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Abstract: The integrity of various machineries and equipment, which are used in several industrial fields, can 

be considered as a factor determining safety and efficiency such as productivity and economy. In the sense, 

prognostics and health management (PHM) techniques are used to estimate the machine condition and life for 

effective maintenance and risk minimization. It is known that PHM has already been applied in a wide range 

of industrial fields such as automotive industry, aeronautics industry, several energy industries, and military. 

PHM denotes diagnostics that monitors conditions of the mechanical system or device and detects its failure 

symptoms, prognostics of remaining useful life (RUL), and effective health management using sensors. 

However, in a case of nuclear power plants (NPPs) that consist of large architecture and complex internal 

structures, it is known that the actual failure data of its system and device are difficult to be obtained, compared 

to other industrial fields. Thus, since the cutter in a milling machine can be considered as a rotor such as a pump 

and a turbine in a NPP, the cutter wear data from PHM 2010 society conference data challenge were used in an 

effort to study PHM technologies for NPPs. 

In this study, support vector regression (SVR) as a data-driven approach was used to estimate a total of 6 cutter 

wear of a milling machine. The basic concept of SVR is to map the input data into a high-dimensional space 

by nonlinear mapping to solve a linear regression problem in this space. Among the cutters, 3 actual cutter wear 

data were compared with estimated values obtained from the SVR method using the signals from dynamometer, 

accelerometers, and acoustic emission sensors built in the experimental device. Consequently, the proposed 

method can accurately estimate the degree of cutter wear in the experimental device and it is expected that SVR 

has a capability to estimate wear of the rotating machines in NPPs in the future. 

Keyword: Prognostics and Health Management (PHM), Remaining Useful Life (RUL), Sensor, 

Support Vector Regression (SVR) 

 

1 Introduction 

Nuclear power plants (NPPs) are comprised of a 

lot of various equipment and components. Among 

the total number of 24 NPPs operating in Republic 

of Korea, pressurized water reactors (PWRs) such 

as optimized power reactor (OPR) 1000 and 

advanced power reactor (APR) 1400 are main 

reactor types in Korea. 

Generally, these PWRs are classified into a 

primary system exposed to radioactivity and a 

secondary system without radioactivity. The 

primary system in NPPs has a role to transfer heat 

energy of the reactor and this heat energy from the 

primary system is changed into potential energy as 

steam through steam generator (SG) in the 

secondary system. 

There are facilities such as reactor vessel (RV), 

reactor coolant pump (RCP), pressurizer (PZR), 

SG primary side, and so on in reactor coolant 

system (RCS), which is another name of the 

primary system. They are under high pressure and 

temperature conditions to prevent H2O coolant 

with radionuclides from vaporization. The 

secondary system consists of turbine, condenser, 

pump, the rest side of SG, and so on, which 

operate under less harsher conditions. 

In an effort to keep the integrity of these various 

NPP components, a study on application of 

prognostics and health management (PHM) 

technology to NPPs was carried out[1] since the 

equipment have an important role on the safety 

and efficiency of NPPs. 

PHM can be defined as accurately monitoring 

mechanical system, device, and facility, detecting 

the fault symptom, and predicting remaining 

useful life (RUL) using the features extracted from 

the data or sensor signals (refer to Fig. 1[1]). That 
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is, PHM system contains functions of condition 

monitoring, state assessment, fault detection, 

prognostics, operational decision support, and so 

on[2]. 

 

 

Fig.1 PHM systems. 

 

PHM technologies have already been applied in 

various industrial fields such as defense, aircraft, 

automobile, and wind turbines. Accordingly, in 

the nuclear power generation field, it is considered 

that a PHM technology become a necessary need 

to enhance the safety and economy of NPPs 

moving forward with both long term operation 

(LTO) and new builds[1]. 

Unfortunately, however, it is known that there are 

rarely the real fault data, and thus it is difficult to 

be obtained. Therefore, three types of sensor 

signals such as force, vibration, and acoustic 

emission (AE) data were used to estimate the 

cutter wear of a milling machine in this study. 

Although the cutter of a milling machine is not one 

of the components in NPPs, it was selected for 

estimation target in this study since it can be 

considered a rotating machine such as pump and 

turbine in NPPs. 

Moreover, it can be regarded as a case study since 

the performance of the artificial intelligence 

technology used in this study was able to be 

checked due to the fact that cutter wear was 

estimated using the real sensor signals and 

compared with the actual cutter wear data. 

Support vector regression (SVR), which is one of 

the machine learning method of artificial 

intelligence, was used in this study. It is known 

that this technique was applied to various 

regression analyses and showed good 

performance. 

