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Abstract: In order to easily and systematically understand the behaviors of the various industrial 
systems, various system modeling techniques have been developed. Especially, the importance of 
system modeling technique is more emphasized in recent years since modern industrial systems 
become enlarged and more complex. Multilevel flow modeling (MFM) is one of the qualitative 
modeling techniques for the representation and reasoning about knowledge of physical phenomena 
and systems which cannot be modelled quantitatively. MFM can be applied to the industrial systems 
without additional domain-specific assumptions or knowledge, and qualitative reasoning of event 
causes and consequences can be conducted with high speed and fidelity. However, current MFM has 
a limitation that it is not able to consider dynamic features of the target system since time-related 
concepts are not involved. In this paper, the concepts of time-to-detect (TTD) and time-to-effect 
(TTE) are adopted from system failure model; and the methodology for enhancing MFM-based 
reasoning with time-series data is suggested. In addition, empirical TTE distribution estimation 
methods based on Bayesian update and non-Bayesian distribution approximation methods are 
described. 
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1 Introduction 
In order to easily and systematically understand 
the behaviors of the various industrial systems, 
various system modeling techniques have been 
developed. Especially, the importance of system 
modeling technique is more emphasized in recent 
years since modern industrial systems become 
enlarged and more complex.  
If the system is well-understood for acquiring 
analytic solutions, quantitative modeling 
techniques based on concrete mathematical and 
physical backgrounds can be applied; and 
phenomena within such system can be analyzed 
with computational approaches. However, 
existing systems are not always well-understood 
enough for applying quantitative modeling 
techniques, even though they involve many 
assumptions and simplifications. In many cases, 
system’s internal causalities and correlations are 
known qualitatively rather than quantitatively, and 
sometimes qualitative analyses are more feasible 

than quantitative analyses due to practical reasons 
such as computation time problem. 
Multilevel flow modeling (MFM) is one of the 
qualitative modeling techniques for the 
representation and reasoning about knowledge of 
physical phenomena and systems which cannot be 
modelled quantitatively. It represents the system 
with several interconnected levels of means and 
part-whole abstractions, and the goals and 
functions with flows (of mass, energy, and 
information) and their interactions[1]. Based on 
these characteristics, MFM can be applied to the 
industrial systems without additional domain-
specific assumptions or knowledge, and 
qualitative reasoning of event causes and 
consequences can be conducted with high speed 
and fidelity. 
However, current MFM has a limitation that it is 
not able to consider dynamic features of the target 
system since time-related concepts are not 
involved. In this paper, the concepts of time-to-
detect (TTD) and time-to-effect (TTE) are 
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adopted from system failure model; and the 
methodology for enhancing MFM-based 
reasoning with time-series data is suggested. In 
addition, empirical TTE distribution estimation 
methods based on Bayesian update and non-
Bayesian distribution approximation methods are 
described. 
The organization of the rest of this paper is as 
follows. Section 2 briefly explains about the 
characteristics of MFM and system failure model. 
Section 3 addresses the methodology for enhanced 
MFM-based reasoning with time-series data. 
Section 4 includes discussions about several 
issues emerged throughout the study. Finally, 
section 5 presents concluding remarks and future 
work outlook. 
 
2 Preliminaries 
2.1 Characteristics of MFM 
MFM is a methodology for qualitative modeling 
of industrial processes, which represents the 
system’s hierarchical structure with means-end 
and part-whole abstractions; and represents the 
goals and functions of the system with mass, 
energy, and information flows and interactions 
between them. MFM models are simple, but they 
can include many fundamental features of the 
target system. Fig.1 represents the basic MFM 
symbols including function symbols and relation 
symbols. 
 

Fig.1 The basic MFM symbols[1] 
 

Since MFM is based on fundamental laws of 
energy conservation and mass conservation, the 
whole system can be accurately modeled, and the 
models are easy to understand. Moreover, these 
characteristics also enable users to conduct 
qualitative reasoning, which is the process to infer 
causes and consequences of observed 
phenomena[2]. 
Main features of MFM can be summarized as 
follows. 
 
