

 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017 1

New PRODIAG Algorithm and Acceptance Test

Young Soo PARK
1
, and Richard VILIM

1. Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL, USA (ypark@anl.gov)

Abstract: This paper presents the improvement of an automated-reasoning computer program for

nuclear power plant diagnosis, namely PRODIAG. PRODIAG, first developed at Argonne

National Laboratory, is a physics-based fault diagnosis system which is plant configuration

independent. To further enhance the code extensibility and maintenance, code upgrade has been

made incorporating a modern object-oriented programming language, and an open-source

automated reasoning engine. Verification test was also performed on a series of simulated faulty

power plant operation data.

Keyword: Plant fault diagnosis, Expert system, Artificial intelligence, Object oriented program

1 Introduction

PRODIAG a computer-based diagnostic system,

first developed at Argonne National Laboratory, for

detection and identification of component faults in

in the T-H processes in nuclear power plant system

[1, 2]. PRODIAG adopts confluence-based

reasoning to perform fault diagnosis in engineering

systems that can be described by the conservation

laws for mass, energy, momentum, and chemical

species [3, 4]. Therefore, unlike other plant

configuration-dependent rule-based diagnosis

algorithms, the code is generally applicable to a

wide variety of plant configurations by simply

inputting the plant instrumentation diagram (PID)

database.

However, the original PRODIAG code

implementation in Prolog reflects the state of expert

systems development in the mid 1990’s, and the

need for improvement was raised when it failed to

provide the requisite degree of extensibility and

maintainability for new applications. Therefore, a

developmental work has been conducted to

re-design and re-write the PRODIAG code

consistent with current-day best-practices for

software implementation of automated-reasoning

algorithms. In particular, the reasoning process is

inextricably wedded to the execution of rules as

opposed to the recent trend where the rules are

defined separately and then presented for evaluation

by a reasoning engine. These shortcomings have

been addressed through a new code architecture

that uses an objected-oriented logic-programming

language in place of the original Prolog language

and uses an open-source automated reasoning

engine in place of the original hardwired

rule-evaluation sequence. The latter was realized

by separating the rule base from the rule-evaluation

sequence. The new code was developed using an

object oriented language, Java, and utilized an

open-source production engine, JBoss Drool.

This paper presents the architecture to

implementation details of the code transition.

Verification and validation studies were performed

for the new PRODIAG.

2 Overview of the Original PRODIAG

The methods of PRODIAG are described in [1, 2].

Unlike the traditional event-oriented approach for

diagnostics, PRODIAG used function-oriented

approach that does not require pre-specification of the

possible process component faults. The diagnostic

strategy is carried out by separating the relevant

information into three distinct but interacting

knowledgebase: physical rules database (PRD),

component classification dictionary (CCD), piping and

instrumentation database (PIDB). Process symptoms

are related to component faults through the three-step

mapping illustrated in Fig. 1. Through this three-step

mapping, the diagnosis is transformed into a

function-oriented approach and confines the

process-dependent information solely to the PIDB.

First Middle FAMILYNAME, First Middle FAMILYNAME, First Middle FAMILYNAME, First Middle FAMILYNAME

2 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017

Fig.1. PRODIAG Diagnostic Process

Physical Rule Database (PRD)

PRODIAG' s physical rules are derived based on

qualitative physics [3, 4] where a small number of

qualitative trends, such as increasing, decreasing, and

unchanging trends, are used to represent the values of

continuous real-valued process variables applicable to

process-independent basic elements, i.e. loops, control

volumes, and components. First principle rules,

mapping trends in T-H signals into imbalances of mass,

momentum, and energy, were solely derived through

the equations of state and the definitions of momentum,

and applied to the relevant control volumes.

The qualitative physics rules of the PRD are of two

classes: Q rules and CV rules. A Q rule indicates the

type and trend of the imbalance in a control volume

inferred from the trends in the T-H signals.

Corresponding to the three balance equations of mass,

momentum, and energy, there are there types of Q rules:

Q����, Q���, Q���. The Q status can have one of

three trends: increasing (↑), decreasing (↓), and

unchanging (−). A CV rule infers the trend status of

unmeasured T-H signals in a process component from

the other T-H signals of the component and the Q status

of the component.

As an illustration, consider the physics rule,

����� = ���� −��� (1)

where ��� and ���� are the control volume inlet

and outlet mass flow rates, respectively, and �����

is the mass source/sink term in the mass balance.