However, a lot of data were needed to guarantee 

the optimal performance using machine learning 

technique, and accordingly the problems on 

calculation time and overfitting were raised. 

Therefore, subtractive clustering (SC) technique[3] 

and genetic algorithm[4][5] , which are for data 

selection and optimization, were applied to SVR 

to confirm the performance through proper 

generalization. For these reasons, the accuracy of 

the proposed SVR model increased and the precise 

estimation performance of the cutter wear was 

shown. 

 

2 Machine learning algorithm 

SVR used in this study is another name of support 

vector machine (SVM) in regression analysis[6]. 

SVM is a fundamentally machine learning method 

and data-driven approach. This method seeks to 

best fit the training data in establishing the 

mapping function, while maintaining the ability to 

generalize to unseen data. 

However, since the efficacy of regression 

algorithm is determined by data type, quality, and 

quantity, a lot of data have to be used to gain good 

performance[7]. Additionally, the performance 

differs from the assumptions of error 

minimization or training method inherent in the 

algorithm[7]. 

 

2.1 Support vector machines in regression 

SVM as a model generally used in event 

classification or regression problem is an 

algorithm with a neural network structure based 

on statistical learning theory. Current embodiment 

of these SVM was proposed by C. Cortes and V. 

Vapnik[6].  

It is noted that SVM and artificial neural network 

(ANN) techniques have similar structure. 

However, they have differences on training 

method or risk minimization[8]. SVM uses a 

structural risk minimization (SRM) principle 

(refer to Fig. 2) to minimize the upper bound on 

the expected risk[8]. 

In other words, it can be possible to establish the 

optimized SVR algorithm by a SRM principle 
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finding the minimum of the bound on risk R(f*) 

defined as the sum of empirical risk and the 

confidence interval. This SRM is depicted as 

follows[9]: 

 

Error or
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Generalization error
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Confidence or 
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1h *h
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Fig.2 SRM principle used in SVM. 

 

With the introduction of Vapnik’s ε-insensitive loss 

function[8][9][10], SVM has been finally extended to 

be used in regression analysis. This can be applied 

to a time series forecast and a nonlinear regression. 

To be specific, the basic idea of SVR is to map the 

input data into a kernel-induced higher feature 

space, and then perform linear regression 

analysis[12]. That is, nonlinear regression in the 

input space can become linear regression in a 

feature space. 

In this study, the SVR model is established using 

N training data indicated as  
1

( , )
N

k k k
T x y


  in 

which xk is a sample data vector and yk denotes the 

actual output value, from which it learns a 

relationship between input and output values. The 

SVR function is expressed as follows: 
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where ( )k x  is termed the feature which is the 

function nonlinearly from the input space x, 
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T
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Parameters W and b are weighting coefficient and 

bias, respectively. 

These weighting coefficient and bias are 

computed using the following regularized risk 

function with the ε-insensitive loss function[11]. To 

acquire them, the following regularized risk function 

has to be minimized. 
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The term of the ε-insensitive loss function in Eq. (2) 

is determined according to the condition such as 

Eq. (3). As shown in Fig. 3, the insensitiveness ε 

has a role to decide the ε-tube size and to stabilize 

the estimation by controlling the number of 

support vectors[11]. In addition, the parameter C as 

regularization parameter in Eq. (2) decides the 

trade-off between the weight vector norm and the 

approximation error[11]. In the SVR model, the 

parameters ε and C are design parameters and they 

are related to generalization and overfitting. 

 



( )ky f x




( )y f x

 

Fig.3 A linear ε-insensitive loss function applied to SVR. 

 

The aforementioned generalized risk function is 

altered into a constrained risk function with the 

slack variables as follows: 
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subject to the constraints 
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Likewise, Eq. (4) is used to compute W and b, and 

this can be solved using the Lagrange multiplier 

method and a standard quadratic programming 

technique. 

The slack variables shown in Fig. 4 are located 

outside the ε-tube size and indicate the upper and 

lower constraints. These non-zero values have to 

be minimized. 
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Fig.4 An illustration of the ε-insensitive loss function with 

slack variables. 

 

Beyond linear regression, the SVR model can be 

applied to nonlinear regression analysis using the 

kernel. In this study, the radial basis function is 

used as the kernel function and defined as follows: 
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 (6) 

 

The parameter σ in Eq. (6) indicates the sharpness 

of the radial basis kernel function and it is one of 

the design parameters as the parameters ε and C, 

affecting on SVR’s performance. 