(1) System representation with flows and 
interactions: MFM represents target system’s 
functions with elementary flow and corresponding 
control functions to form function structures. 
Accordingly, most of existing systems could be 
modeled easily and accurately without additional 
domain-specific assumptions or knowledge. 
(2) Qualitativeness: Since MFM is one of the 
qualitative modeling methodologies, system can 
be modeled without detailed quantitative relations 
and therefore easy to apply for most of systems. 
However, application of MFM would not suitable 
if quantitative modeling is available or required. 
(3) Model-based reasoning: Reasoning with MFM 
is based on pre-defined models. Once models are 
established, additional empirical data is not 
considered during reasoning processes unless 
models are revised. 
(4) Snap-shot evidences and results: Since current 
MFM does not involves the concept of time, it is 
not able to consider time-related issues and 
accordingly not able to consider dynamic features 
of the systems. During the cause reasoning, it is 
not available to aggregate serial observations and 
therefore it is needed to repeatedly conduct cause 
reasoning for every updated observation. During 
the consequence reasoning, it is able to infer that 
which event will ‘eventually’ happen, but not able 
to infer ‘when’ will it happen. 
 
Among these features, the last feature (4th) is 
regarded as one of the main drawbacks of MFM, 
since in many cases, time-related data is utilized 
for cause and consequence reasoning as valuable 
evidence. Order of the event occurrence or time-
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gap between the event occurrence can be regarded 
as the crucial evidences for reasoning. 
If MFM becomes capable to consider dynamic 
features, it is expected that more delicate cause 
reasoning would be possible since time-related 
data can be considered as new evidence, and more 
detailed consequence reasoning would be possible 
including the information about when the ‘event-
in-interest’ happens. 
 
2.2 System failure model 
System failure model (tentative name) was 
suggested as one of the core concept of functional 
fault analysis (FFA). FFA is a systematic design 
methodology which for the integration of system 
health management (SHM) concept to the early 
design stage of complex systems such as 
spaceships, based on high-level functional model 
of the system that captures the physical 
architecture[3].   
Among the various concepts of FFA, system 
failure model was established in order to consider 
the propagation of the effects of various failure 
modes and the timing by which fault effects 
propagate along the modeled physical paths.  
Accordingly, system failure model involves 
various timing definitions. These timing 
definitions are represented in Fig.2. 
 

Fig.2 Schematic of system failure model and its timing 
definitions[3] 

 
However, system failure model was established 
specifically for the spaceship cases, and therefore 
minor modification on the model should be 
applied in order to grant generality. The modified 
system failure model for general industrial 

systems is represented in Fig.3, and corresponding 
timing definitions are as follows. 
 
(1) Time-to-effect (TTE): The time from the 
‘onset of failure’ to the point when its effects are 
potentially detectable. 
(2) Time-to-detect (TTD): The time from the 
‘onset of failure’ to the confirmation of the fault 
existence. 
(3) Time-to-diagnosis: The time from the ‘onset of 
failure’ to the identification of the fault (e.g. fault 
location, fault type, etc.). 
(4) Time-to-mitigation: The time from the ‘onset 
of failure’ to the complete prevention of the 
critical system failure. 
(5) Time-to-criticality: The time from the ‘onset of 
failure’ to the critical system failure. 
 

Fig.3 Schematic of modified system failure model and its 
timing definitions 

 
3 Application of TTD and TTE 

Concepts to MFM 
The concepts introduced in modified system 
failure model were applied to MFM in order to 
make MFM to be capable of time-related issues. 
In this section, the processes for the application 
are addressed. 
 
3.1 Modified definitions of TTD and TTE in MFM’s 
perspective 
MFM based reasoning is conducted for the cases 
when one or more functions are not-in-normal 
states, which include failed states. Therefore, it is 
needed to re-define the timing definitions from 
modified system failure model in MFM’s 
perspective in order to adopt such concepts to the 
MFM. 
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Among various timing definitions, only TTE and 
TTD are relevant to the MFM. The other timing 
definitions are neglected since they are related to 
the processes of diagnosis and mitigation of 
failure, which are out of MFM’s scope.  
Let’s consider that there is a simple system with 
only two interconnected functions (function A and 
function B; function A affects function B), and 
corresponding instrumentation systems 
(instrumentation system A and instrumentation 
system B). This system can be represented as 
Fig.4. MFM usually do not represent 
instrumentation systems but they are shown for 
better understanding. 
 

Fig.4 Diagram for simple two-function system 
 
If function A’s state is measured, TTD for function 
A can be re-defined as; the time from the ‘actual 
state alteration of function A’ to the point when 
‘detection of state alteration of function A’. 
Similarly, TTE between function A and function B 
can be re-defined as; the time from the ‘actual 
state alteration of function A’ to the point when it 
induces ‘actual state alteration of function B’. 
Here, the word ‘actual’ is used in order to 
discriminate the detection of state alterations from 
the real state alterations. 
These concepts could be applied to any MFM 
models since every function node in MFM model 
with corresponding instrumentations would have 
its own TTDs and every influence relation 
between function nodes in MFM model would 
have its own TTEs. 
 
