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Abstract - This paper presents a systematic derivation of space-dependent diffusion coefficients for neutron-

ically diffusive 3D systems with anisotropic scattering that contain “small" voided subregions. The resulting

diffusion coefficients in a solid homogeneous part of the physical system reduce to the standard D = 1/3Σt.

However, for spatial points in or near a void region, the diffusion coefficient becomes a space-dependent 3×3

anisotropic tensor, which can be obtained by solving a 3D transport problem without scattering. The resulting

anisotropic diffusion theory should be valid if the void regions are sufficiently small that they perturb, but do

not significantly alter, the “diffusive" character of the system.

I. INTRODUCTION

In many nuclear reactor problems, an approximate neu-
tron diffusion simulation is employed as an alternative to a
more expensive neutron transport simulation. Several gener-
alizations of the classic diffusion approximation have been de-
veloped to extend the range of this approximation. For exam-
ple, homogenized diffusion approximations are widely used
to simulate heterogeneous reactor lattices, and Simplified PN

approximations (coupled systems of diffusion equations) are
used for other problems in which transport effects cannot be
completely ignored. However, all standard diffusion-based
approximations have a specific difficulty when the physical
system contains a void subregion in which the total cross sec-
tion Σt(x) is 0: the diffusion coefficient D(x) = 1/3Σt(x) be-
comes infinite. The infinite diffusion coefficient can render
the diffusion approximation invalid, even if the void regions
occupy a small fraction of the physical system and the ba-
sic “diffusive” character of the system remains intact. The
principal issue is that standard diffusion coefficients are not
properly defined in void regions.

The problem of formulating finite, accurate diffusion co-
efficients for diffusive neutronic systems containing voided
subregions has been considered previously, for special ge-
ometries [1, 2, 3]. However, a more general approach has
recently been developed for infinite heterogeneous-medium
problems with isotropic scattering, and successfully tested for
finite heterogeneous-medium problems [4, 5, 6]. This method
systematically replaces the traditional “local” diffusion coef-
ficient at a point x, D(x) = 1/3Σt(x), by a “nonlocal” diffu-
sion tensor, which “averages” the values of Σt(x′), with points
x′ near x generally weighted more heavily. The method is
now being considered for use in simulating the soon-to-restart
TREAT reactor at INL. The method also has been success-
fully tested as a transport accelerator, for problems containing
void subregions [7].

In the present paper, we provide a theoretical derivation
of the method for monoenergetic finite-medium neutron trans-
port k-eigenvalue problems, with linearly anisotropic scatter-
ing and vacuum boundary conditions. (Previous derivations
treated only infinite medium problems with isotropic scatter-
ing [4, 5, 6].) Most importantly, the boundary conditions sys-

tematically derived here – for functions needed to construct
the nonlocal diffusion tensors – are new, and are identical to
the boundary conditions found experimentally to be most ef-
ficient in [7]. This congruence of experiment and theory is
consistent with the fact that these boundary conditions should
yield the most accurate diffusion solutions.

The remainder of this summary is organized as follows.
In Section II the basic problem is introduced, and preliminary
results are stated. In Section III the principal new theoretical
result – the “nonlocal" diffusion tensor – is derived. In Sec-
tion IV our theoretical results are summarized, and in the final
Section V, we discuss computational results.

II. PROBLEM DESCRIPTION

We consider a monoenergetic k-eigenvalue problem, pre-
scribed for a finite, heterogeneous, fissile system V with lin-
early anisotropic scattering:

Ω · ∇ψ(x,Ω) + Σt(x)ψ(x,Ω) =
1

4π

(

Σs0(x)φ(x)

+ 3Σs1(x)Ω · J(x) +
1

k
νΣ f (x)φ(x)

)

,

x ∈ V , Ω ∈ 4π , (1a)

ψ(x,Ω) = 0 , x ∈ ∂V , Ω · n < 0 , (1b)

where

φ(x) =

∫

4π

ψ(x,Ω′)dΩ′ = scalar flux , (2a)