Finally, the SVR function using the kernel 

function becomes as follows: 

  

   *

1

ˆ ( ) ,
N

k k k

k

y f x K x x b 


     (7) 

 

The several Lagrange multipliers 
*

k k   have 

non-negative and non-zero values and the 

corresponding training data are regarded as 

support vectors (SVs) lying on or outside ε-bound. 

 

2.2 Optimization of SVR 

To optimize the SVR model performing linear 

regression in a kernel-induced space, the genetic 

algorithm[4][5] was used in this study. The design 

parameters such as ε, C, and σ were optimized 

using the genetic algorithm as a technique 

imitating an evolutionary process of living 

organisms by the natural evolution mechanisms 

such as selection, crossover, and mutation (refer to 

Fig. 5). 

 

Start

Generate initial chromosomes

Is the maximum generation

approached?

No

Evaluate chromosomes

Stop

Genetic operation such as

selection, crossover, and mutation

Yes

 

Fig.5 Optimization procedure using the genetic algorithm. 

 

The genetic algorithm needs a fitness function 

used to minimize the root mean square error 

(RMSE) and maximum error by assigning a score 

to each chromosome in the corresponding 

population and evaluating how suitable a 

chromosome is. The fitness function is used as Eq. 

(8). 

 

1 1 2 2exp( )F E E  λ λ  (8) 

where E1 and E2 are RMSE and maximum error 

for the development data set, respectively. λ1 and 

λ2 are weights for each error. 
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where Ndev is the number of development data 

points, and ky  and ˆky  are a target value and an 

estimated value using the SVR model. 

In this study, the development data were used to 

develop the SVR model for estimation of cutter 

wear. All of the data for the SVR model as well as 

the development data are described in Section 3.  

 

3 Data application to SVR model 

The machineries and facilities of NPPs are 

considered as important factors determining the 

safety and economy. Since the SVR model is 

known for a machine learning technique showing 

a good performance in various regression analysis, 

it can be used to estimate the state of NPP 

components. 

However, this method is not easy to be applied to 

a nuclear power generation field due to a lack of 

actual fault data and a difficulty on acquiring the 

data. Therefore, the data from “PHM 2010 society 

conference data challenge[13]” are applied to the 

SVR model to estimate the wear of three cutters 

among the six cutters with 3-flute of a computer 

numerical control (CNC) milling machine. A 

CNC milling machine is comprised of a cutter, 

workpiece, accelerometer sensor, dynamometer 

sensor, and AE sensor as shown in Fig. 6. 

 

 

 

Fig.6 High speed CNC milling machine (Röders Tech 

RFM760). 

 

Although the cutter of a milling machine as the 

estimation target is not directly related to the 

components of NPPs, the effort for diagnosis and 

estimation of the state for equipment using the 

sensor signal data can be considered as improving 

the safety of NPPs. In addition, the SVR model is 

verified since the estimated cutter wear data can 

be compared with the actual wear data. 

For these reasons, the cutter wear data from PHM 

2010 data challenge were applied to the SVR 

model, and the detailed description on the data and 

application result are stated as follows. 

 

3.1 Composition of cutter wear data 

The signals applied in the SVR model of this study 

were obtained from the built-in sensors of 

accelerometer, dynamometer, and AE in a milling 

machine testbed. 

A total of 315 data files comprised of these types of 

real-time sensor signals were used to estimate the 

wear of three cutters. It is noted that the number of 

data files mean the amount of wear after each cut for 

six cutters. That is, each cutter made 315 cuts.  

 

Table 1 Sensor signals of a CNC milling machine 

No. of channels Signals 

1 Force in X 

2 Force in Y 

3 Force in Z 

4 Vibration in X 

5 Vibration in Y 

6 Vibration in Z 

7 Acoustic emission (AE) 

 

The built-in sensor signals of a milling machine are 

concretely divided into seven channels such as force 

and vibration in X, Y, and Z directions, and AE 

signals as indicated in Table 1. There are more than 

200,000 measured signals in every data file for each 

cutter. 

Additionally, the actual wear data are given for three 

cutters (first, fourth, and sixth cutters) among the 

every cutter, and accordingly these cutters was able 

to be compared with the estimated cutter wear. 

However, only the sensor signals on the rest of 

cutters (second, third, and fifth cutters) were 

provided for competition participants to compare 

with their estimation results. 

 

3.2 Data selection scheme for the SVR model 

Among more than 200,000 points in the data, RMS, 

standard deviation (STD), and peak values of the 
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points were used. This is to make the model track the 

trend of the cutter wear well. 

