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Abstract - The 2D/1D method is an important tool in LWR analysis that enables pin-resolved transport
solutions for large, full-core simulations at relatively low computational cost compared to a true 3D transport
method. To use the 2D/1D approximation, several assumptions are made about the nature of the axial (z)
component of the true 3D transport solution. Generally, it is assumed that the axial variation of the solution is
weak enough that the axial streaming term can be approximated as isotropic in angle, and uniform in space
over a coarse pin cell, without unacceptable detriment to accuracy. Also, it is assumed that a homogenized 1D
axial pin cell calculation will give the correct axial streaming magnitude and power shape. In some cases,
however, we desire a more accurate transport solution; we can achieve this by implementing higher-fidelity
solvers that avoid some of these coarse approximations, e.g. allowing angular dependence in the radial and
axial leakage terms that couple the 2D and 1D solutions. Since the introduction of 2D/1D methods, there has
been interest in developing and improving these more accurate approximations, with the ultimate goal being a
2D/1D method that limits to the 3D transport solution with spatial and angular refinement. In this paper, the
2D/1D code MPACT is used, with SN as the 1D axial solver. We evaluate some of the approximations made in
MPACT, and derive a new (to MPACT) angle-dependent 2D to 1D total cross section homogenization. The new
homogenization shows good results for C5G7-type problems and the full 3D C5G7 benchmarks compared to
what was previously the “most accurate” 2D/1D method in MPACT, which used angle-dependent leakages but
only scalar flux homogenization of the total cross section. We also quantify the effects of applying a within-pin
fine-mesh spatial shape to the axial transverse leakage, which is generally much smaller than the effect of
angle-dependent homogenization.

I. INTRODUCTION

The 2D/1D method can provide accurate solutions to 3D
neutronics problems at relatively low computational cost by
coupling a radial fine-mesh 2D transport solver to a coarse-
mesh 1D axial solver. The 2D/1D class of methods was orig-
inally developed by two groups in Korea during 2002-2005.
The “2D/1D Fusion” method, implemented in the CRX code,
was developed at KAIST by N.Z. Cho, G.S. Lee, C.J. Park,
and colleagues [1]. At KAERI, a slightly different method,
which is simply called “2D/1D,” was developed by J.Y. Cho,
H.G. Joo, K.S. Kim, S.Q. Zee and colleagues. This method
was implemented in DeCART [2, 3, 4, 5], and later, at SNU,
in nTRACER [6].

These methods are especially useful for light water reac-
tor (LWR) geometries, where axial heterogeneity is typically
limited, and the flux variation can be separated in the radial
and axial dimensions on the fine mesh, with the axial vari-
ation being well-approximated by a coarse-mesh 1D PN or
SN solver. This approximation is the foundation of the CASL
neutronics code MPACT, which is used to accurately solve
large 3D LWR neutronics problems [7, 8, 9]. The 2D solver
uses the Method of Characteristics (MOC) [10]. Many differ-
ent 1D solvers are implemented, but the main method used for
production-type analysis is P3. In the interest of understanding
and improving the accuracy of these methods, 1D axial SN has
been implemented in MPACT [11, 12] and DeCART [13].

This paper describes the main sources of error in the
2D/1D approximation. Some of these errors were rigorously
quantified in previous work [5]. Some of the other errors,

which are generally smaller in magnitude, have not yet been
thoroughly investigated; this paper attempts to quantify these
smaller errors using simple C5G7-type problems. While the
standard 2D/1D method in MPACT is very similar to that in
DeCART and nTRACER, this paper will focus on approxima-
tions and improvements to the higher-fidelity 2D/1D SN solver
in MPACT, which is more like the 2D/1D fusion method em-
ployed in CRX.

There are other codes that employ a similar 2D/1D con-
cept but use different types of axial discretizations that do not
require homogenization over a fuel pin cell. [14] The axial er-
rors in these methods are fundamentally different, and are not
discussed in this work. The 2D/1D error analysis in this paper
applies only to codes like MPACT, DeCART, nTRACER, and
CRX, which have a 2D-to-1D homogenization step.

The 2D/1D approximation in the MPACT code has been
thoroughly verified and has proven to be accurate and effective
for many LWR problems [9]. In general, 2D/1D accuracy
is more than adequate, and the error is mostly insignificant.
However, the approximation depends upon steady axial vari-
ation, and it is understood that it is somewhat less accurate
near “transport boundaries” such as the tips of control rods
or part-length fuel rods. While the method is generally still
adequate in most cases, this presents a motivation to develop
improvements that can more faithfully model these boundary
layers, as well as a motivation to characterize and quantify the
associated error.

Improvements to the 2D/1D method in MPACT have been
studied in the past, and are still a topic of ongoing research.
The thesis research of Stimpson [11] improved accuracy signif-
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icantly by introducing Fourier moment expansion to increase
the angular fidelity of the transverse leakages that couple the
2D and 1D solutions. Two of the potentially significant sources
of error in the 2D/1D method that have not yet been addressed
in MPACT are:

1. the pin-cell homogenization required for the 1D axial
solver

2. the lack of a fine-mesh shape of the axial transverse
leakage source in the 2D radial solver.

