (3) as follows. To allow the use of 

the even-parity integral equation within the node we 

approximate the spatial distribution of the even-parity flux 

by
 

 ˆ ˆ( , ) ( ) ( , ) ( )T T

zr f z g x y       (4) 

Correspondingly, the scalar flux is 

 ( ) ( ) ( , )T T

zr f z g x y     (5) 

where ˆ( )d     . The axial distribution is 

approximated by ( )zf z , a set of orthonormal polynomials 

governed by  

 ( ) ( ) , ,T

u u uf u f u du I u x y z   (6) 

and ( , )g x y  is a vector of continuous finite element trial 

functions. Within a node the cross sections are independent 

of z and piecewise constants in x and y. We employ 

quadratic triangular and quadrilateral iso-parametric finite 

elements so that the element boundaries faithfully map 

curved material interfaces. Fig. 1 illustrates three finite 

element meshes used to represent a fuel pin cells in the 

C5G7 calculations in the following section. 

 

 
Fig. 1. Three Quadratic Finite Element Grids for a Fuel Pin 

Cell 

 

On the axial interfaces the current is approximated by 

 ( , ) ( , )T

z zj x y h x y    (7) 

where ( , )h x y  is a vector of piecewise constants within the 

area iA covered by the ith finite element 1/2( , )i ih x y A , and 

is set equal to zero elsewhere. On the lateral surfaces 
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where 1,2,3,4   correspond to the left, right, bottom and 

top interfaces, correspondingly , , ,x x y y      . The 

vector ( )f   consists of orthonormal functions defined by 

Eq. (6). The spherical harmonics vectors ˆ( )y   and 

ˆ( )oy   contain only the cosine series of odd-parity 

spherical harmonics: ˆ( )y   is a low-order Pn vector, say 

with n=1 or 3. ˆ( )oy   is a high-order vector ranging from 

n+2 up to some larger value of n.  

However, we apply reflected interface conditions to the 

high-order expansions by deleting the lmY  terms with even 

m from the vector [10]; we employ the subscript o to 

indicate that only the odd m terms are included in the 

expansion. Since Eq. (1) maintains two-dimensional 

symmetry in angle, the spherical harmonics vectors include 

only the cosine series rotated to align the polar axis with the 

outward normal n̂  and an azimuthal angle measured from 

the lateral plane. 

Inserting the trial functions of Eq. (4), (5), (7) and (8) 

into Eq. (3) yields the discretized functional  
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where 
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and the matrices containing integrals over the spatial trial 

functions are defined in Table 1. The spatial integrals are 

evaluated numerically using standard finite element 

techniques. Based on preliminary investigations [4], the 

group source q  is taken to be piecewise constant, with a 

unique value for each of the finite element areas in the x-y 

plane, but to vary axially with ( )zf z . 

 

Table 1 Spatial Integrals 
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We next re-group the terms in Eq. (11) and Eq. (12) by 

low- and high-order terms: 
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Thus the discretized functional becomes 
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2. VARIATIONAL PROCEDURES 

 

We require the discretized functional, Eq. (19), to be 

stationary with respect to variation in ˆ( )  yielding 
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which we solve for the even parity flux vector: 
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To proceed, we first eliminate the scalar flux from the 

right side of this equation by first integrating Eq. (21) over 

angle to obtain 

 
l ol os

H F H Fq M M        (22) 

where the matrices are defined in Table 2. The integrals 

over angle are evaluated using high-order square 

Chebyshev–Legendre cubature.  

 

Table 2 Angular Integrals 
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We next define  
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s

Z I H F   (23) 

and solve Eq. (22) for the scalar flux 
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Inserting this expression into Eq. (21), we obtain the even-

parity flux within the node in term of the group source, the 

odd-parity flux on the lateral interfaces, and the currents of 

the axial interfaces: 
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Requiring Eq. (19) to be stationary with respect to 

variations 
l

  and 
o

  yields the conditions that the 

following quantities must be continuous across the lateral 

and axial interfaces: 
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However, to employ the quasi-static interface conditions, 

we must impose the condition that for even l the lmY  

coefficients must vanish for odd values of m [10]. Thus 
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Inserting Eq. (25) into Eq. (26) and (27) yields 
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and 
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Likewise, Eq. (24) may be written more compactly as 

 l l ol o
V q C C      (31) 

where the matrices are defined in Table 3. 

We next solve 
o

  in Eq. (30) and eliminate it from Eq. 

(29) and (31). Hence we have 

 Uq G    (32) 

and 

 Vq C    (33) 

where the resulting matrices are given in Table 3.  
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3. RESPONSE MATRIX EQUATIONS 

 

To recast Eq. (32) in response matrix form we utilize a 

transformation to variables, which in diffusion theory 

reduces to the partial currents:  

 
1 1

4 2
j      (34) 

where j  and j  correspond respectively to incoming and 

outgoing neutron currents. Changing variables to write Eq. 

