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Abstract - EDF R&D is currently working on a new, state-of-the-art calculation chain called ANDROMÈDE.
For core computations, it uses the 3D Cartesian code, Cocagne. Cocagne is a platform which provides several
engineering solutions as well as advanced solutions such as several solvers based on the S Pn (diffusion is a
particular case of S P1 equations) and S n methods for the time-independent Boltzmann equation. The S P1
kinetic equations have been implemented for diffusion calculations for engineering purposes. The goal of this
paper is to derive and validate the time-dependent Boltzmann equation for Cocagne. The long-term aim of
this Cartesian transport solver is to provide reference multigroup pin-homogenised kinetic solutions for the
transport equation to be used as an industrial reference at EDF with the ANDROMÈDE calculation chain.

I. INTRODUCTION

The statistical behaviour of a population of neutral parti-
cles is governed by the time-dependent Boltzmann equation.
It is basically a balance equation that describes the rate of
change of the population density between particles that stream
into/out of a given control volume, those which disappear by
absorption and scattering and those which are emitted by a
source [1]. This equation is essential for modelling neutron
transport in industrial nuclear reactors.

The solution to the time-dependent problem is still very
costly, even today, and for everyday engineering applications,
the Boltzmann equation is solved for a steady state by trans-
forming the transient equation into a time-independent equa-
tion. The particle balance is ensured by dividing the produc-
tion term by the multiplication factor or keff. Furthermore, for
industrial applications, several approximations are set up to
solve the equation in a reasonable amount of time.

However, studies of the neutron population in short time
intervals, ranging from fraction of a second to several min-
utes such as safety engineering accident methodologies (e.g.
reactivity insertion accident), may require the solution of the
time-dependent equation. Given that ψ(r, E,Ω, t) and Cp(r, t)
are respectively the neutron flux and the density of the pth

precursor group at time t, position r, and for the flux at energy
E in direction Ω of the unit sphere S 2, such that:



Lψ(r, E,Ω, t) = Ω · ∇ψ(r, E,Ω, t) + Σt(r, E, t)ψ(r, E,Ω, t)
Hψ(r, E,Ω, t) =
1

2π

∫ ∞

0
dE′

∫
S 2

dΩ′Σs(r, E′ → E,Ω ·Ω′, t)ψ(r, E′,Ω′, t)

Fpψ(r, E,Ω, t) =
χ0(E)

4π

∫ ∞

0
dE′

∫
S 2

dΩ′
[
1 − β(E′)

]
νΣ f (r, E′, t)ψ(r, E′,Ω′, t)

Qr(r, E, t) =
1

4π

P∑
p=1

λpχp(E)Cp(r, t)

Fd,pφ(r, E, t) = βp(E)νΣ f (r, E, t)φ(r, E, t)

φ(r, E, t) =

∫
S 2

dΩψ(r, E,Ω, t),

the time-dependent Boltzmann equation is expressed as:

1
v
∂

∂t
ψ(r, E,Ω, t) + Lψ(r, E,Ω, t)︸           ︷︷           ︸

leakage and collisions

−

transfers︷           ︸︸           ︷
Hψ(r, E,Ω, t)−Fpψ(r, E,Ω, t)︸            ︷︷            ︸

prompt neutrons

=

delayed neutrons︷      ︸︸      ︷
Qr(r, E, t) (1)

and the P equations to account for the density of precursors
that emit delayed neutrons are expressed as:

∀ 1 ≤ p ≤ P,
∂

∂t
Cp(r, t) = −λpCp

(
r, t)︸       ︷︷       ︸

losses

+

productions︷                    ︸︸                    ︷∫ ∞

0
dEFd,pφ(r, E, t) .