Both issues were briefly discussed in [11], but not addressed.
In Kelley’s Ph.D. thesis [15], the need for fine-mesh spatial
shape was acknowledged, but again the topic was peripheral to
the focus of the work and was not thoroughly studied. To the
authors’ knowledge, these errors have only been addressed in
one other 2D/1D code: CRX. In [16], CRX is used with angle-
dependent total cross section (XS) homogenization for the 1D
SN , but the discretization is too coarse (10.71 cm MOC planes,
using diamond-differencing axially) to draw conclusions about
the efficacy of the method. In [17], homogenization is avoided
altogether by performing 1D SN on the fine, flat-source region
(FSR) mesh instead of the coarse mesh (thereby also elimi-
nating the error due to lack of a fine-mesh distribution for the
axial transverse leakage). The results were good, but comput-
ing currents on the FSR mesh boundaries is computationally
impractical in most cases.

In another paper in this proceedings [18], the fine-mesh
shape of the axial coupling term is investigated in a recently
developed 2D/1D code, PANX. However, this code is fun-
damentally different from codes like MPACT, DeCART, and
CRX in terms of both the transport method (variational nodal)
and the axial discretization. The method lacks the homogeniza-
tion step from the fine-mesh 2D to coarse-mesh 1D problem
that is common to the other codes mentioned here.

In this paper, new methods are developed and imple-
mented in MPACT that attempt to address both of these errors.
As will be demonstrated, the first error (homogenization) is
typically much more significant; accordingly, the focus will be
on improving the 2D/1D solution through modifications to the
homogenization process. Specifically, polar angle-dependent
cross-section homogenization will be used so that the homog-
enized 1D solution more accurately reproduces the true axial
power profile and streaming of the full 3D transport problem.
While angle-dependent homogenization has been attempted
before [16], there have never been, to the author’s knowledge,
thorough comparisons to standard (isotropic) homogenization
that quantify the effects for typical LWR problems.

The 3D C5G7 benchmark [19] is used to evaluate the
2D/1D methods. First, the methods will be compared using
a single 3D C5G7 pincell problem, followed by a partially
rodded 3x3 array of UO2 pin cells. Then, the full 3D cases of
the C5G7 benchmark will be used to evaluate the effect of the
homogenization error.

2D/1D is currently an important tool that the reactor
physics community relies on to efficiently simulate 3D LWR
neutron transport problems, including whole-core depletion
and transient problems. In general, we can be relatively confi-
dent about the accuracy because of extensive verification and

validation. However, we are aware that current methods have
small (but non-negligible) errors when strong axial hetero-
geneities are present. This work represents an attempt both to
understand the differences between 2D/1D and 3D transport,
and to correct them.

II. THEORY

In this section we derive the 2D/1D equations to frame the
discussion regarding the accuracy of the approximation. We
begin with the energy-independent fixed-source 3D Boltzmann
neutron transport equation with isotropic scattering:

Ω · ∇ψ(r,Ω) + Σt(r)ψ(r,Ω) =
Q(r)
4π

, (1)

r = (x, y, z) , Ω =

(√
1 − µ2 cosω,

√
1 − µ2 sinω, µ

)
,

Q(r) =

[
Σs(r) +

νΣ f (r)
ke f f

] ∫
4π

ψ(r,Ω)dΩ .

Here, µ is the cosine of the polar angle θ, andω is the azimuthal
angle. We will derive a set of 2D transport equations and a
set of 1D transport equations that is solved for each plane and
pin in the problem, respectively. These equations are coupled
through transverse leakage (TL) terms; the goal is to minimize
the severity of the approximations made to the 3D transport
equation in arriving at the 2D/1D equations.

1. 2D Equations

We first distribute the Ω · ∇ term from Eq. (1). Because
we are not specifically interested in the radial streaming term
here, we will use a shorthand notation for it:

(Ω · ∇)xyψ =

√
1 − µ2

(
cosω

∂

∂x
+ sinω

∂

∂y

)
ψ(r,Ω) , (2)

(Ω · ∇)xyψ + µ
∂ψ

∂z
+ Σt(r)ψ(r,Ω) =

Q(r)
4π

. (3)

We move the axial streaming term to the right (source) side of
the equation:

(Ω · ∇)xyψ + Σt(r)ψ(r,Ω) =
Q(r)
4π
− µ

∂ψ

∂z
. (4)

The streaming term µ ∂ψ
∂z is the axial TL. To obtain the 2D part

of the 2D/1D equations, Eq. (4) is integrated axially over a
plane, from some lower bound z− to upper bound z+:

1
hz

z+∫
z−

[
Eq. (4)

]
dz , hz = z+ − z− .

All axial dependence is assumed to be separable from the
radial and angular variables over a plane, so the axial depen-
dence of all quantities except for the axial TL simply drops
out in the integration.

(Ω · ∇)xyψ(x, y,Ω) + Σt(x, y)ψ(x, y,Ω)

=
Q(x, y)

4π
− Jz(x, y,Ω) ,

(5)
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Jz(x, y,Ω) =
µ

hz

[
ψ̃(x, y, z+,Ω) − ψ̃(x, y, z−,Ω)

]
. (6)

The surface angular flux terms (ψ̃) are calculated in the 1D
axial solver. This solution is discretized over the coarse mesh—
typically one fuel pin. Thus, the axial TL term will have no
fine-mesh spatial shape within a coarse cell unless we apply
some shape function g(x, y,Ω).