(32) in terms of j


 yields the response matrix equation, 

 j Bq R j    (35) 

where 
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With the partial currents known, the scalar flux may be 

determined in terms of the partial currents from Eq. (33): 

  Vq C j j      (38) 

 

III. RESULTS 

 

In this section, seven group cross sections from the 

C5G7 benchmark are employed in all the calculations, and 

corresponding multi-group Monte Carlo solutions are taken 

as references. To begin, the PANX code is applied to review 

our previous work, where angular approximations were 

examined using a fixed set of spatial approximation. 

Second, we examine the refinement of spatial 

approximations. In this process, two-dimensional single cell 

problems are used to assess the adequacy of the finite 

element mesh and the interface polynomials. Then the mesh 

and polynomial order thus obtained are applied in the 

unrodded two-dimensional C5G7 problem. Furthermore, in 

three dimensions, we employ a four pin problem to examine 

convergence of the axial grid in conjunction with the 

coupling of the finite element meshes at the axial interfaces. 

We then employ the aforementioned finding to the unrodded 

and rodded three-dimensional C5G7 benchmarks. 

 

1. ANGULAR APPROXIMATIONS 

 

In our studies of angular approximations, the spatial 

approximations are fixed: we use 32 quadratic finite 

elements (32QFE) as shown in Fig. 1 within the node and 

2nd order orthogonal polynomials on the lateral interfaces. 

Three different forms of the PANX code are employed. In 

its initial form, standard spherical harmonics expansions 

were used within the node as well as on the node interfaces. 

This form has been abandoned lately since memory and 

CPU requirements became prohibitive to achieve 
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sufficiently high order spherical harmonic approximations. 

PANX_I is the integral method detailed in Section II, 

without the use of quasi-reflected boundary conditions, and 

PANX_IQ_n is the integral method with Pn conditions on 

the interface with quasi-reflected interface conditions 

extending to some higher order Pm. For brevity we will 

often refer to these simply as Pm-Pn approximations. All 

angular integrals are evaluated using 25 25  square 

Legendre-Chebyshev cubature. 

Results for the two-dimensional unrodded C5G7 

problem are shown in Fig. 2 for the three forms of the 

PANX code, where the high-order Pm interface conditions 

are plotted from P1 though P23. It was concluded that the 

P23_P3 approximation provided sufficient accuracy 

compared to the reference multi-group Monte Carlo solution 

to justify its use in subsequent calculations. 

Fig 3 is an analogous plot for the three-dimensional 

unrodded C5G7 benchmark. We employ the same 

32QFE/2nd order spatial approximations in the x-y planes. A 

quadratic polynomial approximates the axial dependence of 

the even-parity flux within the nodes, and the axial domain 

is divided into 18 segments. For the three dimensional 

problem, the solutions converges to a value significantly 

lower than the multi-group Monte Carlo reference solution. 

We attribute this primarily to the use of axial diffusion 

theory in the 2D/1D formulation. We again conclude that 

the P23_P3 approximation is adequate for subsequent 

calculations.  

 

 
Fig. 2. Eigenvalue vs. Pm Approximation for the Unrodded 2D C5G7 Benchmark 

 

 
Fig. 3. Eigenvalue vs. Pm Order for the 3D Unrodded C5G7 Benchmark 

 

2. SPATIAL APPROXIMATIONS – TWO 

DIMENSIONS 

 

To examine the finite element trial functions, ( , )g x y  

in Eq. (4), and the lateral interface polynomials, ( )f   in 

Eq. (8) are considered using the MOX (8.7% enrichment) 

and UO2 pin cells. The 32 QFE, 96 QFE and 144 QFE grids 

depicted in Fig. 1 with 2nd , 4th and 6th order orthogonal 

polynomials on the interfaces are compared, while in earlier 

publications only 32QFE/2nd order was used. The Monte 

Carlo reference values are k = 1.32557 and 1.17472 with 

99% confidence limits of 7 pcm and 3 pcm. The infinite 

lattice pcm errors in the eigenvalues are show in Fig. 4 for 
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the nine combinations of mesh. Cancellation of error is 

clearly present in the 2nd order polynomial results, for the 

eigenvalue error becomes worse as the finite element mesh 

is refined. For the 4th and 6th order polynomials, the errors 

are small and decrease with the refinement of the finite 

element mesh. Based on these results, we conclude that the 

96QFE/4th mesh provides sufficient accuracy.  