J(x) =

∫

4π

Ω
′ψ(x,Ω′)dΩ′ = neutron current . (2b)

Operating on Eq. (1a) by
∫

4π
(·)dΩ, we obtain the neutron

balance equation:

∇ · J(x) + Σt(x)φ(x) =
(

Σs0(x) +
1

k
νΣ f (x)

)

φ(x) . (3)

The classic diffusion approximation to Eq. (1a) consists of the
exact balance Eq. (3), with the approximate Fick’s Law:

J(x) = −D(x)∇φ(x) , (4a)
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where

D(x) =
1

3Σt(x)
= diffusion coefficient . (4b)

Eqs. (4) can be derived by the classic P1 approximation,
in which it is assumed that

ψ(x,Ω) =
1

4π

(

φ(x) + 3Ω · J(x)
)

+ · · · , (5)

where “· · · ” refers to terms that are formally small and ig-
nored. Eqs. (4) and (5) can also be rigorously derived by an
asymptotic expansion with a small parameter ε, in which

φ(x) = O(1) , (6a)

J(x) = O(ε) , (6b)

∇ = O(ε) , (6c)

and

Eq. (5) holds with “ · · ·′′ = O(ε2) . (6d)

Again, the formal P1 and the asymptotic approaches both
yield Eqs. (4), in which D(x) becomes infinite when Σt(x) = 0.
In this situation, the underlying assumptions of the P1 and
asymptotic theories are not met; both theories become invalid.

The method proposed in this paper does not assume that
Eq. (5) is valid. More precisely: it does not require ψ to be
nearly a linear function ofΩ for all directions of flight. How-
ever, it does assume that Eqs. (6a), (6b), and (6c) hold. This
will happen if ψ has weak spatial derivatives and is nearly a
linear function of Ω – except possibly for a small “cone” of
directions Ω in which O(1) deviations from Eq. (5) can oc-
cur. [These directions would correspond to the directions of
flight along a narrow voided channel in V . The channel can
have an O(1) effect on ψ for this small cone of directions –
but if it has a sufficiently small effect on φ(x) and J(x), then
Eqs. (6a), (6b), and (6c) can all hold. This is the scenario
envisioned here.]

The approach taken in this paper requires the formula-
tion, from Eqs. (1), of suitable equations for φ(x) and J(x),
in which the assumptions (6a), (6b), and (6c) can be system-
atically applied. One of these equations is the exact neutron
balance Eq. (3). A second exact equation relating φ(x) and
J(x) is derived next.

III. THE NONLOCAL DIFFUSION TENSOR

As a preamble to the analysis of Eqs. (1), let us consider
the problem

Ω · ∇ f (x,Ω) + Σt(x) f (x,Ω) = g(x,Ω) ,

x ∈ V , Ω ∈ 4π , (7a)

f (x,Ω) = 0 , x ∈ ∂V , Ω · n < 0 , (7b)

where g(x,Ω) is any specified function. The exact solution
f (x,Ω), obtained using the method of characteristics, is

f (x,Ω) =

∫ ℓ(x,Ω)

0

e−
∫ s

0
Σt(x−s′Ω)ds′g(x − sΩ,Ω)ds

≡ (Ω · ∇ + Σt)
−1g(x,Ω) , x ∈ V , Ω ∈ 4π , (8)

Fig. 1: The System V and the Function ℓ(x,Ω).

where

ℓ(x,Ω) = the distance from x to ∂V

in the direction −Ω (see Fig. 1) (9a)

is the solution of the problem

Ω · ∇ℓ(x,Ω) = 1 , x ∈ V , Ω ∈ 4π , (9b)

ℓ(x,Ω) = 0 , x ∈ ∂V , Ω · n < 0 . (9c)

We emphasize that the line integral operator (Ω ·∇+Σt)
−1

defined in Eq. (8) maps any function g(x,Ω) into a function
f (x,Ω) that satisfies the boundary condition (7b). For this
reason, (Ω ·∇+Σt)