(2)
At EDF, the operating core calculation chain CASSIOPEE
solves this problem with the diffusion approximation. EDF
R&D is currently working on a new, state-of-the-art calcula-
tion chain called ANDROMÈDE. For assembly computations,
this encompasses the Apollo2 code/JEFF3-based CEA multi-
group library/REL2005 scheme package [2], while for core
computations, it uses the 3D Cartesian code, Cocagne [3].
Cocagne is a platform which provides several engineering so-
lutions as well as advanced solutions such as several solvers
based on the S Pn (diffusion is a particular case of S P1 equa-
tions) and S n methods for the time-independent Boltzmann
equation [4]. The S P1 kinetic equations have been imple-
mented for diffusion calculations for engineering purposes.

Nonetheless, transport methods are becoming more and
more prevalent in the nuclear engineering community, and
the use of best-estimate calculations for validation is more
common. Although high-fidelity calculations with heteroge-
neous cells in unstructured meshes (e.g. MoC) are becoming
widespread, their industrial application on an everyday basis
to deal with full-core industrial reactor for time-dependent ap-
plications (e.g. RIA) is still not available. At EDF, within the
Cocagne platform, there exists a framework to deal with core
calculations from homogeneous assemblies to pin-resolved
calculations for diffusion up to full transport calculations. The
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goal of this paper is to derive and validate the time-dependent
Boltzmann equation for Cocagne. The aim of this Cartesian
transport solver is to provide reference multigroup and pin-
homogenised kinetic solutions for the transport equation for
its use as an industrial reference for EDF.

This paper first describes the theoretical background for
the time-dependent transport equation along with its numerical
integration using the θ-scheme. Furthermore, a preliminary
method to optimize the solver will also be discussed in this
section. Afterwards, we shall provide the numerical time con-
vergence of the solver using a benchmark case, as well as
validation results where the power of the core is compared
to published solutions. Besides, we have also set up a small
benchmark with multigroup cross sections for further valida-
tion purposes.

II. THEORY

This section describes the equations which have been
implemented in Cocagne for the time-dependent S n solver.

1. Brief overlook of the existing Sn solver, DOMINO

Today, the Cocagne platform has a steady-state S n solver
called DOMINO. DOMINO is based on a classical multigroup
approach for the energy variable. The angular flux is solved
using Level-Symmetric Quadratures ranging from S 2 to S 16.
DOMINO solves the spatial part using a diamond-differencing
scheme which is implemented for DD0 only at present.

Past works have shown that for PWR cases S 8 quadratures
are largely efficient and satisfactory. Furthermore, DD0 spatial
discretization is also acceptable for our in-house studies since
they are carried at pin-cell level which are further refined up
to 2 × 2 meshes and by applying an S PH equivalence factor.

Besides, for convergence and acceleration purposes,
DOMINO uses a Diffusion Synthetic Acceleration scheme
based on the S P1 solver which is implemented within the
same platform.

2. Principles of the θ-scheme

The time-dependent neutron transport equation is inte-
grated using the θ-scheme method. Let us consider the follow-
ing time-dependent problem, where f is positive and defined
on the [0,T ] range:{

∂
∂t u + α(t)u(t) = f (t),
u(0) = u0

It is integrated from tn to tn+1 as follows:

u(tn+1) − u(tn) +

∫ tn+1

tn
α(t)u(t)dt =

∫ tn+1

tn
f (t)dt.

The θ-scheme is based on the following approximation:

∀θ ∈ [0; 1],
∫ tn+1

tn
f (t)dt ≈

∫ tn+1

tn

[
f (tn)wθ

n(t) + f (tn+1)wθ
n+1(t)

]
dt

where the functions wθ
n(t) and wθ

n+1(t) are quadratic polynomi-
als defined as:

wθ
n(t) =

6(θ − 1/2)
∆t2 (tn+1 − t)2 +

6
∆t

(2/3 − θ)(tn+1 − t)

wθ
n+1(t) =

6(1/2 − θ)
∆t2 (t − tn)2 +

6
∆t

(θ − 1/3)(t − tn)

and such that:
wθ

n(tn) = 1, wθ
n(tn+1) = 0 et

∫ tn+1

tn
wθ

n(t) dt = (1 − θ)∆t,

wθ
n+1(tn) = 0, wθ

n+1(tn+1) = 1 et
∫ tn+1

tn
wθ

n+1(t) dt = θ∆t.

