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Abstract: This paper presents the improvement of an automated-reasoning computer program for 

nuclear power plant diagnosis, namely PRODIAG. PRODIAG, first developed at Argonne 

National Laboratory, is a physics-based fault diagnosis system which is plant configuration 

independent. To further enhance the code extensibility and maintenance, code upgrade has been 

made incorporating a modern object-oriented programming language, and an open-source 

automated reasoning engine. Verification test was also performed on a series of simulated faulty 

power plant operation data. 
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1 Introduction 

PRODIAG a computer-based diagnostic system, 

first developed at Argonne National Laboratory, for 

detection and identification of component faults in 

in the T-H processes in nuclear power plant system 

[1, 2]. PRODIAG adopts confluence-based 

reasoning to perform fault diagnosis in engineering 

systems that can be described by the conservation 

laws for mass, energy, momentum, and chemical 

species [3, 4]. Therefore, unlike other plant 

configuration-dependent rule-based diagnosis 

algorithms, the code is generally applicable to a 

wide variety of plant configurations by simply 

inputting the plant instrumentation diagram (PID) 

database.  

  

However, the original PRODIAG code 

implementation in Prolog reflects the state of expert 

systems development in the mid 1990’s, and the 

need for improvement was raised when it failed to 

provide the requisite degree of extensibility and 

maintainability for new applications. Therefore, a 

developmental work has been conducted to 

re-design and re-write the PRODIAG code 

consistent with current-day best-practices for 

software implementation of automated-reasoning 

algorithms. In particular, the reasoning process is 

inextricably wedded to the execution of rules as 

opposed to the recent trend where the rules are 

defined separately and then presented for evaluation 

by a reasoning engine. These shortcomings have 

been addressed through a new code architecture 

that uses an objected-oriented logic-programming 

language in place of the original Prolog language 

and uses an open-source automated reasoning 

engine in place of the original hardwired 

rule-evaluation sequence.  The latter was realized 

by separating the rule base from the rule-evaluation 

sequence. The new code was developed using an 

object oriented language, Java, and utilized an 

open-source production engine, JBoss Drool.   

 

This paper presents the architecture to 

implementation details of the code transition. 

Verification and validation studies were performed 

for the new PRODIAG. 

 

2 Overview of the Original PRODIAG 

The methods of PRODIAG are described in [1, 2]. 

Unlike the traditional event-oriented approach for 

diagnostics, PRODIAG used function-oriented 

approach that does not require pre-specification of the 

possible process component faults. The diagnostic 

strategy is carried out by separating the relevant 

information into three distinct but interacting 

knowledgebase: physical rules database (PRD), 

component classification dictionary (CCD), piping and 

instrumentation database (PIDB). Process symptoms 

are related to component faults through the three-step 

mapping illustrated in Fig. 1. Through this three-step 

mapping, the diagnosis is transformed into a 

function-oriented approach and confines the 

process-dependent information solely to the PIDB. 
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Fig.1. PRODIAG Diagnostic Process 

 

Physical Rule Database (PRD) 

PRODIAG' s physical rules are derived based on 

qualitative physics [3, 4] where a small number of 

qualitative trends, such as increasing, decreasing, and 

unchanging trends, are used to represent the values of 

continuous real-valued process variables applicable to 

process-independent basic elements, i.e. loops, control 

volumes, and components. First principle rules, 

mapping trends in T-H signals into imbalances of mass, 

momentum, and energy, were solely derived through 

the equations of state and the definitions of momentum, 

and applied to the relevant control volumes. 

 

The qualitative physics rules of the PRD are of two 

classes: Q rules and CV rules. A Q rule indicates the 

type and trend of the imbalance in a control volume 

inferred from the trends in the T-H signals. 

Corresponding to the three balance equations of mass, 

momentum, and energy, there are there types of Q rules: 

Q����, Q���, Q���. The Q status can have one of 

three trends: increasing (↑), decreasing (↓), and 

unchanging (−). A CV rule infers the trend status of 

unmeasured T-H signals in a process component from 

the other T-H signals of the component and the Q status 

of the component. 

 

As an illustration, consider the physics rule, 

����� = ���� −���    (1) 

where ��� and ���� are the control volume inlet 

and outlet mass flow rates, respectively, and ����� 

is the mass source/sink term in the mass balance. 