ψ̃(x, y, z,Ω) = ψ̂(z,Ω)g(x, y,Ω) . (7)

Here, ψ̂ is the 1D axial transport solution, and g(x, y,Ω) is a
spatial shape that we might apply, likely determined by the 2D
radial solution. The fine-mesh 2D angular flux is likely the
best shape function:

g(x, y,Ω) =
ψ(x, y,Ω)Axy

x+∫
x−

y+∫
y−
ψ(x, y,Ω)dxdy

, (8)

Axy =

x+∫
x−

y+∫
y−

dxdy .

This follows logically from Eq. (7) and the assumption of
separability of the radial and axial dependence of the angular
flux. However, it is prohibitively expensive to store the full
angular dependence of ψ on the FSR mesh, so this information
is not readily available in a typical 2D MOC calculation. We
can instead take another step and assume separability between
the radial (x, y) and angular variables; this leads to a scalar
flux-weighted axial TL:

ψ(x, y,Ω) ≈ φ(x, y) f (Ω) , (9)

g(x, y,Ω) =
f (Ω)φ(x, y)Axy

f (Ω)
x+∫

x−

y+∫
y−
φ(x, y)dxdy

,

g(x, y) =
φ(x, y)Axy

x+∫
x−

y+∫
y−
φ(x, y)dxdy

. (10)

In practice, the effect of the shape function g(x, y,Ω) is small;
in MPACT, the shape is typically ignored (g(x, y,Ω) = 1). We
will assume g = 1 for now to simplify the following equations.

In MPACT, the typical approximation when using a 1D
PN method axially is to assume isotropic radial leakages. This
is equivalent to operating on the right side of Eq. (5) by
1

4π

∫
4π

(·) dΩ:

[
(Ω · ∇)xy + Σt(x, y)

]
ψ(x, y,Ω) =

Q(x, y)
4π

−
[
J(z+) − J(z−)

]
.

(11)

When using a PN method of order N > 1, the solution
φ0, ..., φN is effectively an order N Legendre expansion of ψ̂ in
µ, so we have the option of integrating only azimuthally and
maintaining a polar dependence. However, the improvement is

typically marginal and not worth the increased cost of storing
a polar-dependent (instead of isotropic) MOC source.

When using a 1D SN method, we know ψ̂(z±,Ω) and
do not have to make any angular approximation to the axial
TL. However, we can avoid significant memory requirements
without appreciable loss in accuracy by expanding azimuthally
in Fourier moments:

ψ̂(z±, µ, ω) =

ψ̂(z±, µ)

1 +

P∑
p=1

[
Ap sin(pω) + Bp cos(pω)

] . (12)

As the number of Fourier moments P increases, this repre-
sentation approaches an explicit angular representation of the
angular flux. As demonstrated in [11], it typically takes only
P = 2 to get sufficiently close to the explicit angular solution.

2. 1D Equations

Now, we derive the axial 1D equations. If we swap the
radial and axial streaming terms in Eq. (4), we have

µ
∂ψ

∂z
+ Σt(r)ψ(r,Ω) =

Q(r)
4π
− (Ω · ∇)xyψ(r,Ω) . (13)

Next, we operate on Eq. (13) by 1
Axy

x+∫
x−

y+∫
y−

(·)dxdy. We introduce

(ˆ) to indicate that these variables are now discretized over a
coarse cell:

µ
∂ψ̂

∂z
+ Σ̂tψ̂(z,Ω) =

Q̂(z)
4π
−

1
Axy

∑
s=N,E,S ,W

(Ω · n̂s)ψs(Ω) . (14)

The radial leakage term is summed over the 4 lateral surfaces
of a rectangular coarse cell (N,E,S,W = north, east, south, and
west). The surface flux ψs(Ω) is effectively a line integral over
the surface s:

ψs(Ω) =

u+∫
u−

ψ(u,Ω)du , (15)

where u is either x or y, depending on the surface, and the
other radial variable is held constant.

Again, when the 1D solver is PN , we operate on the right
side of Eq. (14) by 1

4π

∫
4π

(·) dΩ to isotropize the radial TL,

yielding

µ
ψ̂

dz
+ Σ̂tψ̂(z,Ω) =

1
4π

Q̂(z) −

 ∑
s=N,E,S ,W

Js


 . (16)

This is a 1D transport problem we can solve using 1D PN . In
MPACT, a nodal expansion method is used, with quadratic
spatial expansion of the source and quartic expansion of the
flux [20].

Alternatively, when using a 1D SN solver, we can calcu-
late the leakage terms explicitly (from the MOC solver) to get
an anisotropic source for the SN solver, as in Eq. (14). The sur-
face angular flux term ψs can be represented by an expansion,
as in Eq. (12).