Thus, the integral is approximated as follows:∫ tn+1

tn
f (t)dt ≈

[
θ f (tn+1) + (1 − θ) f (tn)

]
∆t,

thereby, leading to the time scheme expressed as:

∀θ ∈]0; 1],
un+1 − un

θ∆t
+

[
α(tn+1)un+1 +

1 − θ
θ

α(tn)un

]
=

f (tn+1) +
1 − θ
θ

f (tn), (3)

where un and un+1 are the approached values for u(tn) and
u(tn+1).

3. Integration of the precursor density equation

The precursor concentration equation is solved by an
exact integration of equation (2). Integrating that equation by
parts over [tn; tn+1] leads to:

∂d
∂t

(Cp(r, t) exp−λp(tn+1−t)) =∫ tn+1

tn

∫ +∞

0
Fd,pψ(r, E,Ω, t) exp−λp(tn+1−t) dEdt. (4)

The θ-scheme is not used for the precursor equation, it is
integrated analytically as:

Cp(r, tn+1) = Cp(r, tn) exp−λp∆t +W p
nFd,pψ(r, E,Ω, tn)

+ W p
n+1Fd,pψ(r, E,Ω, tn+1), (5)

with

W p
nFd,pψ(r, E,Ω, tn) + W p

n+1Fd,pψ(r, E,Ω, tn+1) =∫ tn+1

tn
exp−λp(tn+1−s) Fd,pψ(r, E,Ω, s)ds,

and

W p
n =

∫ tn+1

tn
exp−λp(tn+1−s) wθ

n(s) ds,

W p
n+1 =

∫ tn+1

tn
exp−λp(tn+1−s) wθ

n+1(s) ds.
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4. Integration of the neutron transport equation

Integrating equation (1) over [tn; tn+1] results into:

1
v

(ψ(r, E,Ω, tn+1) − ψ(r, E,Ω, tn))

+

∫ tn+1

tn

(
L −H − Fp

)
ψ(r, E,Ω, t)dt =

∫ tn+1

tn
Qr(r, E, t)dt.

(6)

The θ-scheme (3) is applied to the previous equation, thereby
leading to:

ψ(r, E,Ω, tn+1) − ψ(r, E,Ω, tn)
vθ∆t

+
(
L −H − Fp

)
ψ(r, E,Ω, tn+1)

+
1 − θ
θ

(
L −H − Fp

)
ψ(r, E,Ω, tn)

= Qr(r, E, tn+1) +
1 − θ
θ

Qr(r, E, tn). (7)

The expression for the precursor density at times tn and
tn+1 and the following notations are introduced for simplifica-
tion:
F̃ n+1

d,p ψ(r, E,Ω, tn+1) =
1

4π
λpχp(E)W p

n+1Fd,pψ(r, E,Ω, tn+1),

F̃ n
d,pψ(r, E,Ω, tn) =

1
4π
λpχp(E)W p

nFd,pψ(r, E,Ω, tn).

Thus, the following source problem has to be solved at tn+1:(
1

vθ∆t
+L −H

)
ψ(r, E,Ω, tn+1) = Q(r, E,Ω, tn)+Fp +

P∑
p=1

F̃ n+1
d,p

ψ(r, E,Ω, tn+1), (8)

with

Q(r, E,Ω, tn) =
1

4π

P∑
p=1

λpχp(E)
(

1 − θ
θ

+ exp−λp∆t

)
Cp(r, tn)

+

 1
vθ∆t

+
θ − 1
θ

(
L −H − Fp

)
+

P∑
p=1

F̃ n
d,p

ψ(r, E,Ω, tn).

If θ = 1, the time scheme thus obtained is an implicit
Euler scheme which is unconditionally stable. For θ = 0.5,
the θ scheme yields the Crank-Nicolson scheme [5] which
converges with a second order scheme precision in time. The
Crank-Nicolson scheme is unconditionally stable and is im-
plicit in time. The explicit integration scheme is obtained for
θ = 0.. However, although it is more easily implemented, the
explicit scheme does not converge unconditionally since it
requires very small time steps, below 10−10 s using the CFL
condition [6], for stability. Thus, it is not very useful in prac-
tice for the time-dependent neutron transport equation and we
shall not use this integration scheme in DOMINO (thereby,
allowing for θ in the denominator term in the previous equa-
tions).