That is, since one of the main factors to show the 

optimal performance on fitting is the data, the 

subtractive clustering (SC)[3] technique was used to 

effectively train the SVR model by selecting the data, 

which are considered informative, as a cluster center. 
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15

 Clusters

 Cluster centers

x 2

x
1

 

Fig.7 Graphical description of SC technique. 

 

As expressed in Fig. 7, by calculating the potential 

of data points as a determining factor of instructive 

data, SC technique selects a data with the highest 

potential as a cluster center. 

The SC technique regards every data point as a 

cluster center and the amount potential of input data 

is defined as a function of Euclidean distances to all 

other data points as follows: 

 
2 24

1

1

( ) , 1,2, ,k i

N
x x

i

P k k N
 



  αre  (11) 

 

where rα indicates a radius that defines the proximity 

between the points. This radius has a considerable 

influence on the input data potentials. Thus, after the 

potentials of all points were calculated, the data point 

with the highest potential was selected as a first 

cluster center. Generally, the potential of a data point 

is high in case that there are many adjacent data 

points. 

Next cluster center was determined by defining the 

potential of a data point as well. However, 

considerable potentials were subtracted for each data 

point as a function of its distance from the pre-

selected cluster center. Eventually, the potential for 

data points positioned near the pre-selected cluster 

center considerably decreased. This is to unlikely to 

make the data points near the pre-selected cluster 

center a next cluster center. 

To find the data point with the highest revised 

potential as a next cluster center, the potentials of 

every data point are modified by the following 

function: 

 
2

* 24*

1( ) ( ) , 1,2, ,
k ix x

i i iP k P k P k N
 

   
βr

e     (12) 

 

where *

ix  indicates the point for the i-th cluster 

center and *

iP  is the corresponding potential value. 

Creating the cluster centers was repeated until the 

number of them is equal to the number of each data 

set, used to develop the estimation model of SVR. 

 

3.3 Estimation result 

To verify the proposed model to estimate the cutter 

wear of a milling machine using the chosen data, the 

data in this study were separated into the training 

data, the validation data, and the test data. This is an 

effort to prevent the SVR model from overfitting. 

The training data set and the validation data set, 

which is to optimize the SVR model, were directly 

related to the development of the model. The test 

data set had no effect on training and was used to 

independently provide a measure of performance 

after training. Additionally, the development data set 

consisted of the training and verification data as 

stated above. 

 

Table 2 Estimation performance of cutter wear using SVR 

Data type RMSE (%) No. of points 

Training 2.70E-05 833 

Verification 5.60E-05 94 

Test 3.59E-04 15 

Development 3.16E-05 833+94 

 

Table 2 shows the RMSE of the cutter wear 

estimation and the number of the used data assigned 

to the SVR model. The estimation performance of 

the cutter wear of a milling machine using the SVR 

model can be considered outstanding. 
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Fig.8 Estimation performance for cutter 1 using SVR. 
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Fig.9 Estimation performance for cutter 4 using SVR. 
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Fig.10 Estimation performance for cutter 6 using SVR. 

 

Furthermore, the estimation accuracy of the SVR 

model can be checked through Figs. 8-10 for the 

number 1, number 4, and number 6 cutters, 

respectively. A red line with ‘X’ symbol, which is an 

estimation line of a cutter wear, accurately catch up 

with a trend for an actual cutter wear of a black line.   

In addition, the actual cutter wear data as the target 

values were given for 3 flutes. Among them, the target 

wear was the wear data of the most damaged flute for 

each cut. 

 

4 Conclusions 

In an effort to apply a PHM technology to NPP 

industries, the study on estimation of the state of 

the equipment using the SVR technique, which is 

generally applied to various regression analyses, 

by sensor signals was carried out. 

However, since it is known that the actual fault 

data for NPPs and are hard to be obtained, the data 

provided from “2010 PHM data challenge” were 

used to the SVR model with the genetic algorithm. 

Although a cutter wear of a milling machine as the 

estimation target is not directly related to the NPPs, 

it can be considered as a rotating machine such as 

a turbine and a pump in a NPP. 

In addition, the SVR model can estimate a cutter 

wear and be verified since the data from sensor 

signals such as force, vibration, and AE, and the 

actual cutter wear data are given. RMSEs on every 

data set of the SVR model, have very low values. 

Consequently, the proposed SVR model of a 

machine learning technique can be a suitable 

model as an on-line monitoring (OLM) and a 

PHM technology to diagnose and prognose the 

state of the equipment using the sensor signals. 

Moreover, if the real data from NPPs are applied 

to the proposed model, it is expected that the 

present study will be helpful to increase the safety 

of NPPs. 
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