Using Eqs. (5) and Eq. (14), we can accurately treat the
angular dependence of the TL terms that couple the 2D and
1D solutions, leading to an improved solution compared to
what can be obtained with Eqs. (11) and (16).
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3. 2D to 1D Homogenization

The angle-dependent leakage terms shown in the previous
section offer significant improvements in accuracy compared
to isotropic leakages because they are a less severe approxi-
mation to the 3D transport equation. However, there is still an
open question as to how well the radially integrated Eq. (14)
will preserve physics from the 2D problem with a single, ho-
mogenized XS Σ̂t. Specifically, we want the 1D equation to
preserve the average angular flux distribution over a coarse
cell from the 2D problem:

1
hz

z+∫
z−

ψ̂(z,Ω)dz =
1

Axy

x+∫
x−

y+∫
y−

ψ(x, y,Ω)dxdy . (17)

This is important because the angular flux from the 1D solution
determines the axial power shape, as well as the magnitude
and angular distribution of the axial TL in Eq. (6).

Typically, a standard scalar flux-weighted total XS is
used:

Σ̂t =

x+∫
x−

y+∫
y−

Σt(x, y)φ(x, y)dxdy

x+∫
x−

y+∫
y−
φ(x, y)dxdy

. (18)

Equivalently, on a discretized mesh of i fine cells with volume
Vi in a coarse cell k:

Σ̂t,k =

∑
i∈k

Σt,iφiVi∑
i∈k
φiVi

. (19)

To evaluate the aptness of this definition, we will compare
the 2D and 1D equations, integrated over the same cuboid
volume:

V =

x+∫
x−

y+∫
y−

z+∫
z−

dzdydx .

First, we integrate Eq. (5) radially

 1
Axy

x+∫
x−

y+∫
y−

dxdy

, collecting

the leakage terms on the source side:

1
Axy

x+∫
x−

y+∫
y−

Σt(x, y)ψ(x, y,Ω)dxdy =

1
V

x+∫
x−

y+∫
y−

z+∫
z−

(
Q(r)
4π
− (Ω · ∇)ψ(r,Ω)

)
dzdxdy .

(20)

Then, we integrate Eq. (14) axially

 1
hz

z+∫
z−

dz

, again collecting

the leakage terms on the source side:

1
hz

Σ̂t

z+∫
z−

ψ̂(z,Ω)dz =

1
V

x+∫
x−

y+∫
y−

z+∫
z−

(
Q(r)
4π
− (Ω · ∇)ψ(r,Ω)

)
dzdxdy

(21)

Because the right sides of Eqs. (20) and (21) are equivalent,
we can equate the left sides. Substituting with Eq. (17), we
obtain an expression for Σ̂t:

Σ̂t(Ω) =

x+∫
x−

y+∫
y−

Σt(x, y)ψ(x, y,Ω)dxdy

x+∫
x−

y+∫
y−
ψ(x, y,Ω)dxdy

. (22)

Using Eq. (22) (or its discrete equivalent) for homogenization
will give a solution ψ̂ that satisfies Eq. (17), which should
improve the accuracy of the 2D/1D solution. If we were to
assume that ψ(x, y,Ω) is separable in space and angle, then
Eq. (22) clearly reduces to Eq. (18). We can therefore infer
that the severity of the error introduced by homogenizing
with Eq. (18) will be directly related to the severity of the
approximation of space-angle separability.

In a heterogeneous pin cell, ψ(x, y,Ω) is certainly not
separable in space and angle. For example, when resonance
or thermal energy neutrons experience a flux dip towards the
center of a pin due to strong absorption and a weak source, this
dip will be more severe for neutrons at steeper polar angles,
which effectively have traveled a greater distance through the
fuel/absorber material to get from the surface to some radial
point (x, y) within a pin.

Essentially, the polar-dependent XS homogenization al-
lows the 1D solution to account for the differences in spatial
self-shielding for each of the polar angles in the quadrature
set. Without angle-dependent homogenization, we are only
self-shielding based on the scalar flux. This is correct for scat-
tering or fission XS homogenization, because these sources
are isotropic, so they are independent of incoming angle. Con-
versely, the total XS operates on the angular flux, not the scalar
flux; therefore, the total XS should be homogenized with the
angular flux. In the case of anisotropic scattering, the incom-
ing angle would become a factor when homogenizing, leading
to angle-dependent moments of Σs.

In practice, it is much easier, and likely sufficient, to use
only polar-dependent total XS, because the polar dependence
of the spatial self-shielding effect is much stronger than the
azimuthal dependence. Effectively, this means assuming only
azimuthal separability from the spatial-polar shape of ψ in
Eq. (22), resulting in the following homogenization:

Σ̂t(µ) =

x+∫
x−

y+∫
y−

Σt(x, y)
 2π∫

0
ψ(x, y, µ, ω)dω

 dxdy

x+∫
x−

y+∫
y−

 2π∫
0
ψ(x, y, µ, ω)dω

 dxdy

. (23)

Note that the overall zeroth angular moment neutron balance,
which is satisfied by homogenizing with Eq. (18), will still
be satisfied when using Eq. (22) or (23). Eq. (18) satisfies
only the weak form of the balance Eq. (17), integrated over
4π, while Eq. (22) and (23) are formulated to satisfy Eq. (17)
at each particular angle and each azimuthally-integrated polar
angle, respectively.
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The homogenization in Eq. (23) is used in this paper not
just because it is simpler than Eq. (22), but also because the
typical application of a 1D SN solver in MPACT uses a mo-
ment expansion azimuthally (Eq. 12). This means that there
is no discrete azimuthal angle, and no use for a discrete az-
imuthally dependent XS. The polar dependence of the 1D
angular flux is solved independently for each Fourier mo-
ment. The polar-dependent XS is only used for the isotropic
azimuthal moment; for higher moments, the isotropic XS
(Eq. 18) is used.