Transforming (1) into qualitative differential

expressions, using De Kleer and Brown’s

methodology and notation [4], gives the following

confluence:

 ������− ������� = −�������� (2)

where the square brackets [·] represent the

qualitative value or trend (↑, ↓, −) of the argument

basic quantity. Equation (2) represents the general

confluence, from which Q rules characterizing

imbalances in ����� can be derived by applying

the different trend combinations of ��� and ����

and using the operations of qualitative algebra.

Thus,

 Rule (A) If ���

↑ and ����
	↓ , then �����

↓ (3)

 Rule (B) If ���

↓ and ����
	↑ , then �����

↑ (4)

Likewise, other Q rules are derived for defining

momentum and energy with related process variables.

PRODIAG includes a comprehensive set of rule bases

modules, which include various physical rules.

Component Classification Dictionary (PIDB)

The component classification dictionary (CCD)

provides generic classification of various process

components. As such, the component faults detected as

Q imbalances by the PRD can be linked with the

responsible components. A small number of generic

component types included in T-H processes are

classified into predefined classes. For example, based

on the three conservation equations, each generic

component type, e.g. closed valve, open valve, and

electrical heater, is functionally classified as a source

or sink of mass, momentum, or energy.

Piping and Instrumentation Database (CCD)

To facilitate systematic application of physics rules for

component level diagnostics in process independent

manner, the T-H process is decomposed into basic

elements or building blocks to form generic

geometrical configurations to which the rules of the

PRD can be applied. A top-down tree like

decomposition definition is established, accordingly a

T-H system is decomposed into loops defined between

two end boundaries, and components (including

junctions) which belong to each loops. The plant

specific system configuration is described in the P&ID

database, which includes the loop-specific information,

component-specific, and inter-loop information.

Please write title of the paper here

 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017 3

3

Limitations of the Original PRODIAG

Despite the principal benefits, limitation was

experienced in adapting the original PRODIAG to new

diagnosis applications different from the original

application. Despite the main benefits, the actual

implementation realized in Prolog presented

limitations in extensibility and maintainability when

adapting to new applications. Mainly, this was a

consequence of 1) failure to program using objected

oriented techniques (the Prolog language does not

support object-oriented programming, and 2) the

decision to imbed the confluence-derived rules in the

diagnostics search sequence, as opposed to keeping the

two separate.

3 NEW PRODIAG ARCHITECTURE

To address the above mentioned shortcomings and

support the re-write of the PRODIAG, various

software development tools were evaluated. Various

aspects were considered in support of 1) an inference

capability, 2) an object-oriented capability, 3) a

debugger, 4) a semi-natural English-type language,

and 5) an integrated development environment

(IDE). The tools examined were the Max-SAT

solver [5], the VisiRule package [6], PyKE [7], and

Drools (JBoss) [8]. The final choice was Drools

JBoss, an open source tool with a Java-based rule

engine. It supports forward chaining rules via the

Rete algorithm and also partially supports backward

chaining rules. Since the PRODIAG rules within the

code can be formulated in forward-chaining

reasoning form, the Drools JBoss support for

production rule (if-then) was found to be adequate.

Another significant merit is the capability for

object-oriented code and the existence of a debugger

in an integrated development environment. The

language is Java-based and consequently benefits

from a large Java-user community.

The overall software architecture of the program is

illustrated in Fig.2, which consists of four parts: 1)

PRODIAG Expert system, 2) PID Construction

Program, 3) Read Data Interface Program, and 4)

Graphic User Interface.

Figure 2. Software Architecture of New PRODIAG

Data Structure

The new PRODIAG uses the following data

structures to keep track of static information (e.g.

PID) and process variables.

- Component: A Component object keeps track of

the component properties (e.g. component type,

volume type, relative pressure, fluid type,

location). The following types are supported:

bearing, closed_valve, demineralizer, filter,

heat_exchanger_cold, heat_exchanger_hot,

heater, junction, open_valve, pump, seal,

seal_barrier, sump, system, tank, and turbine.

- Loop: A Loop object keeps track of the

properties of the loop and the components in the

loop. It also keeps track of intermediate diagnosis

results, such as faulty component candidates, for

later use in the final diagnosis in the post

processing.

- THProcess: This is the one instance for the whole

life-cycle of the expert system. It keeps track of all

the Loop, Component and Q instances. It also

holds a handle to the rule-base engine.

- Sensor: A Sensor object stores the initial value of

a process variable, and keeps track of its raw

trends during the following updates.

- Q: Q objects are imbalance indicators that keep

track of the inference output of various Q-rules in

the rule base. There are two subclass, Qcomp and

Qloop, depends on the Q is associated with

Component or Loop.