 

 
 

Fig. 4. UO2 and MOX Pin Cell Eigenvalue Errors 

 

To study the effects of mesh refinement in a non-

uniform problem, we employ the four pin configuration 

shown in Fig. 5. It consists of two MOX (8.7% enrichment) 

and two UO2 pin cell with reflected conditions on the outer 

boundaries. Results are shown in Table 4 for the eigenvalue 

and the power ratio between pins for the 32QFE/quadratic 

and the 96QFE/quartic approximations. P23_P1, P23_P3, and 

P23_P5 angular interface conditions are implemented to 

show the effects of employing different quasi-reflected 

interface conditions. 

In this case, the Monte Carlo reference values are k 

=1.22919 ± 2 pcm and the power ratio being 1.8044 ± 

0.03%. It is observed that the coarser spatial approximation 

results in 50-60 pcm positive error, while the P23_P1 

approximation causes a comparable negative error. Besides, 

the differences between P23_P3 and P23_P5 approximation 

using both spatial approximations are only a few pcm, 

indicating the adequacy of the P23_P3 interface 

approximation. In addition, there is little difference in the 

power ratio between different spatial approximations, while 

refining the angular interface approximation from P23_P1 to 

P23_P3 reduces the error by nearly an order of magnitude, 

whereas refining it to P23_P5 produces insignificant 

improvements. 

 

 
Fig. 5. The Four Pin Configuration with Reflected Boundary 

Conditions 

 

Table 4. Eigenvalue and Power Ratio Errors of the  

Four Pin Problem 

  
P23-P1 P23-P3 P23-P5 

Eigenvalue 
32QFE /quadratic 1.22920 1.22975 1.22972 

96QFE /quartic 1.22854 1.22924 1.22919 

Error - pcm 
32QFE /quadratic 1 56 53 

96QFE /quartic -65 5 0 

Power Ratio 

(MOX/UO2) 

32QFE /quadratic 1.8404 1.8108 1.8082 

96QFE /quartic 1.8426 1.8102 1.8075 

Error - % 
32QFE /quadratic 2.00 0.35 0.21 

96QFE /quartic 2.12 0.32 0.17 

 

Table 5 shows results for the unrodded 2D C5G7 

problem comparing the 96QFE/4th P23_P3 to the 32QFE/2nd 

P23_P3 used in earlier calculations. To assess the overall pin 

power distribution, the pin power error of the maximum 

power pin-cell (Max Pin), the average pin power error 

(AVG), the root-mean-square (RMS) of the pin power 

distribution, and the mean relative pin power error (MRE) 

are included. Distinct improvement is shown in the pin 

power results while the eigenvalue remains essentially 

unchanged. As expected, the refined spatial approximations 

add considerably to the computation times. 
 

Table 5. Eigenvalue and Power Errors of the 2D C5G7 

Benchmark Problem 

 
32QFE 

/quadratic 

96QFE 

/quartic 

Eigenvalue error /pcm 18 20 

Pin power error /% 

MAX -0.30 -0.08 

AVG 0.24 0.14 

RMS 0.27 0.18 

MRE 0.22 0.12 

CPU time /h 

Total 0.12 1.75 

Formation* 0.10 1.70 

Solution 0.02 0.04 

Memory /GB 0.07 0.12 

* Response matrix formation 
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3. SPATIAL APPROXIMATIONS – THREE 

DIMENSIONS 

 

To examine the effects of refining axial meshes and of 

changing axial interface approximation we employed the 

two-dimensional 4 pin configuration illustrated in Fig. 5. 

The extension has an axial length of 42.84 cm, which equals 

the length of the active region in the C5G7 benchmark, with 

a vacuum boundary condition at one end and a reflected 

condition on the other. To reduce computing efforts, in 

these calculations we employ 32QFE mesh with 2nd order 

polynomials on the x and y interfaces. The angular 

approximation is P23_P3. In three-dimensional calculations 

to date [4], the piecewise constant function, ( , )h x y  in Eq. 

(7), has been employed with one piecewise constant per 

finite element. For clarity, each of these constant is referred 

to an axial interface zone. As indicated in Fig. 6, we 

considered 1, 2, and 4 zones as well as the standard 32 zone 

axial interface condition. In all four cases, we retain 32 

quadratic finite elements to approximate the lateral plane 

distribution of the even–parity flux within the node. 