It is possible that we could develop and implement polar-
dependent XS for the higher-order azimuthal moments, but
this is not done in this paper. Because the higher-order mo-
ments are often negative, the homogenization step can be
complicated, and an expression like Eq. (23) would likely not
work. Fortunately, the hypothetical angle-dependent XS for
higher-order azimuthal moments is essentially a correction to
a correction (to the isotropic leakage case), and the effect is
probably small based on the results in this paper. At the least,
it is less significant than the polar-dependent XS for the zeroth
moment (azimuthally isotropic) SN .

It is expected that the polar angle dependence of the XS
will be more important than the azimuthal dependence for a
few reasons. For one, the spatial self-shielding effect is more
dependent on the polar angle because it directly determines
how far an average neutron must travel through a pin to reach
the other side. There may be an azimuthal effect for control
rod neighbors, but it is likely much lower than the effect of the
polar angle.

Furthermore, the azimuthally anisotropic contributions
when using a moment-based 1D solver are only indirect.
The 1D axial power profile is determined by the azimuthally
isotropic moment. The anisotropic moments only contribute
to the anisotropic moments of the axial transverse leakage;
they do not change the net axial streaming of neutrons in the
problem.

4. Summary of 2D/1D Approximations

In the previous sections we have discussed several of the
approximations, and their correlated errors, that are unique
to the 2D/1D equations. Of course, there are other potential
sources of error that 2D/1D shares with other methods; they
are not discussed in detail because they are common in neutron
transport. These types of errors may include discretization
error in the 2D MOC transport due to a coarse FSR mesh or
ray spacing, or due to a coarse quadrature set that does not
accurately model all possible directions of travel on the unit
sphere. If we assume that the 2D MOC transport solution is
converged in space and angle, then the remaining error in a
2D/1D solution can come from the following sources:

1. The true radial and angular shape of the angular flux
is not sufficiently uniform over each plane; that is,
ψ(x, y, z,Ω) ≈ ψz(x, y,Ω) f (z) is not true, because the
planes are too coarse.

2. The axial variation is too strong and is not accurately
captured by the chosen 1D solver—in other words, the
homogenized 1D problem is not being solved accurately.

3. The angular distribution of the TL is not well-
approximated by an isotropic TL term.

4. The spatial shape of the angular flux over a coarse cell is
not adequately approximated by a flat axial TL.

5. The homogenized 1D problem is not a good approxi-
mation to the true heterogeneous problem because the
disparity in the axial streaming within a coarse cell is too
great for the pins to be effectively homogenized by scalar
flux weighting

In MPACT, many of these errors have been addressed, or will
be addressed in this paper. To briefly explain each individually:

1. This is a discretization error inherent to the 2D/1D ap-
proximation. It is corrected by axial refinement.

2. This can be (and has been) addressed by using P3 or
SN axially, instead of diffusion.

3. Addressed in [11], where angle-dependence of the radial
and axial TL terms is refined.

4. g(x, y,Ω) discussed in Section II.1.; thought to be small
based on results in Section III

5. The main focus of this paper; shown to be a significant
error in Section III, corrected by using Eq. (23) instead
of Eq. (18).

These errors should be small (but not negligible) when the
assumptions of 2D/1D are met, specifically the assumption
that the axial variations in the solution are weak and can be
accurately modeled with the chosen 1D solver and axial dis-
cretization. As long as axial variations are weak, the axial
TL term should be relatively small, and the flat, isotropic ap-
proximation should not have a significant effect on the overall
solution, even if it may be a poor representation of the “true”
leakage.

Cases in which the assumptions are not satisfied and the
errors described here may be significant are essentially what
are called “transport boundary layers.” These may be axial ma-
terial heterogeneities (control or fuel rod tips) or axial vacuum
boundaries. The goal of 2D/1D improvements is to develop
better treatments to axial and radial TL or homogenization (the
information by which the 2D and 1D solutions are coupled) to
mitigate these errors.

Homogenization that does not accurately preserve the
true physics of the 3D problem (5) can happen when there is a
large disparity in the XS within a coarse pin cell. One severe
example of this is an air-cooled fast reactor with a graphite-fuel
matrix that has coolant channels in which axial streaming is
very large. The same effect exists in LWR problems, especially
in control rods, but it is less severe; thus, the error introduced
from using the simpler, isotropic homogenization is generally
acceptable compared to other sources of error in the model
(such as the multigroup XS).