3.2 Estimation of TTDs and TTEs 
In section 3.1, TTD and TTE concepts are adopted 
and defined in MFM’s perspective, and these 

concepts can be applied to general MFM models 
without difficulties. However, it lays another 
practical question; how to estimate TTDs and 
TTEs? 
In case of TTDs, most of the instrumentation 
systems are both theoretically and empirically 
well-defined, and that kind of instrumentation 
systems would be applied to the real-world 
systems. Therefore, issues related to the 
estimation of TTDs are not considered in this 
paper. 
However, estimation of TTEs are expected to be 
much harder than that of TTDs because of several 
reasons. 
 
(1) If the system is well-understood for solving 
differential equations, TTEs could be estimated 
analytically. However, MFM would not be applied 
to such system.  
(2) In most cases, multiple functions are serially 
connected while instrumentation systems do not. 
This imposes complexity of analysis. 
(3) There are many kinds of factors that affect TTE, 
including state thresholds, input conditions, and 
causes of single function’s state alterations. 
Accordingly, it is hard to generalize TTEs. 
 
With considering these difficulties, empirical TTE 
estimation methods are addressed. Specifically, in 
section 3.2.1, method for empirical estimation of 
TTEs based on Bayesian update is presented, and 
in section 3.2.2, method based on non-Bayesian 
probability distribution approximation is 
presented. These two methods have difference 
whether it defines the form of prior and posterior 
distributions or not. 
 
3.2.1 Estimation of TTEs based on Bayesian update 
Bayesian update, also widely known as Bayesian 
inference is one of the methods of statistical 
inference which can be used to update the 
probability for a hypothesis based on newly obtained 
evidences. With its concrete mathematical 
background, namely Bayes’ theorem, Bayesian 
update has been served as useful and reliable method 
for approximating true distribution of population 
from the sample.  
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Equation for the Bayesian update can be represented 
as follows. 
 

( | )( | ) ( )
( )

P DataP Data P
P Data

θθ θ= ⋅           (1) 

 
If the hypothesis is represented as probability 
distribution, it is needed to define the form of prior 
and posterior distribution. If the event propagation 
from function A to function B is observed for k times, 
TTE distribution can be obtained through k times of 
update.  
Bayesian updating processes are highly affected by 
the forms of prior and posterior distributions. Beta 
distribution is one of the widely used as prior and 
posterior distributions since it can represent many 
other kinds of distributions approximately.  
However, not only beta distribution but also many 
other kinds of commonly used distributions are not 
suitable for representing multimodal distributions 
(distributions with multiple peaks). Accordingly, 
although multimodal distributions frequently 
emerge in real-world data, it is hard to consider 
multimodal distributions with Bayesian update. 
Many studies have been conducted to solve multi-
modality problem in Bayesian update, but it is still 
on-going and not perfectly solved[8][9].  
 
3.2.2 Estimation of TTEs based on non-Bayesian 
probability distribution approximation 
As mentioned, commonly used distributions are not 
suitable for representing multimodal distributions 
since it is hard to represent various multimodal 
distributions in general formula. Instead, most of 
multimodal distributions are expressed as linear 
combinations of multiple unimodal distributions, 
and it makes Bayesian update hard to consider 
multimodal distributions. 
Alternatively, studies on non-Bayesian approaches 
for approximation of multimodal distributions have 
been actively conducted, which do not require 
definitions on the forms of prior and posterior 
distributions[4-7]. Although these studies are still on-
going and none of them guarantee that they could be 
applied well for any type of multimodal distribution, 

many non-Bayesian probability distribution 
approximation methods are more capable for 
multimodal distributions than Bayesian update.  
If the event propagation from function A to function 
B is observed for k times, TTE distribution can be 
obtained simply through merging all evidences and 
applying approximation algorithm.  
However, in order to apply non-Bayesian probability 
distribution approximation algorithms, relatively 
large number of observation is needed since there is 
no prior information about the form of distribution.  
 