−1 is only a one-sided inverse ofΩ ·∇+Σt.
Specifically,Ω · ∇ + Σt and (Ω · ∇ + Σt)

−1 satisfy:

(Ω · ∇ + Σt)(Ω · ∇ + Σt)
−1g(x,Ω) = g(x,Ω) , (10a)

and

(Ω · ∇ + Σt)
−1(Ω · ∇ + Σt)g(x,Ω)

=

∫ ℓ(x,Ω)

0

e−
∫ s

0
Σt(x−s′Ω)ds′

(

Ω · ∇ + Σt(x − sΩ)
)

g(x − sΩ,Ω)ds

=

∫ ℓ(x,Ω)

0

e−
∫ s

0
Σt(x−s′Ω)ds′

(

−
d

ds
+ Σt(x − sΩ)

)

g(x − sΩ,Ω)ds

= −

∫ ℓ(x,Ω)

0

d

ds

(

e−
∫ s

0
Σt(x−s′Ω)ds′g(x − sΩ,Ω)

)

ds

= −e−
∫ s

0
Σt(x−s′Ω)ds′g(x − sΩ,Ω)

∣

∣

∣

∣

ℓ(x,Ω)

0

= g(x,Ω) − e−
∫ ℓ(x,Ω)

0
Σt(x−s′Ω)ds′g

(

x − ℓ(x,Ω)Ω,Ω
)

.

(10b)

To proceed with the analysis of Eqs. (1), we use Eq. (3)
to rewrite Eq. (1a) as

Ω · ∇ψ(x,Ω) + Σt(x)ψ(x,Ω)

=
1

4π

[

Σt(x)φ(x) + ∇ · J(x) + 3Σs1(x)Ω · J(x)
]

. (11)
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Next, using Eqs. (7)-(10), we write the solution ψ(x,Ω) of
Eqs. (11) and (1b) as:

ψ(x,Ω) =
1

4π

(

Ω · ∇ + Σt

)−1
[

Σtφ + ∇ · J + 3Σs1Ω · J
]

=
1

4π

(

Ω · ∇ + Σt

)−1
[

(

Ω · ∇ + Σt

)

φ + ∇ · J

−Ω ·
(

∇φ − 3Σs1 J
)

]

=
1

4π

(

Ω · ∇ + Σt

)−1(
Ω · ∇ + Σt

)

φ

+
1

4π

(

Ω · ∇ + Σt

)−1
∇ · J

−
1

4π

(

Ω · ∇ + Σt

)−1
Ω ·

(

∇φ − 3Σs1 J
)

=
1

4π

[

φ(x) − e−
∫ ℓ(x,Ω)

0
Σt(x−s′Ω)ds′φ

(

x − ℓ(x,Ω)Ω
)

]

+
1

4π

(

Ω · ∇ + Σt

)−1
∇ · J

−
1

4π

(

Ω · ∇ + Σt

)−1
Ω ·

(

∇φ − 3Σs1 J
)

. (12)

Operating on Eq. (12) by
∫

4π
Ω(·)dΩ yields:

J(x) = −
1

4π

∫

4π

Ω

(

e−
∫ ℓ(x,Ω)

0
Σt(x−s′Ω)ds′

)

φ
(

x − ℓ(x,Ω)Ω
)

dΩ

+
1

4π

∫

4π

Ω
(

Ω · ∇ + Σt

)−1
∇ · J(x) dΩ

−
1

4π

∫

4π

Ω
(

Ω · ∇ + Σt

)−1
Ω ·

(

∇φ(x) − 3Σs1 J(x)
)

dΩ .

(13)

To this point no approximations have been made; Eq. (13),
like the neutron balance Eq. (3), is exact.

Eqs. (3) and (13) are the basis of the new nonlocal tensor
diffusion approximation. To derive this approximation, we
retain the exact Balance Eq. (3), and we suitably approximate
each of the three integrals on the right side of Eq. (13) to
obtain a generalization of Fick’s Law.