MPACT demonstrated 3D transport accuracy for prob-
lems that are piecewise homogeneous (that is, no radial hetero-
geneity within the pin cell coarse mesh) in [11] using 2D/1D
SN with the angular refinements developed therein. We can
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infer that the remaining 2D/1D error in problems that have fine-
mesh heterogeneity is a direct result of those heterogeneities;
namely, errors (4) and (5) in the list. As a result, these two
errors are the focus of this work.

III. RESULTS AND ANALYSIS

The results are divided into three sections. In the first
section, we consider a single fuel pin cell problem. This is
essentially the simplest LWR-type 3D transport problem; it
allows us to quantify the effects of homogenization and spatial
shape of the axial TL without confounding errors from the
radial transverse leakage approximations. Next, we consider a
3x3 partially-rodded array of pins, which introduces the radial
transverse leakage effect, but still avoids a global radial power
tilt, which can complicate evaluations of the axial power shape.
Finally, we show results for the full 3D C5G7 benchmarks to
evaluate the angle-dependent homogenization method for a
more realistic LWR problem. In all cases, C5G7 XS are used.

1. Single Fuel Pin Cell

The single fuel pin cell is a simple 3D transport problem
that can demonstrate the errors resulting from approximations
to the axial solver, such as the incorrect total XS homogeniza-
tion or a spatially flat axial transverse leakage.

The problem configuration is a single UO2 fuel pin cell
with reflective boundaries on all lateral surfaces and vacuum
boundaries on the top and bottom. We can change the sig-
nificance of the axial streaming by making the pin shorter or
longer, effectively modifying the axial buckling. If the pin is
long enough, leakage has a negligible effect, and the solution
is more or less the same regardless of which homogenization
or leakage shape is used. As the pin becomes shorter, the
leakage increases and the choice of approximation becomes
important.

To evaluate the different methods, we compare the eigen-
values to a 3D multigroup Monte Carlo reference solution gen-
erated using OpenMC [21]. Each case was run using 3 × 103

inactive and 1.2 × 104 active cycles, with 2 × 104 particles
per cycle (total active particles = 2.4 × 108). In MPACT, a
relatively fine discretization was used, with 1.0 cm thick axial
MOC planes, 144 FSRs (9 radial × 16 azimuthal), 0.01 cm ray
spacing, and a Chebyshev-Gauss quadrature with 16 azimuthal
and 8 polar angles per octant.

The results are shown in Fig. 1. The uncertainty is 5
pcm or lower in each case; this is not shown in the figure
because it would be difficult to see on the necessary scale.
“ISO XS” refers to isotropic total XS in 1D, i.e., scalar flux
homogenization [Eq. (18)]. “POLAR XS” refers to polar
angular flux weighted XS (Eq. 23), and “SCALAR TL” refers
to scalar flux weighted axial TL leakage (Eq. 10).

When the pin is very long, the two types of homogeniza-
tion converge to the same, correct answer. For shorter lengths
(higher leakages), scalar flux homogenization has a large error
that is corrected by polar homogenization. The polar homoge-
nization case is within two standard deviations of the Monte
Carlo eigenvalue for all pins 50 cm or greater in length, with
or without scalar flux-weighted axial TL. For pins below this

Fig. 1: 3D UO2 pincell results

length, scalar flux-weighting of the TL appears to improve the
eigenvalue, keeping it within two standard deviations down
to 30 cm. However, it is worth noting that the effect of polar
homogenization is more than 10 times greater than the effect
of scalar flux-weighted TL.

Angular flux-weighted TL, which should be slightly better
than scalar flux weighting, was not used here, or anywhere in
this paper, because it caused instability due to a negative total
source in nearly every case.

In this case, it appears that whatever error there may be
from ignoring the azimuthal dependence in the homogeniza-
tion step is negligible. This is not a surprise because azimuthal
dependence should not be especially important in an infinite
lattice problem. The polar-dependent homogenization gives an
eigenvalue within uncertainty over a large range of pin heights,
indicating that it is an important effect, which is greater in
magnitude than the effect of neglecting the azimuthal angle.

The trend in Fig. 1 is more important than the actual mag-
nitude of the errors. Obviously, LWR cores are not actually
20 cm long, so we do not see 300 pcm errors due to homog-
enization for real problems. However, this study highlights
the critical defect in scalar flux homogenization that is present
wherever axial streaming is significant. This effect is still
present in very tall LWR cores–albeit on a smaller scale–near
heterogeneities such as a partially-inserted control rod. We
consider a simple example of this case next.

2. 3x3 Partially Rodded Lattice

For the 3x3 partially-rodded lattice problem, we use a
square of UO2 fuel pins with a guide tube in the center position.
The axial length is equivalent to the 3D C5G7 benchmark
(42.84 cm of fuel, 21.42 cm of moderator). The control rod is
inserted from the top to the halfway point of the fuel (21.42 cm
from the bottom). All lateral boundaries and the bottom are
reflective; the top boundary is vacuum. The reference solution
was again generated with OpenMC, using 2× 104 particles per
cycle, 5 × 103 inactive and 2 × 104 active cycles (total active
particles = 4 × 108).