Transforming (1) into qualitative differential 

expressions, using De Kleer and Brown’s 

methodology and notation [4], gives the following 

confluence: 

   

 ������− ������� = −��������  (2) 

where the square brackets [·] represent the 

qualitative value or trend (↑, ↓, −) of the argument 

basic quantity. Equation (2) represents the general 

confluence, from which Q rules characterizing 

imbalances in ����� can be derived by applying 

the different trend combinations of ��� and ���� 

and using the operations of qualitative algebra. 

Thus,  

 Rule (A)  If ���

↑  and ����
	↓ , then �����

↓     (3) 

 Rule (B)  If ���

↓  and ����
	↑ , then �����

↑    (4) 

Likewise, other Q rules are derived for defining 

momentum and energy with related process variables. 

PRODIAG includes a comprehensive set of rule bases 

modules, which include various physical rules. 

 

Component Classification Dictionary (PIDB) 

The component classification dictionary (CCD) 

provides generic classification of various process 

components. As such, the component faults detected as 

Q imbalances by the PRD can be linked with the 

responsible components. A small number of generic 

component types included in T-H processes are 

classified into predefined classes. For example, based 

on the three conservation equations, each generic 

component type, e.g. closed valve, open valve, and 

electrical heater, is functionally classified as a source 

or sink of mass, momentum, or energy. 

 

Piping and Instrumentation Database (CCD) 

To facilitate systematic application of physics rules for 

component level diagnostics in process independent 

manner, the T-H process is decomposed into basic 

elements or building blocks to form generic 

geometrical configurations to which the rules of the 

PRD can be applied. A top-down tree like 

decomposition definition is established, accordingly a 

T-H system is decomposed into loops defined between 

two end boundaries, and components (including 

junctions) which belong to each loops. The plant 

specific system configuration is described in the P&ID 

database, which includes the loop-specific information, 

component-specific, and inter-loop information.  
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Limitations of the Original PRODIAG 

Despite the principal benefits, limitation was 

experienced in adapting the original PRODIAG to new 

diagnosis applications different from the original 

application. Despite the main benefits, the actual 

implementation realized in Prolog presented 

limitations in extensibility and maintainability when 

adapting to new applications. Mainly, this was a 

consequence of 1) failure to program using objected 

oriented techniques (the Prolog language does not 

support object-oriented programming, and 2) the 

decision to imbed the confluence-derived rules in the 

diagnostics search sequence, as opposed to keeping the 

two separate. 

 

3 NEW PRODIAG ARCHITECTURE 

To address the above mentioned shortcomings and 

support the re-write of the PRODIAG, various 

software development tools were evaluated. Various 

aspects were considered in support of 1) an inference 

capability, 2) an object-oriented capability, 3) a 

debugger, 4) a semi-natural English-type language, 

and 5) an integrated development environment 

(IDE). The tools examined were the Max-SAT 

solver [5], the VisiRule package [6], PyKE [7], and 

Drools (JBoss) [8]. The final choice was Drools 

JBoss, an open source tool with a Java-based rule 

engine. It supports forward chaining rules via the 

Rete algorithm and also partially supports backward 

chaining rules. Since the PRODIAG rules within the 

code can be formulated in forward-chaining 

reasoning form, the Drools JBoss support for 

production rule (if-then) was found to be adequate. 

Another significant merit is the capability for 

object-oriented code and the existence of a debugger 

in an integrated development environment. The 

language is Java-based and consequently benefits 

from a large Java-user community.  

 

The overall software architecture of the program is 

illustrated in Fig.2, which consists of four parts: 1) 

PRODIAG Expert system, 2) PID Construction 

Program, 3) Read Data Interface Program, and 4) 

Graphic User Interface. 

 

Figure 2. Software Architecture of New PRODIAG 

 

Data Structure 

The new PRODIAG uses the following data 

structures to keep track of static information (e.g. 

PID) and process variables.  

 

- Component:  A Component object keeps track of 

the component properties (e.g. component type, 

volume type, relative pressure, fluid type, 

location). The following types are supported: 

bearing, closed_valve, demineralizer, filter, 

heat_exchanger_cold, heat_exchanger_hot, 

heater, junction, open_valve, pump, seal, 

seal_barrier, sump, system, tank, and turbine.  