The first integral,

J1(x) = −
1

4π

∫

4π

Ω

(

e−
∫ ℓ(x,Ω)

0
Σt(x−s′Ω)ds′

)

φ
(

x − ℓ(x,Ω)Ω
)

dΩ

(14a)
has an integrand that is defined in terms of values of the scalar
flux φ(x′) for points x′ = x − ℓ(x,Ω)Ω ∈ ∂V . (In fact, this
integral can be converted to a surface integral over x′ ∈ ∂V .)
Since ψ satisfies a vacuum boundary condition on ∂V and
the system V is diffusive, then φ(x′) is small for x′ ∈ ∂V .
Also, for most points x′ ∈ ∂V , these small values of φ(x′) are
exponentially attenuated from x′ ∈ ∂V to x ∈ V – making the
integral even smaller. For these reasons, we choose to ignore
this term:

J1(x) ≈ 0 . (14b)

The second integral on the right side of Eq. (13) is:

J2(x) =
1

4π

∫

4π

Ω
(

Ω · ∇ + Σt

)−1
∇ · J(x) dΩ . (15a)

By Eqs. (6), J2 = O(ε2), which is smaller than J = O(ε).
Consequently, we choose to ignore this term as well:

J2(x) ≈ 0 . (15b)

In the third integral on the right side of Eq. (13), we ap-
peal to Eqs. (6) to get for small s

∇φ(x − sΩ) = ∇φ(x) + O(ε2s) ,

J(x − sΩ) = J(x) + O(ε2s) .

Thus, we obtain with O(ε2) error,

J3(x) = −
1

4π

∫

4π

Ω

∫ ℓ(x,Ω)

0

(

e−
∫ s

0
Σt(x−s′Ω)ds′

)

Ω ·
[

∇φ(x − sΩ) − 3Σs1(x − sΩ)J(x − sΩ)
]

dsdΩ

≈ −
1

4π

∫

4π

Ω

∫ ℓ(x,Ω)

0

(

e−
∫ s

0
Σt(x−s′Ω)ds′

)

Ω ·
[

∇φ(x) − 3Σs1(x − sΩ)J(x)
]

dsdΩ

= −
1

4π

∫

4π

Ω

(∫ ℓ(x,Ω)

0

e−
∫ s

0
Σt(x−s′Ω)ds′ds

)

ΩdΩ · ∇φ(x)

+
3

4π

∫

4π

Ω

(∫ ℓ(x,Ω)

0

e−
∫ s

0
Σt(x−s′Ω)ds′

Σs1(x − sΩ)ds

)

ΩdΩ · J(x)

= −M0(x) · ∇φ(x) + M1(x) · J(x) . (16)

Here, the 3 × 3 tensor M0(x) is defined by

M0(x) =
1

4π

∫

4π

ΩF0(x,Ω)Ω dΩ , (17)

with F0(x,Ω) defined by

F0(x,Ω) =

∫ ℓ(x,Ω)

0

e−
∫ s

0
Σt(x−s′Ω)ds′ds . (18a)

Equivalently [see Eqs. (8)], F0 is defined by the simple trans-
port problem:

Ω · ∇F0(x,Ω) + Σt(x)F0(x,Ω) = 1 ,

x ∈ V , Ω ∈ 4π , (18b)

F0(x,Ω) = 0 , x ∈ ∂V , Ω · n < 0 . (18c)

Also, the 3 × 3 tensor M1(x) is defined by

M1(x) =
1

4π

∫

4π

ΩF1(x,Ω)Ω dΩ , (19)

with F1(x,Ω) defined by

F1(x,Ω) =

∫ ℓ(x,Ω)

0

e−
∫ s

0
Σt(x−s′Ω)ds′

Σs1(x − sΩ)ds . (20a)

Equivalently [see Eqs. (8)], F1 is defined by the simple trans-
port problem:

Ω · ∇F1(x,Ω) + Σt(x)F1(x,Ω) = 3Σs1(x) ,

x ∈ V , Ω ∈ 4π , (20b)

F1(x,Ω) = 0 , x ∈ ∂V , Ω · n < 0 . (20c)
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Introducing the approximations (14b), (15b), and (16)
into Eq. (13), we obtain

J(x) = −M0(x) · ∇φ(x) + M1(x) · J(x) .