The radial discretization is the same as in the single pin
cell problem, but the number of polar angles has been reduced
from 8 per octant to 4, which is more typical of a practical case.
To demonstrate that results are not confounded by discretiza-
tion error, we first run with increasing numbers of Fourier
moments in the radial TL and axial angular flux expansion,
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from 0 to 3, and then we increase the number of the axial
planes from 18 to 72.

From Fig. 2 we observe that the eigenvalue is converged
at P = 2 (isotropic, two sine, and two cosine moments). We
set P = 2 and then refine axially from 18 to 72 planes in
Fig. 3. Here we can see that the eigenvalue does not appear to
converge with increasing axial refinement; instead, it continues
to get closer to the Monte Carlo reference. However, the planes
could not be refined any further than 72 (0.8925 cm each).
Regardless of the homogenization or axial TL shape, 2D/1D
is unstable with finer planes for this problem, due to negative
total sources from axial transverse leakage. Fortunately, we
are already quite close to the reference solution at this plane
height, and we should expect that the solution would converge
soon upon additional refinement.

Fig. 2: Eigenvalue error for 3x3 problem, azimuthal refinement

Fig. 3: Eigenvalue error for 3x3 problem, axial refinement

There is a trend in these plots similar to what was observed
for the pincell problem: the eigenvalue error is significantly
reduced when using polar homogenization, and the effect of
the axial TL shape is about one order of magnitude smaller
than the effect of polar homogenization.

Next, we consider the power errors with angle refinement
in Fig. 4 and axial refinement in Fig. 5. The max errors
are connected by solid lines, the RMS errors by dotted lines.
Again, we find that polar homogenization reduces the error
significantly, while the effect of the axial TL spatial shape is
small. One noteworthy observation is that both the eigenvalue
and the pin power are more accurate in the least refined case

(P = 0, 3.57 cm planes) using polar homogenization than in
the most refined case (P = 2, 0.8925 cm planes) using scalar
flux homogenization.

Fig. 4: Pin power error for 3x3 problem, azimuthal refinement

Fig. 5: Pin power error for 3x3, axial refinement

In Fig. 4 it appears that the number of azimuthal moments
used in the TL leakage and 1D angular flux expansion does
not have a significant effect on the pin power. This is because
the azimuthal moments help resolve radial transport effects,
but the main error in this case is due to an axial transport effect
(the partially-inserted control rod). Increasing the number of
azimuthal moments does not help 2D/1D resolve the axial
transport boundary without polar XS homogenization.

To see how polar homogenization improves the pin pow-
ers, we compare the errors for the side pin in the array (the
direct neighbor of the control rod) in Fig. 6.

A large error occurs at 21.42 cm using scalar flux homog-
enization, which is the location of the tip of the control rod.
This is a strong axial heterogeneity, and the self-shielding in
both the control rod and the fuel pins is important here. With
polar homogenization, the pin power error at the control rod
tip is much smaller. With axial TL spatial shape, the change in
the pin power profile is not significant. If we could continue
refining the axial planes indefinitely, the 2D/1D pin power
should eventually converge to the 3D transport solution with
polar homogenization. Conversely, an error occurs at the con-
trol rod tip when using scalar flux homogenization that will
not be corrected with refinement.

3. 3D C5G7 Benchmark

The 3D C5G7 benchmark [19] is a common benchmark
for evaluating the accuracy of neutronics codes. The geometry
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Fig. 6: Side pin power error, 3x3

is two UO2 and two MOX fuel assemblies, arranged in a
checkered pattern, with reflective boundaries on the west and
south surfaces. On the other sides the core is surrounded
by moderator assemblies, and on the outside of those the
boundary condition is vacuum. For 3D, there are 3 standard
configurations: unrodded, and two rodded cases (A and B). In
the rodded A case, the rods are partially (1/3) inserted into the
center UO2 assembly. In rodded B, the rods are (1/3) inserted
into both MOX assemblies, and (2/3) into the center UO2
assembly.

The strong axial variation in the C5G7 benchmark is typi-
cally handled quite well, from the perspective of accuracy, by
the 2D/1D SN solver in MPACT. However, the strong axial TL
can cause negative total sources, leading to instability. Unfor-
tunately, there is not yet any way to resolve this instability in
general cases without severely damaging the accuracy. The
C5G7 benchmarks flirt with this line of instability, but can
converge with a sufficient number of upscattering and inner
transport sweeps per outer iteration.

When the polar-dependent homogenization is used, the
axial TL is increased over the scalar homogenization case,
which in most cases means that more transport sweeps per
outer iteration are required to converge to the solution without
instability. In all 3 cases here, 3 upscattering sweeps and
3 inner sweeps per group were required to achieve stability.
Because the number of outer iterations required to converge is
not decreased by increasing the number of transport sweeps
per outer, this significantly increases the computational time
required to reach convergence.

The discretization was relatively fine: 144 FSRs per pin
cell (9 radial x 16 azimuthal), 225 FSRs per moderator cell
(cartesian 15x15), 0.02 cm ray spacing, and 16 azimuthal × 4
polar angles per octant in the quadrature set (Chebyshev az-
imuthal, Gauss polar). The transverse leakage treatment was
moment based (P = 2). The quadrature is not sufficiently re-
fined; for example, there is a +22 pcm change in the eigenvalue
for the 2D C5G7 problem if the number of angles is doubled in
each dimension to 32 azimuthal × 8 polar per octant. However,
increasing the number of polar angles per octant tends to cause
instability for these problems, so angular refinement will be
considered after potential future developments in stabilization.