Plots are shown in Fig. 7 for each of the four zone 

structures where the length of the fuel pins are divided into 

increasing numbers of increments, thus decreasing the axial 

dimension of the nodes. The graph displays two striking 

results. First, the one-zone results do not converge as the 

axial mesh is refined while the others do converge. We 

attribute the non-convergence to the artificial smearing of 

fuel and coolant at each of the axial interfaces, which occur 

at shorter intervals as the axial mesh is refined. Second, as 

long as there is no fuel-coolant smearing, i.e. as long as 

there are two or more zones, the number of zones has a 

nearly imperceptible influence on the eigenvalue. Based on 

these results, we have replaced the 32 zone model used to 

date with the two-zone model in applying PANX to the 

three-dimensional C5G7 benchmarks; it results in 

significant reduction in computational effort while causing 

negligible loss of accuracy. 

Table 6 displays the results for the three-dimensional 

C5G7 benchmarks employing 2 axial interface zones and 18 

axial segments. To show the effects of spatial mesh 

refinement, both 32QFE/2nd order and 96QFE/4th order 

approximations are employed. All calculations were 

performed on a Xeon X7560 CPU. Sixteen thread OpenMP 

was applied to the response matrix formation with 

efficiencies between 70 and 80 percent.  

 

 
Fig. 6. Axial Interface Piecewise Constant Zones 

 

 
Fig. 7. Eigenvalue Convergence vs. Number of Planes for 4 

Pin-cell Problem 

 

DISCUSSION 

 

The preceding sections present the continued 

development of a variational nodal method based on a 

2D/1D approximation of the even-parity neutron transport 

equation for pin-resolved analysis of pressurized water 

reactors. In earlier work emphasis was placed on 

determining the refinement of the angular approximations 

needed to achieve accurate solutions. Much less effort went 

into determining the sensitivity of the results to refinement 

of spatial discretization. In this paper we utilize the C5G7 

benchmark problems to examine the cost-accuracy tradeoffs 

in refining the finite element mesh within the node, the 

orthogonal polynomial representation of the lateral interface 

variables, and the axial mesh and interface approximations. 

After examining spatial and angular truncation errors, 

we conclude that the largest errors remain in three-

dimensional problems, and that these stem from the axial 

diffusion approximation in the 2D/1D approximation to the 

even-parity transport equation. We made a concerted effort 

to remove the axial diffusion limitation: ( )z r  is replaced 

by ˆ( )z r ， in Eq. (1) and subsequent equations in order 

to incorporate Pn or SPn approximations in the axial 

direction. Doing so caused no perceptible change in the 

results. We thus conclude that our 2D/1D simplification 

must be abandoned, and the three-dimensional even-parity 

transport equation, which includes cross derivatives 

between the lateral plane and the axial direction, should be 

employed. We have formulated such a three-dimensional 

variational nodal method and are proceeding to implement it 

in the PANX code. Work is also beginning on code 

parallelizing to reduce costs and enable the treatment of full 

reactor cores.  
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Table 6. Eigenvalue and Power Errors of the 3D C5G7 Benchmark Problems 

 Un-rodded Rodded A Rodded B 

 
32QFE 

/quadratic 

96QFE 

/quartic 

32QFE 

/quadratic 

96QFE 

/quartic 

32QFE 

/quadratic 

96QFE 

/quartic 

Eigenvalue error /pcm -107 -80 -157 -173 -227 -238 

Axially integrated 

pin power error /% 

MAX -0.62 0.25 -0.98 0.70 -0.82 -0.53 

AVG 0.44 0.23 0.55 0.40 0.57 0.41 

RMS 0.51 0.29 0.62 0.46 0.66 0.49 

MRE 0.40 0.21 0.53 0.37 0.57 0.40 

Slice 1 

pin power error /% 

MAX -1.18 1.04 -1.62 1.37 -2.59 -2.21 

AVG 0.48 0.60 0.57 0.48 0.8 0.70 

RMS 0.62 0.69 0.73 0.62 1.09 0.95 

MRE 0.29 0.34 0.37 0.32 0.61 0.54 

Slice 2 

pin power error /% 

MAX -0.84 0.61 -1.03 0.69 -0.12 0.25 

AVG 0.44 0.31 0.56 0.41 0.44 0.42 

RMS 0.55 0.38 0.65 0.50 0.53 0.53 

MRE 0.17 0.13 0.21 0.15 0.13 0.14 

Slice 3 

pin power error /% 

MAX 1.05 2.20 2.81 3.06 3.71 3.87 

AVG 1.68 2.15 1.86 1.73 2.81 2.63 

RMS 1.72 2.19 1.96 1.90 2.88 2.73 

MRE 0.32 0.43 0.30 0.29 0.36 0.34 

 

CPU time /h 

Total 0.69 8.64 0.62 7.81 0.61 8.43 

Formation* 0.14 7.72 0.12 6.71 0.13 7.11 

Solution 0.55 0.92 0.50 1.10 0.48 1.32 

Memory /GB 3.12 7.70 2.94 7.85 3.12 7.88 

* Response matrix formation 

 

 

 