This yields
J(x) = −D(x) · ∇φ(x) , (21a)

where the diffusion tensor D is defined by

D(x) =
(

I − M1(x)
)−1
· M0(x) . (21b)

Eqs. (17)-(21) are the principal results of this paper.
Assuming that V is bounded, the functions F0(x,Ω) and
F1(x,Ω) are bounded. Hence, the tensors M0(x) and M1(x)
are bounded for all points x ∈ V , even for points within a
void region. Eqs. (3) and (21a) describe the new diffusion ap-
proximation, with the non-local diffusion tensor D. The vac-
uum boundary conditions (18c) and (20c) for F0 and F1 are
important new features of our analysis that were not derived
previously.

As a simple check, if V is infinite and homogeneous, then
Eq. (18b) gives:

F0(x,Ω) =
1

Σt

, M0 =
1

3Σt

I , (22a)

Eq. (20b) gives:

F1(x,Ω) =
3Σs1

Σt

, M1 =
Σs1

Σt

I , (22b)

and Eq. (21b) yields:

D =

(

I −
Σs1

Σt

I

)−1

·
1

3Σt

I =
1

3(Σt − Σs1)
I . (22c)

This is the standard (scalar) diffusion coefficient.

IV. COMPUTATIONAL RESULTS

A study of the accuracy of our theory for 3D anisotropic
scattering problems is not possible at the present time. How-
ever, it is possible for us to compare diffusion tensors gener-
ated assuming anisotropic scattering, with those generated by
assuming isotropic scattering with a transport-corrected total
cross section. The former corresponds to using Eq. (21b) for
the diffusion tensor, while the latter corresponds to using Eq.
(17) for the diffusion tensor, with the total cross section re-
placed in that equation by the transport-corrected total cross
section.

We have performed calculations for three problems to
demonstrate the differences between these two tensors. The
first problem corresponds to a homogeneous non-absorbing
2-D domain 10 cm in length on a side. The scattering section
is 1 cm−1, and the transport-corrected scattering cross section
is 0.5 cm−1. This corresponds to P1 anisotropic scattering
with σ0 = 1 cm−1 and σ1 = 0.5 cm−1, or isotropic scattering
with σ0 = 0.5 cm−1. The second problem differs from the first
only in that there is a square void 1 cm in length on a side em-
bedded at the center of the domain, as shown in Fig. 2. The
third problem differs from the second only in that the void is

located adjacent to the center of a boundary face as shown in
Fig. 3. A weighted-diamond difference scheme is used to spa-
tially discretize Eqs.(18b) and (20b). Vacuum boundary con-
ditions are used in the calculations as indicated by Eqs.(18c)
and (20c). For all calculations, a Gauss-Chebyshev S8 quadra-
ture set is used and each cell has a thickness of 0.01 cm.

(5.5,4.5)
void

x

y

(0,10)

(0,0) (10,0)

(10,10)

(5.5,5.5)(4.5,5.5)

(4.5,4.5)

Fig. 2: Problem 2 Geometry.

(1,5.5)

x

y

void

(10,0)(0,0)

(10,10)(0,10)

(0,5.5)

(0,4.5)

(1,4.5)

Fig. 3: Problem 3 Geometry.

