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Abstract: Process fault diagnosis strategies rely heavily on various types of sensors for temperature, 
pressure, concentration and etc. Due to the redundancy of the sensors in process systems such as 
chemical and nuclear plants, sensor selection schemes can deeply influence the diagnostic efficiency. 
In this paper, a Boolean network with its linear representation is proposed for describing the fault 
propagation among sensors, the sufficient conditions for both fault detectability and discriminability 
are given, and a sensor selection method for fault detection and discrimination is then proposed. 
Finally, the theoretic result is applied to realize the diagnosis oriented sensor selection for a nuclear 
steam supply system, which not only verifies the feasibility but also show the implementation steps 
of theoretic results. 
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1 Introduction 

The process behavior is inferred by using sensors 
measuring the important variables in the processes 
such as chemical and nuclear plants. When a process 
encounters a fault, the effect of this fault is propa-
gated to all or some of the process variables. The 
main objective of fault diagnosis is to observe these 
fault symptoms and determine the root cause for the 
behavior, and the efficiency of fault diagnosis de-
pends critically on the selection of sensors monitor-
ing the process variables. Directed graph (DG) is 
such a qualitative model that can be used to infer the 
fault propagation or cause-effect behaviour in a pro-
cess system. Sensor selection was treated as different 
DG-based optimization problems in most of the ear-
lier work. Bagajewicz et al. summarized the sensor 
selection in a process as mix integer linear program-
ming (MILP) problems focusing on optimizing cost 
or (and) reliability [1-4]. Bhushan, Narasimhan and 
Rengaswamy added the criteria of robustness to the 
MILP problems [5]. Genetic algorithms (GAs) were 
also applied to solve the optimization problems for 
sensor selection [6, 7]. The MILP approach has been 
applied to the sensor selection problem of the fault 
diagnosis for the integral pressurized water reactors 
(iPWRs) and the helical coil steam generators [8, 9]. 

Boolean network (BN), first introduced by Kauff-
man [10], has been a powerful tool in modelling and 
analyzing cellular networks. A BN is a network with 

nodes and directed edges, where the state of a node 
is quantized to the values of True or False, and is de-
termined through logical rules by the states of other 
nodes with edges directed to this node. It was shown 
that BN plays a crucial role in modelling cell regula-
tion. BN can be also applied to other fields such as 
system sciences as a powerful tool. Cheng and Qi 
gave the state-space model of BN based on its linear 
representation, and then revealed some features such 
as fix points, cycles and controllability [11-13].  
Actually, by regarding both the sensors and faults in 
a process as the nodes in a BN, and by further re-
garding the cause effect behaviors as the directed 
edges, BN can be utilized as a qualitative model for 
the fault propagation in a process system. Based on 
this idea, a BN model for process fault propagation 
is proposed, and then the sensor selection problem 
for fault diagnosis is solved by analyzing the steady 
state space structure of the corresponding BN model 
in this paper. Then, the BN-based sensor selection 
method is applied to realize the fault detection and 
discrimination of a nuclear steam supplying system, 
which shows the feasibility of this new approach. 
 

2 Semi-tensor product and logics 

In this section, some definitions and lemmas about 
semi-tensor product and logical function [11-13] are 
introduced and reviewed as follows with some nec-
essary remarks. 
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Definition 1. Suppose A∈Mm×n and B∈Mp×q, and 
let t be the lowest common multiple (LCM) of posi-
tive integers n and p. The semi-tensor product (STP) 
of A and B is defined by 
    t n t p   A B A I B I ,  (1) 
where is Kronecker product, I is identity matrix. 

Remark 1. Semi-tensor product is the generalization 
of traditional matrix multiplication. In the following 
parts of this paper, symbol “  ” is omitted.                                          

Definition 2. Matrix A∈Mm×n is called a logical ma-
trix if the columns of A, denoted by Col(A), satisfy 
Col(A)⊂Δm, where Δm={ k

m | k=1, …, m }, and k
m is 

the kth column of Im. The set of m×n logical matrices 
is denoted by Lm×n, and Δ2 is usually denoted by Δ.                                                          

Definition 3. W[m,n]∈Mmn×mn is called a swap matrix 
if its column labels are given by (11, …, 1n, …, 
m1, …, mn), its row labels are given by (11, …, 
m1, …, 1n, …, mn), and its element in position (IJ, 
ij) is given by 

 ,

1, , ,

0, otherwise.IJ ij

I i J j
w

 
 


  (2) 

Moreover, W[n,n] is briefly denoted as W[n].               