First Middle FAMILYNAME, First Middle FAMILYNAME, First Middle FAMILYNAME, First Middle FAMILYNAME

4 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017

Rule-base

A major objective of the PRODIAG redesign

activity was to modularize the program so that it

could be easily modified or extended. Currently

there are 21 different modules organized as agenda

groups. These modules have no direct interactions

with each other, and the collaborations are achieved

mostly through updating the inserted Java objects:

Component, Loop and Q.

Transportation: The transportation module

replicates the enthalpy transportation and constant

flow transportation procedure to fill the unfilled

process variables, esp. temperature and constant

flow. The transportation happens along any given

loop that meets the conditions. Transportation, as in

original PRODIAG system, is executed right before

the primary Q-rules.

Module 00.00: Module 00.00 is designed to detect

certain instrument errors. The design of the rules is

straightforward: identifying a component with

measurements that meet the rule condition, then

report the error and stop the diagnosis.

Modules 10.0, 20.00, 30.00, 40.00, 50.00, 90.00,

100.00: defines the set of Q-rules of various

categories.

Module 60.00, 70.00, 80.00, 100.00, 120.00: are

the set of CV-rules designed to infer unmeasured

variable trends for based on other measurements and

Q trends.

Pipe Check: Pipe check is yet another

undocumented module in the original PRODIAG

program. This module is used to check the failure

of a single pipe based on the immediate surrounding

flow or pressure trends and their environment

pressure attributes (relative pressure).

Conflict Resolution: This module includes all

conflict resolution routines for conflicting Q

assignments, so that multiple rules with action items

on Q will not end up with any potential conflicting

assignments.

Q Propagation: This auto-focus group has only

one rule, which will propagate the component Q

trends into the loop Q. Every time a component Q

trend is set with conflicts resolved, this group will be

pushed on top of the stack and propagate the

component Q trend to loop Q.

Cleanup and Generic: This module contain some

general rules for the purpose of housekeeping, to

make sure rules in other modules can be executed as

expected. This group is also an auto-focus group, so

that can be executed as needed.

Automated Reasoning Process

The core of new PRODIAG is a business rule

management system Drools, which provides a

powerful reasoning engine for performing diagnosis.

Java objects can be inserted into the rule base as

facts, and therefore become accessible by the

reasoning engine. A registered rule in the rule base

consists of a set of conditions and a set of associated

actions. Once the conditions of the rule are met, the

actions will be executed. The rule base consists

hundreds of rules in the form of standard Drool rules

base. Each rule work independently, and the

collaboration between rules are achieved through

delicately conceived condition and action items. The

effects of the rules are reflected in the modifications

they made to the Java objects.

The diagnostic procedure works as follows: a new

rule engine session is created, and data structures,

such as Components, Loops, Qs, are initialized and

registered as facts in the engine. A set of rules is also

registered with a rule flow specification. During

each iteration, a new batch of sensor reading is

updated through TimeWindow selector, and rules

are fired to perform diagnosis. The iteration

continues until a conclusion is reached or the input

data is exhausted. After each iteration, a post

processing procedure is invoked to collect the

inference results and present the final results. In

general, there is no direct way to control the order of

rule execution once we fire up the rule engine.

However, through the ruleflow facility of Drools, we

can group rules into group and control the overall

flow. Using the “ruleflow” keyword, as in the

example above, we categorized the rules based on

the module they serve in, and use a flowchart tool to

specify the orders of the group.

 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017 5

Fig. 3. shows the rule flow for PRODIAG. It has

three branches, the left branch replicates the general

order of original PRODIAG work flow:

Transportation -> Q-Rules -> CV-Rules ->

Transportation -> Q-Rules -> Diagnosis; the two

other branches will be executed in parallel with the

main branch and taking care of some routine

updates and conflict resolution. The detail of the

ruleflow groups can be found in [8]. Notice that the

ruleflow is different from program flowchart. It

only governs which set of rules should be activated

after the rule groups before it has ceased fire, but it

has no control over when an activated rule should

be fired.

Post-Processing

After the rules cease firing, the reported faulty

candidates are gathered and post processed in

“ResultPool” (see ResultPool class). Because

PRODIAG is a loop-based inference system, most

faulty candidate information is stored in the class Loop.

In general, there are nine categories of possible faults.

4 Acceptance Test

For verification and validation purpose, the new

PRODIAG was tested with a test data generated from a

power plant simulator. The diagnostic results were

compared with those of old PRODIAG. The Chemical

and Volume Control System (CVCS) of ComEd’s

Braidwood pressurized water reactor was selected as

the test bed. Figure 4 shows the PID of the Braidwood

CVCS system under test. The test data was generated

to represent transient conditions for a range of

postulated failure conditions.