5. Time resolution scheme

The goal is to solve the coupled Boltzmann equation dis-
cretized in time with the θ-scheme along with the precursor
equation at each time step. This coupled problem is initialized
by solving the time-independent problem to obtain the initial
equilibrium flux. The latter is used to initialize the equilib-
rium precursor concentration (equation 2 without the time
derivative).

The quantities Cp and ψ are then computed at time tn+1
using the following algorithm:

• calculation of W p
n and W p

n+1, and the source term
Q(r, E,Ω, tn),

• flux calculation at time tn+1, which is solution to the source
problem (equation 8),

• calculation of the precursor concentration at tn+1.

As far as the spatial and angular sweep are concerned, the
kinetic solver hinges on the same approaches as for the steady-
state DOMINO solver. Thus, only a few terms are changed to
allow for the time-dependence of cross sections: the source
term is computed with the updated precursor concentration at
times tn and tn+1. In the present implementation, the angular
flux at time step tn are stored to compute the source at step tn+1,
and thus will be costly in terms of the memory peak for very
large cases. The next section proposes a simple optimization
strategy for this particular problem.

6. Preliminary optimization

In this section, we shall consider a preliminary numerical
optimization of the solver. The goal is to use a low-order
approximation of the angular flux time derivatives as proposed
by [7].

Let us consider equation 8. Part of the angular source
term from that equation can be cancelled for the tn term if an
implicit scheme (θ = 1) is applied.

The angular flux is expanded on a basis of appropriate
functions. For that purpose, they are projected on the basis of
real spherical harmonics as described in [1]:

ψ(r, E,Ω, t) =

L∑
l=0

2l + 1
4π

m=l∑
m=−l

φlm(r, E, t)Rlm(Ω),

φlm(r, E, t) =

∫
S 2

dΩ′Rlm(Ω′)ψ(r, E,Ω, t).

Afterwards the time derivative given by:

1
v
∂

∂t
ψ(r, E,Ω, t)

is subsituted by the following expression

1
v

L∑
l=0

2l + 1
4π

m=l∑
m=−l

Rlm(Ω)
∂

∂t
φlm(r, E, t).
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and thus leads to the numerical scheme given by the equation
written: L −H − Fp −

P∑
p=1

F̃ n+1
d,p

ψ(r, E,Ω, tn+1)

+ 1
vθ∆t

∑L
l=0

2l+1
4π

∑m=l
m=−l φlm(r, E, tn+1)Rlm(Ω)

=

P∑
p=1

F̃ n
d,pφ(r, E, tn)

+ 1
vθ∆t

∑L
l=0

2l+1
4π

∑m=l
m=−l φlm(r, E, tn)Rlm(Ω)

+ 1
4π

∑P
p=1 λpχp(E) exp−λp∆t Cp(r, tn)

Therefore, at time tn+1, the following source problem is
obtained:

(L −H)ψ(r, E,Ω, tn+1)

+
1

vθ∆t

L∑
l=0

2l + 1
4π

m=l∑
m=−l

Rlm(Ω)φlm(r, E, tn+1) =Fp +

P∑
p=1

F̃ n+1
d,p

ψ(r, E,Ω, tn+1)

+ Q(r, E, tn), (9)

where the angular source at time tn is defined by the
following expression:

Q(r, E,Ω, tn) =

P∑
p=1

F̃ n
d,pφ(r, E, tn)

+
1

vθ∆t

L∑
l=0

2l + 1
4π

m=l∑
m=−l

φlm(r, E, tn)Rlm(Ω)

+
1

4π

P∑
p=1

λpχp(E) exp−λp∆t Cp(r, tn). (10)

This term has the corresponding form

AΨ = FΨ + Q,

and is usually solved using the Gauss-Seidel algorithm:

AΨk+1 = FΨk + Q.