Lemma 1. Let x∈Rm, y∈Rn, and  A∈Mp×q. Then 
  ,m n W xy yx ,  (3) 

  m xA I A x .  (4) 

Definition 4. A 2×2n matrix Mσ is called the struc-
ture matrix of a logical function σ: Δn→Δ, if  
  1 2 1 2, ,..., n n a a a M a a a .  (5) 
where ai∈Δ, i=1, 2, …, n.                          

The power-reducing matrix Mr is determined by  
 2

r a aa M a ,  (6) 
and we can see that 
  1 4

r 4 4 4= : 1 4     M .  (7) 

Then, based on the power-reducing matrix and swap 
matrices, it is easy to obtain the following Lemma 2.  

Lemma 2. Every logical function σ: Δn→Δ has a 
structure matrix Mσ∈L2×2n satisfying equation (5). 

Remark 2. The structure matrices of logical func-
tions negation “൓”, disjunction “∨” and conjunction 
“∧” are given by  
  2= 2 1M ,  (8) 

  2 1 1 1 2 M ,  (9) 
  2 1 2 2 2 M ,  (10) 

respectively. Moreover, the logical functions of 
identity “I” and constant “F” have the structure ma-
trices given by  
  I 2 21 2 M I ,  (11) 
  F 2 2 2M ,  (12) 
respectively. 

For An=a1a2…an, where ai∈Δ, i=1,…, n. Following 
lemma 3 gives the relationship between 2

nA  and An. 

Lemma 3. For An=a1a2…an, where ai∈Δ, i=1, …, n. 
Then 
 2

n n nA Φ A ,  (13) 
where 

   1 2 r2 [2,2 ]
1

= i n i

n

n
i

 



   Φ I I W M .  (14) 

Remark 3. By some tedious computation, it can be 
derived from Lemma 3 that  
  1 2

2 2
=diag , ,

n

n nnΦ δ δ ,  (15) 
where 

2 2
, 1, , 2 .n n

k nk δ                                        

 

3 BN for Process Fault Propagation 

The nodes of a directed graph describing fault prop-
agation is the faults fi∈Δ and sensors sj∈Δ, i=1, …, 
m,  j=1, …, n. The edge from fault fi to sensor sj 
denotes that fi can be detected by sj. The edge from 
sensors sj to sk reveals the fault-propagation between 
the process variables measured by these two sensors. 
It is assumed that there is no edges between any two 
faults. There may be several edges toward a sensor 
node, whose logical operation among the start nodes 
of these edges should be disjunction.  

For convenience of discussion, define matrices ESF 
={eSF,ij}∈Mn×m and ESS ={eSS,kl}∈Mn×n, where i, k, 
l=1,…, n, j=1,…, m. Here, eSF,ij=1 if there exists an 
edge from fault fj to sensor si, eSS, kl=1 if there is an 
edge from sl to sk, otherwise eSF,ij=0 and eSS, kl=0. 
Based on the above assumption and analysis about 
the features of the DG for process fault propagation, 
the BN model of this DG can be written as 

   1
F, S,

1 1

1 ,
m n

m n
k i i j j

i j

t t 


 

  
    

   
 s M M f M s   (16) 

where k=1, …, n, t is the times of logic computation,  

 I SF,
F,

F SF,

, 0,

, 0,
ki

i
ki

e

e


  

M
M

M
  (17) 

and 
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 I FF,

S,
F FF,

, 0,

, 0,
kj

j
kj

e

e

  

M
M

M
  (18) 

matrices M∨, MI and MF are given by equations (9), 
(11) and (12) respectively, and fi, sj∈Δ. 

Based on equations (16) and (4), we can obtain that  

    
1 1

1
m n

k k i j
i j

t t
 

   s L f s ，  (19) 

where  

   1 1

1
F, S,2 2

1 1

i m j

m n
m n

k i j
i j

  
 


 

         
    
 L M I M I M .(20) 

Define 

          1 2
1

n

j n
j

t t t t t


 S s s s s   (21) 

 1 2
1

m

m
i

 F f f f f , (22) 

then the state-space model of BN describing process 
fault propagation is proposed by Theorem 1. 

Theorem 1. The state-space model of the BN for 
process propagation given by (19) can be written as 
    F1t t S L S ,  (23) 
where 
 F L LF ,  (24) 

  1 2
2

= m n

n

k m n
k

 


  L L I L Φ , (25) 

Lk and Φm+n is given by (20) and (14) respectively. 