Fig.4. Plant Status Panel of the Braidwood NPS CVCS

In order to give users a realistic interface for plant

status monitoring and control, a NPP operation training

simulator is implemented which includes graphical

user interface, plant control and protection system, and

plant simulator. The control system is developed with

EPICS, with graphic user interface implemented with

Control System Studio [9]. As illustrated in Fig. 5, a

Bridge program was developed to provide integration

of the simulator and PRODIAG diagnosis system.

Fig.3. Schematic of Diagnosis Procedure

First Middle FAMILYNAME, First Middle FAMILYNAME, First Middle FAMILYNAME, First Middle FAMILYNAME

6 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017

Fig.5. Overview of the control panel interfaces with

PRODIAG and plant simulator

The test results are summarized in comparison with

those of old PRODIAG diagnostic results on the

same test cases. Total 20 failure cases were tested

and the results are shown in Table 1. The diagnostic

results are classified into two categories: component

failures and piping failures (clogging or break). In

the old PRODIAG results, the piping failure results

are displayed and one sentence including the most

outer boundaries. On the other hand, in the new

diagnostic results, each piping segment failure is

indicated. When combined which makes up the old

diagnostic results. The diagnostic results matched

most cases for the component failures, except

CV09-150 case which was sensor failure case. The

piping failure diagnostic results matched in most

cases, but with different levels of accuracies in terms

of pin-pointing the faulty segments. Table 1 shows a

summary of comparison of diagnostics results.

4 Discussion

PRODIAG is a function-based approach for nuclear

power plant diagnostics. Compared to the traditional

process-based diagnostic systems, it has advantage

in terms of portability and capability to diagnose

unanticipated faults. However, due to the dated

software structure, it had difficulty in software

expansion for new application. To this end, a

software update was performed to transform

PRDIAG to modern day software practice. The

objective is to adopt object oriented software

structure, and separation of rules from the inference

mechanism. The feasibility of the software is

validated with simulation plant operation data.

Despite the initial success, further validation of the

code for robustness, and improvement toward

model-based diagnostics is anticipated.

Acknowledgment

This work was supported by the U.S. Department of

Energy, Office of Nuclear Energy, under Contract

No. DE-AC02-06CH11357.

Table 1 Summary of Diagnostic Results Comparison

Diagnosis Match Predict Better Predict Worse

Component Failure CV04-100,

CV05-310, CV06-100,

CV07-100, CV08-480
a
,

CV10-100, CV12-65,

CV14-65, CV16-95,

CV18-70, CV21-50,

CV24-65, CV27-150

CV01-100 CV09-150
b

Piping Failure CV04-100, CV24-65,

CV25-45

CV06-100,

CV07-100, CV12-65

CV01-100
c
,

CV05-310
c
, CV13-45

c
,

CV22-65
c
, CV23-65

c
,

CV26-20
c

a This fault was a sensor failure case. The diagnosis is not correct in this case.
b
 This is a sensor failure case. The diagnosis is indeterminate.

c
 Piping failure pipe-run localization correct, but piping run is longer than diagnosed by original PRODIAG.

 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017 7

References

[1] J. REIFMAN and T.Y.C. WEI, “PRODIAG” A
Process-Independent Transient Diagnostic

System – I: Theoretical Concepts,” Nuclear

Science and Engineering, 131, 329-347, 1999.

[2] J. REIFMAN and T.Y.C. WEI, “PRODIAG” A

Process-Independent Transient Diagnostic

System – II: Validation Test,” Nuclear Science

and Engineering, 131, 348-369, 1999.

[3] J. DE KLEER and J. KURIEN,

“Fundamentals of Model-Based Diagnosis,”

Proceedings of SafeProcess03, 2003.

[4] J. DE KLEER and J. BROWN, “A Qualitative

Physics Based on Confluences,” Artificial

Intelligence, 24, Issue 1-3, Dec, 1984.

[5] M. CODISH, “Logic Programming with
Satisfiability,” Theory and Practice of Logic
Programming, Vol. 1, Issue 8, 121-128, January

2008.

[6] R. KOWALSKI, VisiRule, Logic

Programming Associates, London, England,

2012

[7] B. FREDERIKSEN, “Applying Expert System

Technology to Code Reuse with Pyke, PyCon

2008, Chicago, IL, March 2008.

[8] P. BROWNE, JBoss Drools Business Rules,

PACKT Publishing, March 2009. Experimental
Physics and Industrial Control System [Web log]

Retrieved Dec 29, 2014, from

http://www.aps.anl.gov/epics/

[9] Control System Studio, [Web log], Retrieved

Dec. 29, 2104, from
http://ics-web.sns.ornl.gov/css/