The axial discretization is eighteen 3.57 planes, which is
the same as the coarse case in Section III.2. In those results,
we saw the eigenvalue decrease by 23 pcm as the planes were
refined by a factor of 4, from 3.57 cm to 0.8925 cm. We should
keep this is mind, as well as potential quadrature error, when
viewing the results of the full 3D cases.

Pin power and eigenvalue results for the 3D C5G7 bench-
mark without and with polar-dependent XS are given in Tables
I and II, respectively. With the polar-dependent XS, we see
a change in eigenvalue of 15–40 pcm. The eigenvalues are
not within uncertainty, but we shouldn’t expect them to be
when considering the likely discretization errors. The more
significant result is the pin power (fission rate) errors: the
RMS pin power decreases by more than 50% in all three cases,
and the max pin power error decreases by 15-40%. The pin
power errors are plotted in the Appendix.

TABLE I: 3D C5G7 benchmark errors, isotropic XS

ke f f [pcm] RMS [%] Max [%]
unrodded 4 0.28 0.88
rodded A 18 0.36 1.15
rodded B 21 0.55 2.27

TABLE II: 3D C5G7 benchmark errors, polar XS

ke f f [pcm] RMS [%] Max [%]
unrodded -10 0.12 0.53
rodded A -11 0.18 0.99
rodded B -20 0.27 1.74

IV. CONCLUSIONS

In this paper, we derived an improved method for homoge-
nizing cross sections for the 1D axial kernel of a 2D/1D solver
in MPACT. This is not the first time that angle-dependent XS
homogenization has been considered, but it is the first time
that it has been used with the 2D/1D solver in MPACT, and
these are the most complete and significant results using this
method, to the author’s knowledge. This method involves
using polar-dependent angular flux-volume weighted homoge-
nization of the total XS, instead of scalar flux-volume weighted
homogenization. This method makes the solution of the 1D
equation consistent with the 2D solution integrated over the
same 3D pin cell volume for each polar angle. With scalar flux
homogenization, only the zeroth angular moment (scalar) flux
from the 2D equation is preserved, not the angular distribution.
The 2D solution has important information about the angular
distribution of the flux that is necessary for the 1D solution to
model the axial streaming correctly.

We also considered the effect of the spatial distribution of
the axial transverse leakage, and proposed two spatial shape
functions: scalar flux weighting and polar angular flux weight-
ing. The polar flux weighting should be more correct, but the
peak spatial shape factor is much greater for the polar flux than
the angular flux; this leads to very consistent instability. Using
scalar flux weighting, we saw that a spatial TL shape has a rel-
atively small eigenvalue effect (compared to polar-dependent
XS), and virtually no effect on the pin power shape.
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While previous work has been done to quantify the effects
of larger 2D/1D errors such as using a diffusion approximation
axially [5], this work quantifies some of the lesser 2D/1D
errors (homogenization, spatial TL shape) that have not been
studied as rigorously but are important in a highly refined
regime where very good accuracy is expected.

The polar-dependent XS showed very good results for the
pincell and 3x3 problems. For the full 3D C5G7 benchmark
problems, there was significant improvement in every case
when going from isotropic to polar-dependent cross sections.
There are still some discretization errors in these results, but
there are apparently no other significant errors inherent to the
2D/1D method. These errors could likely be corrected through
refinement, but there are not yet any methods for preventing
instability as the quadrature and axial mesh are refined (aside
from continuing to increase the number of transport sweeps
per outer iteration, which is not always sufficient).

Future work will be focused on measures to ensure source
positivity without significantly compromising the accuracy of
the solution so that the mesh can be refined without encounter-
ing stability issues, or using a disadvantageously large number
of transport sweeps per outer iteration. Given an effective
means of ensuring stability for a wider range of problems, we
should be able to achieve accuracy close to that of 3D transport
with the 2D/1D method.
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APPENDIX

The reference pin powers are compared at 3 uniform planes for both homogenization types (isotropic, polar) for the three
cases in Figs. 7–9. The planes are numbered from the bottom. In each case, the isotropic cross section results are shown in the
first row, and the polar cross section results are shown on the same scale on the second row. The errors are absolute, compared to
a reference solution generated using the Monte Carlo code SHIFT [22]. In all figures, the inner UO2 assembly is in the bottom
left corner. There is a visible improvement apparent in all three cases, which is reflected in the RMS error results given in the
main text.

(a) Isotropic XS

(b) Polar XS

Fig. 7: Pin power errors, C5G7 3D unrodded (first row: isotropic XS, second row: polar XS)
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(a) Isotropic XS

(b) Polar XS

Fig. 8: Pin power errors, C5G7 3D rodded A (first row: isotropic XS, second row: polar XS)

(a) Isotropic XS

(b) Polar XS

Fig. 9: Pin power errors, C5G7 3D rodded B (first row: isotropic XS, second row: polar XS)