The calculated diffusion tensor elements Dxx, Dyy and
Dxy, for Problem 1 using Eq. (21b), are plotted in Fig. 4. The
same scale is used in Figs. 4a and 4b, and a scale of -0.08 to
0.08 is used in Fig. 4c. The values of Dxx and Dyy in the center
of the geometry are close to 0.66, as expected. From Fig. 4c,
it can be found that the values of Dxy are close to zero except
on the boundary corners. The diffusion tensor elements Dxx,
Dyy and Dxy, at the cut plane y = 5 cm generated by using Eq.
(21b) or using Eq. (17) with a transport-corrected total cross
section, are plotted in Fig. 5. The values of Dxx generated
using Eq. (21b) are slightly larger than the ones generated
using Eq. (17) except the latter become slightly larger than
the former near the boundaries. Similar results are observed
in Fig. 5b. In Fig. 5c, there is negligible difference between
the values of Dxy generated using Eq. (21b) or Eq. (17), but
the values are essentially zero.

The calculated diffusion tensor elements Dxx, Dyy and
Dxy, for Problem 2 using Eq. (21b), are plotted in Fig. 6. The
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Fig. 4: The diffusion tensor calculated for Problem 1.
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Fig. 5: The diffusion tensor for Problem 1 at the cut plane

y = 5 cm generated by assuming anisotropic scattering or

isotropic scattering with a transport-corrected total cross sec-

tion. The former is colored in blue, and the latter is colored

in orange.

maximum and minimum values of Dxx and Dyy in the void are
about 1.11 and 0.88, respectively. In Fig. 6c, it is observed
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Fig. 6: The diffusion tensor calculated for Problem 2.
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Fig. 7: The diffusion tensor for Problem 2 at the cut plane

y = 5 cm generated by assuming anisotropic scattering or

isotropic scattering with a transport-corrected total cross sec-

tion. The former is colored in blue, and the latter is colored

in orange.

that the values of Dxy are close to zero except at the void
corners and material corners. The diffusion tensor elements
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Dxx, Dyy and Dxy, at the cut plane y = 5 cm generated by
using Eq. (21b) or using Eq. (17) with a transport-corrected
total cross section, are plotted in Fig. 7. In Fig. 7a the val-
ues of Dxx generated using Eq. (21b) are much larger than
the ones generated using Eq. (17) in the void while the lat-
ter become slightly larger than the former near the material
boundary. Similar results are observed in Fig. 7b. In Fig. 7c,
there is negligible difference between the values of Dxy gen-
erated using Eq. (21b) or Eq. (17), but the values are nearly
zero.

The calculated diffusion tensor elements Dxx, Dyy and
Dxy, for Problem 3 using Eq. (21b), are plotted in Fig. 8. The
values of Dyy in the void are larger than Dxx, as expected. The
maximum values of Dxx and Dyy in the void are about 0.56
and 0.85, respectively, while the minimum values of Dxx and
Dyy in the void are almost the same, about 0.37. From Fig. 8c,
it can be found that the values of Dxy are close to zero except
near the boundaries of the void and material corners. The
diffusion tensor elements Dxx, Dyy and Dxy, at the cut plane
y = 5 cm generated by using Eq. (21b) or using Eq. (17) with
a transport-corrected total cross section, are plotted in Fig. 9.
In Fig. 9a, the values of Dxx generated using Eq. (21b) are
slightly larger than the ones generated using Eq. (17) except
the latter become slightly larger in the void and near the mate-
rial boundaries. However, in Fig. 9b, the values of Dyy gener-
ated using Eq. (21b) are much larger than the ones generated
using Eq. (17) in the void. In Fig. 9c, there is negligible dif-
ference between the values of Dxy generated using Eq. (21b)
or Eq. (17), but the values are essentially zero.

These results show that for neutron transport problems
with anisotropic scattering, there can be a significant dif-
ference between the nonlocal diffusion tensors calculated
using (i) the systematic nonlocal anisotropic-scattering the-
ory presented here, or (ii) using the familiar transport-
corrected isotropically-scattering cross sections with the non-
local isotropically-scattering theory. The differences are due
to the fact that the standard transport-corrected cross sections
arise using the conventional P1 or diffusion approximation,
which is not valid in regions with voids.

Unfortunately, it is not at the present time possible for
us to assess the accuracy of solutions of 3D anisotropically-
scattering problems with voids using the new theory. This
assessment will be done in future work.