In the rest of this paper, the Gauss-Seidel iterations are called
“external iterations”. For each of the latter, the following source
problem should be solved (by dropping the time indices, and
expressing the problem as a multigroup form:

Ω · ∇ψg(r,Ω) + Σtg(r)ψg(r,Ω) =
G∑

g′=1

2l + 1
4π

LΣ∑
l=0

Σ
g′→g
sl (r)

m=l∑
m=−l

φg′,lm(r)Rlm(Ω)

− 1
vθ∆t

∑Lφ
l=0

2l+1
4π

∑m=l
m=−l Rlm(Ω)φg,lm(r) = Q(r,Ω).

where LΣ corresponds to the expansion order of the differential
scattering cross section and Lφ that of the angular flux for

approximating the time terms. These two orders may not
be strictly the same, even though usually Lφ = LΣ, to avoid
increasing the memory peak compared to a static problem.

This method has been implemented recently in the
DOMINO solver and is currently under validation. Results
on the LMW3D benchmark are very satisfactory and yield a
discrepancy of 0.01% compared to the exact method using a
P1 expansion of the angular flux. Future work requires the
testing of the method of more anisotropic cases with UOX-
MOX interfaces to ensure that the P1 expansion is sufficient
even for more heterogeneous situations.

III. VALIDATION ON LMW3D

This section higlights the verification and validation work
on the newly-implemented time-dependent S n solver. Firstly
verification tests were done to prove the very good perfor-
mances of this solver for unitary tests. Secondly a benchmark
published by the end of the 1970’s by Langenbuch, Maurer
and Werner in [8] was studied.

1. The LMW3D benchmark

This benchmark hereafter called LMW3D is based on a
3D geometry representing a small core with two rodbanks that
are being simultaneously inserted and removed over a time
interval of 60 seconds. 1 The test geometry is that of a quarter
core as shown in Figure 1 and the positions of the rodbanks
are described in the same figure on the right.

The neutronic data for this geometry are provided in ta-
ble I. The latter correspond to the cross sections for diffusion
solvers: transport solvers such as DOMINO in Cocagne do not
use absorption or slowing-down cross sections Σ1→2. Thus,
the total and scattering cross sections are defined as:

Σt1 = 1
3D1

, Σt2 = 1
3D2

,

Σ1→1
s = 1

3D1
− Σa1 − Σr, Σ2→1

s = 0,
Σ1→2

s = Σ1→2, Σ2→2
s = 1

3D1
− Σa1.

Furthermore, the paper [8] also provides power values
for:

• the total core power with time,

• the local power in the three coloured cells of Figure 1
with time.

The solution from [8] constitutes our “reference” solution
based on a diffusion approximation calculation with a semi-
implicit time discretisation. Their spatial discretisation is
based on the nodal elements with polynomials of order 3 (for
a mesh with 20 cm cells).

In this work, the newly-implemented transient capabilities
of DOMINO will be tested on this benchmark and compared
to the diffusion (S P1) solver of Cocagne. These results will
also be compared to the reference calculations of [8] as well
as those obtained by Mula in [9]. This benchmark is used for
elementary validation purposes as cross sections are constant

1It is often (wrongly) referred to as the TWIGL benchmark, which is a 2D
test with two rods which are inserted in a core.
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Fig. 1. The 3D geometry with a quarter core for the LMW3D benchmark (left). The colored cells represent those for which the
authors of the initial paper provide local power values. Rod motion for the two rodbanks in the LMW3D benchmark. The y-axis
corresponds to the number of extracted rod steps, each step being equal to 1 cm (right).