Proof: From Lemma 3, 

    2

m nt t  FS Φ FS .  (26) 

Based on equations (21) and (19),  

       

     

   

1 2
3

1 22
3

1 2
2

1

m n

m n

n

k
k

n

m n k
k

n

k m n
k

t t t t

t t

t













 

   



   







S L FS L FS L FS

L I L Φ FS L FS

L I L Φ FS



，  (27) 

which completes the proof of this theorem.                            

Remark 4. From equation (23), it is easy to see that 
LF=LF is a 2n×2n matrix which is called sensor net-
work state transition matrix. Fault F is regarded as a 
constant vector which is the parameter of state tran-
sition matrix. 

Remark 5. From (21), (22) and fi, sj∈Δ, it can be 
seen that F∈

2
Δ m and S∈

2
Δ n .  

 

4 Detectability and discriminability 
Based on the definition of semi-tensor product, it is 
easy to prove the following Lemma 4. 

Lemma 4. Consider An=a1a2…an, where ai=[Qi 1-
Qi]T∈Δ, Qi∈{0, 1}, and i=1, 2, …, n. If An= 2n

k  
(k=1,…,2n), then  

 
1

2 2
n

n n i
i

i

k Q 



  . (28) 

Based on Lemma 4, we have the following Theorem 
2 that gives fault detectability and discriminability of 
the BN.  

Theorem 2. Consider BN (23) for process fault 
propagation. Suppose that there is only one fault oc-
curs at a time. For each i=1, 2, …, m, it is assumed 
that there is a positive integer qi such that 

    1

2 2

i i
i i
m m

q qk k 

L L ,  (29) 

where 
 2 2m m i

ik   .  (30) 

Define 
  1 2 mP p p p ,  (31) 

where  

   02

i
i
m

qk
i p L S , i=1, 2, …, m. (32) 

Then, for an initial sensor state S0=S(0)∈
2

Δ n , the 

faults are detectable at S0 if  

 2

2

m

mi p  for i=1, 2, …, m,  (33) 

Faults are discriminable at S0 if conditions (33) and  
  Rank mP , (34) 

are satisfied, where the value of function Rank(P) is the 
rank of matrix P. 

Proof: For a given i∈{1, 2, …, m }, i.e. F=
2

i
m

k with 
ki given by (30). Then, from BN model (23),  

      0 02
i
m

tt kt  S LF S L S .  (35) 

If there exists a positive integer qi so that (29) is well 
satisfied, then there is the steady response of the BN 
to fault i at initial sensor state S0 is  

     02

i
i
m

qk
iq S L S  . (36) 

If there is no sensor response to fault i, the steady 
response of the BN should be 2

2

m

m . Therefore, if  

   2
02 2

mi
i
m m

qk L S   (37) 

holds for each i∈{1, 2, …, m }, i.e. condition (33) is 
satisfied, then the faults are detectable. 
Moreover, suppose 
 r sp p   (38) 
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Fig. 1. Schematic diagram of the HTR-PM’s NSSS 

Table 1. Available sensor nodes for selection 

Nodes Description 

s1 reactor neutron flux 
s2 primary helium flowrate 
s3 average temperature of the primary flow 
s4 average temperature of the secondary flow 

Table 2. Fault nodes to be detected or discriminated 

Nodes Description 

f1 abnormal reactivity injection to the reactor  
f2 malfunction of the primary helium blower 
v3 heat transfer degradation of OTSG two sides 

for r≠s and r, s∈{1, 2, …, m }, i.e. condition (34) 
is satisfied. It is easy to see from inequality (38) that 
the steady responses of sensor state to different faults 
are different from each other, which means that the 
faults are discriminable. This completes the proof of 
this theorem.  

Remark 6. It can be seen that there is a li∈{1,…,2n }, 
i=1, 2, …, m, so that 

   02 2
=

i
i i
n m

ql k L S .  (39) 

Define  

  
1

N 2 2 , 0
n

n n r
i i r r

r

r l Q Q 



      
 

  (40) 

which is the collection of sensors having respond to 
fault i.  
Let 

 1
1

=
m

i
i

 

 .    (41) 

If Θ1 is not empty, then we can use sensor sλ with 
λ∈Θ1 for fault detection, and use sensors with their 
number in the set  

  2
1

=
m

i
i

  


   (42) 

for fault discrimination.  
 

5 Application to a nuclear plant 

The BN model and its linear representation for pro-
cess fault propagation given by Theorem 1, the suf-
ficient conditions for fault detectability and discrimi-
nability given by Theorem 2 and the sensor selection 
method presented in Remark 5 are applied to realize 
a fault-diagnosis oriented sensor selection of a nu-
clear steam supply system (NSSS). 