V. DISCUSSION

The analysis in this paper shows that if the proper con-
ditions are met, and proper care is taken, it is theoretically
possible to accurately model – using diffusion theory – a neu-
tronic system containing voids. The price to be paid is that
the normally “scalar” diffusion tensor

D =
1

3Σtr

I (23)

becomes a 3×3 tensor, and the coefficients of this tensor must
be calculated by solving two transport problems. Fortunately,
these problems are considerably simpler and less expensive
to solve than the original transport problem for ψ.

It is physically correct that D should become nonscalar
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Fig. 8: The diffusion tensor calculated for Problem 3.
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Fig. 9: The diffusion tensor for Problem 3 at the cut plane

y = 5 cm generated by assuming anisotropic scattering or

isotropic scattering with a transport-corrected total cross sec-

tion. The former is colored in blue, and the latter is colored

in orange.

in a void region. If the void is a narrow channel, then neu-
trons in the channel, streaming in directions parallel to the
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channel, will travel long distances between collisions, while
neutrons streaming in directions perpendicular to the channel
will travel short distances between collisions. The rates at
which neutrons propagate in the two directions are different,
and the nonlocal diffusion tensor should reflect this fact.

A specific numerical issue must be considered before ap-
plying the theory outlined in this paper. For problems with
systems having narrow voided channels, ψ(x,Ω) [the solution
of Eqs. (1)] does not have a simple dependence on x and Ω
for points x near a channel. The same is true for the functions
F0(x,Ω) [the solution of Eqs. (18)] and F1(x,Ω) [the solution
of Eqs. (20)]. If an accurate deterministic numerical solution
of Eqs. (1) for ψ is desired, then it will be necessary to use
a suitably fine spatial grid near the channels and a fine angu-
lar grid (at least, in the necessary directions of flight in the
channel directions). The same is also true for deterministic
calculations of F0 and F1.

Therefore, there is no simple escape from all the difficul-
ties introduced by voided channels; the only “partial” escape
is that single transport sweeps are required to determine F0

and F1, whereas many sweeps are generally required to cal-
culate ψ. Also, after F0, F1, and D have been calculated, D

will have a rapid spatial (i.e. “boundary layer") behavior near
void regions. Thus, in the diffusion calculation, there is no
escape from the necessity of using a fine spatial grid near the
voided channels.

The basic message is that certain diffusive problems con-
taining voids can be treated using diffusion theory – but not
surprisingly – the attainment of accurate results requires more
computational effort than is required for problems without
voids. Also, due to the current lack of 3D computational re-
sults, it is not yet clear how accurate the new theory will be for
problems of practical interest (e.g. fast reactors, which have
“1D" voids; and TREAT, which has a major “2D" void in the
hodoscope region).

While it is possible to approximately account for
anisotropic scattering with the transport-corrected isotropic
scattering, our simple calculations indicate that the difference
between the resulting diffusion tensors in void can be sig-
nificant and may not be neglected. In future work, we will
quantify the differences in solutions for practical 3D problems
between the anisotropic and transport-corrected isotropic ap-
proaches.

Finally, this paper establishes a more complete theoret-
ical basis for the method now being considered to simulate
TREAT. During the implementation of the method in INL
codes, the question of boundary conditions on ∂V for F0 and
F1 arose. In the previous publications [4, 5, 6], V was as-
sumed to be infinite, and no finite boundary conditions for F0

and F1 were derived. In [6], it was speculated that reflecting
boundary conditions should be used, and these were tried at
INL. However, vacuum boundary conditions were also tried,
and were found to yield improved results [7]. The vacuum
boundary conditions for F0 and F1 derived in this paper [Eqs.
(18c) and (20c)] provide a theoretical explanation for this
experimentally-observed result.

The extension of the theory in this paper to time-
dependent, multigroup problems is straightforward if scat-
tering is isotropic. However, multigroup problems with

anisotropic scattering pose certain difficulties that have not
been fully resolved. These will be addressed in future work.
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