Region Fuel 1 Fuel 2 Refl

D1 1.423913 1.423913 1.425611
D2 0.3563060 0.3563060 0.3505740
Σa1 1.040206e-2 1.095206e-2 1.099263e-2
Σa2 8.766217e-2 9.146217e-2 9.925634e-2
νΣ f 1 6.477691e-3 6.477691e-3 7.503284e-3
νΣ f 2 1.127328e-1 1.127328e-1 1.378004e-1
Σ1→2 0.0175555 0.0175555 0.01717768

Precursor groups βi λi

group 1 0.000247 0.0127
group 2 0.0013845 0.0317
group 3 0.001222 0.115
group 4 0.0026455 0.311
group 5 0.000832 1.4
group 6 0.000169 3.87

v1 = 1.25 · 107 cm/s, v2 = 2.5 · 105 cm/s
κ = 3.204 · 10−11 J,
ν = 2.5 neutrons/fission

TABLE I. Neutronic data for LMW3D.

as there are no thermalhydraulic feedback, thereby leading to
results that can be analysed more easily.

It should be noted that in the benchmark, the rods are
inserted/removed at a speed of 3 cm/s. Thus, it must be ensured
that the rod positions always correspond to a defined cell in the
geometry mesh to avoid rod cusping effects [10]2. Each non-
refined axial cell has a height of 20 cm. Thus, the time steps are

chosen such that ∆t =
20

3 × Nt
, where Nt is a refinement factor.

Hence, the axial cells are refined by 20/Nz with Nt ≤ Nz. The
S 4 quadrature is used for all S n calculations with Nz = 24.

2. Time convergence

A convergence study of the solvers is first carried out to
analyse the time convergence of the S n and S P1 solvers on this
benchmark for θ = 0.5 (Crank-Nicolson scheme) and θ = 1
(implicit scheme). The time step is varied from 6.66 s to 0.28
s. For the convergence studies, the calculation with time step
0.28 s is used as the reference calculation. Figure 2 shows the
time convergence for the total core power.

From Figure 2, it can be observed that for both the Crank-
Nicolson and implicit schemes, the solution converges as the
time step is decreased, thereby leading to smaller discrepan-
cies. The solution is assumed to be sufficiently converged with
a time step below 1 s, since the discrepancies are under 1%.
The solution for the Crank-Nicolson scheme converges faster
than that of the implicit scheme since the errors are below 1%
for a time step of 0.83 s. Indeed, the Crank-Nicolson scheme
is a second order scheme in time and hence, converges faster
than the implicit scheme (order one in time). The latter pro-
vides errors below 1% for time steps below 0.83 s. The same
convergence study has been carried out for the diffusion solver
with the same conclusions and will not be presented in this
paper.

2The S P1 kinetic solver has strategies implemented for such cases, e.g.
on-the-fly mesh creation. However, such strategies has not been defined yet
for the DOMINO solver
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Fig. 2. Time convergence results for the LMW benchmark with the DOMINO solver for both the Crank-Nicolson scheme (left)
and the implicit scheme (right).

Figure 3 shows the total core power variation over the
simulation time range (60 s) for both the Crank-Nicolson and
implicit schemes. Both schemes with both DOMINO and the
diffusion solvers have the same behaviour and with very small
differences for the peak amplitude (less than 1.5%). This step
provides a preliminary verification of the kinetic DOMINO
solver.

3. Comparison to published solutions

These results are then compared to the reference values
provided in [8] and in [9]. The results for DOMINO will
be compared for ∆t = 0.28 s. Figure 4 illustrates the core
power for the various Cocagne calculations and reference
values. For the initial 18 s, all the plots are similar. However,
afterwards, the Cocagne solvers have a lower maximum and
thus, the power levels are below the reference values [8]. Yet,
if compared to the recent results obtained by [9], the Cocagne
solvers have a similar trend. Local power values have also
been compared and the same conclusions can be affirmed for
positions P1, P2 and P3 as shown on the Figure 1.

Bearing in mind that the time-dependent DOMINO solver
has not been fully optimised, the running time for the exe-
cution of the solution compared here is 8 000 s whereas the
diffusion calculation time is 600 s. Although this is a very high
running time, it corresponds to a refined spatial case where the
axial direction has been meshed finely to avoid rod-cusping
effects. Nevertheless, to tackle industrial problems, numerical
strategies as well as parallel computational considerations are
further required.