5.1 Background 

The modular high temperature gas-cooled reactor 
(MHTGR) adopts helium as coolant and graphite as 
both moderator and structural materials. From Fig. 1, 
this NSSS is composed of an MHTGR, a helical-coil 
once-through steam generator (OTSG), a helium 
blower and some pipes. The cold helium enters to the 
helium blower mounted on top of the OTSG, and is 
then pressurized before flowing in the cold gas duct. 
The cold helium enters into the channels in the side-
reflector from bottom to top for cooling the reflector, 
and then passes through the pebble-bed from top to 
bottom where it is heated to a high temperature about 
750℃. The hot helium leaves the hot gas chamber 
inside the bottom reflector, and flows into the OTSG 
primary side where it is cooled by the secondary wa-
ter/steam flow. 

Fault diagnosis of the NSSS is meaningful to the safe, 
stable and efficient operation of MHTGR-based nu-
clear plant. Sensor selection is crucial and necessary 
for satisfactory diagnosis. The sensors to be selected 
are those measuring the reactor neutron flux, pri-
mary helium flowrate, secondary feedwater flowrate 
and the average coolant temperatures of the primary 
and secondary sides. The faults to be detected or dis-
criminated are abnormal reactivity injection, error of 
the primary helium blower and heat transfer degra-
dation between the two sides of the OTSG. 

5.2 Linear representation of BN model 

The BN model for the fault propagation is 

Fuel Elements 

Reflector 

OTSG 

Helium Blower 

Hot Chamber 

Coaxial Pipe 
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 
 
     
     

1 1

2 2

3 3 1 4

4 3 2 3

1 ,

1 ,

1 ,

1 .

t

t

t t t

t t t

 


 


   
    

s f

s f

s f s s

s f s s

  (43) 

From Theorem 1, the linear representation of model 
(43) can be rewritten as  
    1t t S LFS , (44) 

where  

 

16[ 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 2 2

1 3 1 3 1 3 2 4

5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

5 5 5 5 5 5 6 6

5 7 5 7 5 7 6 8

9 9 9 9 9 9 9 9

9 9 9 9 9 9 9 9

9 9 9 9 9 9 10 10

9 11 9 11 9 11 10 12

13 13 13 13 13 13 13 13

13 13 13 13 13 13 13 13

13 13 13 13 13 13 14 14

13 15 13 15 13 15 14 16 ].

L

 

5.3 Verification of fault discriminability 

From equation (30), k1=4, k2=6 and k3=7. Further-
more, we can obtain that  

4
F1 1 8 16 [ 5 5 5 5

5 5 6 6

5 7 5 7

5 7 6 8 ],

   L LF L  

6
F2 2 8 16 [ 9 9 9 9

9 9 10 10

9 11 9 11

9 11 10 12 ],

   L LF L  

7
F3 3 8 16 [ 13 13 13 13

13 13 13 13

13 13 13 13

13 13 13 13 ].

   L LF L  

It is easy to verify that q1=q2=3 and q3=1, i.e. 
 4 3 4 3 2

F1 F1 F2 F2 F3 F3, ,  L L L L L L . 

Consider initial state S0= 16
16 , which means that all 

the sensor states are 2
2 . Then, we have  

  16 5 9 13P , 

which satisfies condition (33) and (34) of Theorem 
2, and certainly leads to the fault discriminability. 

5.4 Sensor selection 
From (39), l1=8, l2=12 and l3=13. Then from (40),  

 

 
 
 

1

2

3

1,3, 4 ,

2,3,4 ,

3,4 ,











 

  

which means that we can use sensor s4 for fault de-
tection and sensors s1, s2 and s3 for discrimination. 
 

6 Conclusions 
Since there are hundreds of sensors for temperature, 

pressure, concentration and etc. in the complex pro-

cess systems such as nuclear and chemical plants, 

and due to fault propagation effect among these sen-

sors, a proper sensor selection scheme is the basis for 

efficient process fault diagnosis. Sensor selection 

was treated as optimization problems under certain 

criteria. However, the precondition of doing optimi-

zation is fault detectability and discriminability. In 

this paper, a Boolean network (BN) model in a linear 

representation is proposed for describing the fault 

propagation among sensors. Based on the analysis of 

the steady state-space structure of the BN model, 

sufficient conditions for both fault detectability and 

discriminability are given. According to these suffi-

cient conditions, a sensor selection method for fault 

detection and discrimination is also proposed. Fi-

nally, the above result is applied to realize the fault-

diagnosis oriented sensor selection for the MHTGR-

based NSSS, which verifies the result and shows the 

steps of implementation. 
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