- Loop:  A Loop object keeps track of the 

properties of the loop and the components in the 

loop. It also keeps track of intermediate diagnosis 

results, such as faulty component candidates, for 

later use in the final diagnosis in the post 

processing. 

- THProcess: This is the one instance for the whole 

life-cycle of the expert system. It keeps track of all 

the Loop, Component and Q instances. It also 

holds a handle to the rule-base engine.  

- Sensor:  A Sensor object stores the initial value of 

a process variable, and keeps track of its raw 

trends during the following updates. 

- Q:  Q objects are imbalance indicators that keep 

track of the inference output of various Q-rules in 

the rule base. There are two subclass, Qcomp and 

Qloop, depends on the Q is associated with 

Component or Loop. 
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Rule-base 

A major objective of the PRODIAG redesign 

activity was to modularize the program so that it 

could be easily modified or extended.  Currently 

there are 21 different modules organized as agenda 

groups. These modules have no direct interactions 

with each other, and the collaborations are achieved 

mostly through updating the inserted Java objects: 

Component, Loop and Q. 

Transportation: The transportation module 

replicates the enthalpy transportation and constant 

flow transportation procedure to fill the unfilled 

process variables, esp. temperature and constant 

flow. The transportation happens along any given 

loop that meets the conditions. Transportation, as in 

original PRODIAG system, is executed right before 

the primary Q-rules. 

Module 00.00:  Module 00.00 is designed to detect 

certain instrument errors.  The design of the rules is 

straightforward: identifying a component with 

measurements that meet the rule condition, then 

report the error and stop the diagnosis. 

Modules 10.0, 20.00, 30.00, 40.00, 50.00, 90.00, 

100.00:  defines the set of Q-rules of various 

categories. 

Module 60.00, 70.00, 80.00, 100.00, 120.00:  are 

the set of CV-rules designed to infer unmeasured 

variable trends for based on other measurements and 

Q trends.   

Pipe Check:  Pipe check is yet another 

undocumented module in the original PRODIAG 

program.  This module is used to check the failure 

of a single pipe based on the immediate surrounding 

flow or pressure trends and their environment 

pressure attributes (relative pressure).   

Conflict Resolution:  This module includes all 

conflict resolution routines for conflicting Q 

assignments, so that multiple rules with action items 

on Q will not end up with any potential conflicting 

assignments. 

Q Propagation:  This auto-focus group has only 

one rule, which will propagate the component Q 

trends into the loop Q. Every time a component Q 

trend is set with conflicts resolved, this group will be 

pushed on top of the stack and propagate the 

component Q trend to loop Q. 

Cleanup and Generic:  This module contain some 

general rules for the purpose of housekeeping, to 

make sure rules in other modules can be executed as 

expected. This group is also an auto-focus group, so 

that can be executed as needed. 

 

Automated Reasoning Process 

The core of new PRODIAG is a business rule 

management system Drools, which provides a 

powerful reasoning engine for performing diagnosis. 

Java objects can be inserted into the rule base as 

facts, and therefore become accessible by the 

reasoning engine. A registered rule in the rule base 

consists of a set of conditions and a set of associated 

actions. Once the conditions of the rule are met, the 

actions will be executed. The rule base consists 

hundreds of rules in the form of standard Drool rules 

base. Each rule work independently, and the 

collaboration between rules are achieved through 

delicately conceived condition and action items. The 

effects of the rules are reflected in the modifications 

they made to the Java objects. 

 

The diagnostic procedure works as follows: a new 

rule engine session is created, and data structures, 

such as Components, Loops, Qs, are initialized and 

registered as facts in the engine. A set of rules is also 

registered with a rule flow specification. During 

each iteration, a new batch of sensor reading is 

updated through TimeWindow selector, and rules 

are fired to perform diagnosis. The iteration 

continues until a conclusion is reached or the input 

data is exhausted. After each iteration, a post 

processing procedure is invoked to collect the 

inference results and present the final results. In 

general, there is no direct way to control the order of 

rule execution once we fire up the rule engine. 