Since the Cocagne results are very close to those pub-
lished in [8, 9], it can be assumed that the DOMINO solver
behaves satisfactorily for this benchmark. In the next section,
we will present further validation work which has been carried
out for a multigroup case, which is based on the same type of
transient as the LMW3D benchmark.

IV. VALIDATION FOR A MULTIGROUP CASE

In this section, we consider a 5 × 5 cluster of UOX as-
semblies with a 3.7% enrichment. This case is set up as the
LMW3D benchmark with two rodbanks which are moved cor-

respondingly, i.e., one of them is removed, R1, as the other,
R2, is being inserted. The benchmark geometry is given in
Figure 5. No reflector assemblies are used in this benchmark
where the boundary conditions are set as reflective ones.

The cross sections are generated using the Gabv2 tool
which implements the Apollo2.8-REL2005 computation
scheme [2]. Thus, for a given assembly, the cross sections will
be generated at two and eight energy groups as for previous
works [11]. The goal of this section is to examine the impact
of the energy discretisation on the kinetic calculation. Thus, it
will be possible to compute two-group diffusion calculation up
to multigroup transport ones on a homogenised assembly. As
for the previous studies cited, diffusion calculation are carried
without any equivalence factor but with Selengut normalisa-
tion factors for the two-group calculation. On the other hand,
the multigroup calculations use flux-volume normalisation
factors [12].

Figure 6 illustrates the power released in the core as pre-
viously shown for LMW3D. First, it is observed that there is a
multigroup effect by increasing the number of groups while
keeping the diffusion approximation. Although the initial be-
havior during the initial 15 s are very similar, the multigroup
diffusion case has a higher peak that the diffusion calculation.
Secondly, the S n DOMINO solver is applied for the eight-
group calculation. From this calculation, it can be observed
that for a given spatial mesh and energy discretization, using
the transport solver leads to significantly lower peaks. Besides,
it can also be noted that the power peaks are slightly shifted in
time for the different simulations.

These results are very interesting and promising as for
exactly the same problem (geometry, materials and nuclear
data), both the transport and diffusion solutions for different en-
ergy groups - with corresponding cross sections generated by
Gabv2 - are available. Indeed, literature is rife with two-group
diffusion kinetic problems on structured meshed geometries
or fully heterogeneous kinetic transport problems. Yet, the
comparison of different solvers on a given problem set for a
time-dependent situation is not available.
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Fig. 5. The geometry for the 5 × 5 cluster of UOX assemblies.
The assemblies with R1 and R2 are rodded.

Fig. 6. Core power computed by diffusion (S P1) and S 4
(Nz = 15, ∆t = 0.67 s, with the Crank-Nicolson scheme for
the two-group and 8-group cases. For all cases, it is ensured
that the problem is converged spatially.

V. CONCLUSIONS

The time-dependent S n method has been successfully im-
plemented within the DOMINO framework of the Cocagne
platform. Verification tests have proved the very good per-
formances of this solver for unitary cases. The solver has
also been optimized for memory requirements using low-order
approximations for angular flux terms as described in the pre-
vious section.

Furthermore, the LMW benchmark provided preliminary
validation of the solver. The results were compared to those
obtained by [8] and [9]. It showed that both the implicit and
the Crank-Nicholson schemes are satisfactory on this case and
that the time-dependent DOMINO solver yields good results.
Further validation work has been carried out on an in-house
case with a cluster of assemblies whereby two-group cross
sections for diffusion problem as well as the corresponding
multigroup cross sections for homogenised transport problems
are available. Results have shown that transport solution gives
much lower power peaks than diffusion solutions, and that
these are slightly shifted in time. Future work on such val-
idation cases includes the calculation of the given problem

with pin-homogenised problems for both the transport and
diffusion solvers with Cocagne. The long-term aim of this
Cartesian transport solver is to provide reference multigroup
pin-homogenised kinetic solutions for the transport equation
as an industrial reference at EDF with the ANDROMÈDE
calculation chain.
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