However, through the ruleflow facility of Drools, we 

can group rules into group and control the overall 

flow. Using the “ruleflow” keyword, as in the 

example above, we categorized the rules based on 

the module they serve in, and use a flowchart tool to 

specify the orders of the group. 
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Fig. 3. shows the rule flow for PRODIAG.  It has 

three branches, the left branch replicates the general 

order of original PRODIAG work flow: 

Transportation -> Q-Rules -> CV-Rules -> 

Transportation -> Q-Rules -> Diagnosis; the two 

other branches will be executed in parallel with the 

main branch and taking care of some routine 

updates and conflict resolution. The detail of the 

ruleflow groups can be found in [8]. Notice that the 

ruleflow is different from program flowchart. It 

only governs which set of rules should be activated 

after the rule groups before it has ceased fire, but it 

has no control over when an activated rule should 

be fired. 

 

Post-Processing 

After the rules cease firing, the reported faulty 

candidates are gathered and post processed in 

“ResultPool” (see ResultPool class). Because 

PRODIAG is a loop-based inference system, most 

faulty candidate information is stored in the class Loop.  

In general, there are nine categories of possible faults. 

 

4 Acceptance Test 

For verification and validation purpose, the new 

PRODIAG was tested with a test data generated from a 

power plant simulator. The diagnostic results were 

compared with those of old PRODIAG. The Chemical 

and Volume Control System (CVCS) of ComEd’s 

Braidwood pressurized water reactor was selected as 

the test bed. Figure 4 shows the PID of the Braidwood 

CVCS system under test. The test data was generated 

to represent transient conditions for a range of 

postulated failure conditions.  

 

 

Fig.4. Plant Status Panel of the Braidwood NPS CVCS  

 

In order to give users a realistic interface for plant 

status monitoring and control, a NPP operation training 

simulator is implemented which includes graphical 

user interface, plant control and protection system, and 

plant simulator. The control system is developed with 

EPICS, with graphic user interface implemented with 

Control System Studio [9]. As illustrated in Fig. 5, a 

Bridge program was developed to provide integration 

of the simulator and PRODIAG diagnosis system.   

 

 
Fig.3. Schematic of Diagnosis Procedure 
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Fig.5. Overview of the control panel interfaces with 

PRODIAG and plant simulator 

 

The test results are summarized in comparison with 

those of old PRODIAG diagnostic results on the 

same test cases. Total 20 failure cases were tested 

and the results are shown in Table 1. The diagnostic 

results are classified into two categories: component 

failures and piping failures (clogging or break). In 

the old PRODIAG results, the piping failure results 

are displayed and one sentence including the most 

outer boundaries. On the other hand, in the new 

diagnostic results, each piping segment failure is 

indicated. When combined which makes up the old 

diagnostic results. The diagnostic results matched 

most cases for the component failures, except 

CV09-150 case which was sensor failure case. The 

piping failure diagnostic results matched in most 

cases, but with different levels of accuracies in terms 

of pin-pointing the faulty segments. Table 1 shows a 

summary of comparison of diagnostics results. 
 

4 Discussion 

PRODIAG is a function-based approach for nuclear 

power plant diagnostics. Compared to the traditional 

process-based diagnostic systems, it has advantage 

in terms of portability and capability to diagnose 

unanticipated faults. However, due to the dated 

software structure, it had difficulty in software 

expansion for new application. To this end, a 

software update was performed to transform 

PRDIAG to modern day software practice. The 

objective is to adopt object oriented software 

structure, and separation of rules from the inference 

mechanism.  The feasibility of the software is 

validated with simulation plant operation data. 

Despite the initial success, further validation of the 

code for robustness, and improvement toward 

model-based diagnostics is anticipated.  
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Table 1  Summary of Diagnostic Results Comparison 

Diagnosis Match Predict Better Predict Worse 

Component Failure  CV04-100, 

CV05-310, CV06-100, 

CV07-100, CV08-480
a
, 

CV10-100, CV12-65, 

CV14-65, CV16-95, 

CV18-70, CV21-50, 

CV24-65, CV27-150 

CV01-100 CV09-150
b
 

Piping Failure CV04-100, CV24-65, 

CV25-45  

CV06-100, 

CV07-100, CV12-65 

CV01-100
c
, 

CV05-310
c
, CV13-45

c
, 

CV22-65
c
, CV23-65

c
, 

CV26-20
c
  

a This fault was a sensor failure case. The diagnosis is not correct in this case.  
b
 This is a sensor failure case. The diagnosis is indeterminate. 

c
 Piping failure pipe-run localization correct, but piping run is longer than diagnosed by original PRODIAG. 
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