3.3 Probabilistic reasoning based on TTD and TTE 
distributions 
If TTD and TTE distributions are sufficiently 
estimated, it is able to conduct more detailed cause 
and consequence reasoning than conventional 
MFM. This section describes how advanced 
probabilistic reasoning can be conducted based on 
estimated TTD and TTE distributions. 
In order to conduct reasoning processes based on 
TTD and TTE distributions, it is needed to 
consider the summation of two or more TTD and 
TTE distributions. If it is assumed that 
distributions are independent to each other, this 
problem can be regarded as the summation of 
distributions of independent random variables, 
which is solvable through convolution. 
The probability distribution of the sum of two or 
more independent random variables can be 
calculated by applying convolution operator to 
their individual distributions. For the continuously 
distributed random variables with probability 
density functions f and g, general formula for the 
distribution of the sum Z=X+Y is as follows. 
 

( ) ( )( ) ( ) ( )h z f g z f z t g t dt
∞

−∞

= ∗ = −∫      (2) 
 
In section 3.3.1 and 3.3.2, probabilistic cause and 
consequence reasoning based on estimated TTD 
and TTE distributions are described.  
 
3.3.1 Probabilistic cause reasoning 
To simplify the problem, let’s assume that there 
are two event paths (cause suspects) which can 
affect both function A and function B. Since two 
event paths involve different functions, their TTD 
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and TTE profiles would also be different. In this 
case, distribution of the time-gap between 
‘detection of function A’s state alteration’ and 
‘detection of function B’s state alteration’ can be 
obtained for each event path through series of 
convolution operations. 
After the time-gap distribution for each event path 
is obtained and actual time-gap is observed, it is 
able to calculate the probabilities of event 
occurrence due to event path 1 and event path 2. If 
we denote the actual time-gap as tm and time-gap 
distribution for event path 1 and event path 2 as 
pd1 and pd2 respectively, probabilities of event 
occurrence due to event path 1 (P1) and event path 
2 (P2) can be calculated as follows. 
 

1
1

1 2

( )( )
( ) ( )

m
m

m m

pd tP t t
pd t pd t

= =
+

            (3) 

2
2

1 2

( )( )
( ) ( )

m
m

m m

pd tP t t
pd t pd t

= =
+

            (4) 

 
Upper equation can be generalized for multiple 
(larger than two) event path cases. If there are n 
possible event paths, probability of event 
occurrence due to event path x (Px) can be 
calculated as follows. 
 

1

( )( )
( )

x m
x m n

k m
k

pd tP t t
pd t

=

= =

∑
                  (5) 

 
3.3.2 Probabilistic consequence reasoning 
To simplify the problem, let’s assume that 
function A’s state alteration is observed and it can 
induce function B’s state alteration. If TTD 
distributions for function A and function B are 
well-defined, and TTE distributions between 
function A and function B are well-defined, time-
gap distribution between ‘detection of function 
A’s state alteration’ and ‘detection of function B’s 
state alteration’ can be easily calculated through 
series of convolution operations. Calculated time-
gap distribution itself implies when function B’s 
state alteration will be detected, which is an 
advanced consequence reasoning.  

If new observation about specific function’s state 
alteration between function A and function B 
become available, time of function B’s state 
alteration detection can be predicted with reduced 
uncertainty.    
 
4 Discussion 
In this section, several issues emerged throughout 
the study are discussed.  
 
4.1 Dilemma of MFM improvement 
MFM’s main characteristics such as simplicity 
and qualitativeness can be regarded as both 
advantages and disadvantages. In the perspective 
of applicability, these are definitely advantages. 
However, at the same time, they are disadvantages 
in the perspective of precision. This is why 
simplicity and qualitativeness of MFM are 
regarded as characteristics rather than advantages 
or disadvantages. 
Thus, improvement of MFM should be conducted 
with no-harm to MFM’s own characteristics. 
However, this is a dilemma since both advantages 
and disadvantages are based on same 
characteristics, meaning that eliminating the 
disadvantages could induce elimination of 
advantages.  
MFM can abstract various systems into the 
general flows of mass and energy, but not 
including the physical properties of them. 
Therefore, in order to quantify MFM, it is needed 
to implement domain specific information, which 
may harm the baseline characteristics of MFM. 
Alternatively, in order to quantify MFM with 
avoiding serious harm to its own characteristics, 
the only variable which can be applied equally to 
every system was quantified in this study, namely 
time.  
   
4.2 Empirical TTE estimation 
Since quantitative calculations based on system’s 
specific characteristics are not available, empirical 
methods including Bayesian and non-Bayesian 
approaches for TTE distribution estimation were 
considered in this study. By selecting empirical 
approaches, it is able to estimate TTE distributions 
based on observed data and accordingly not 
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seriously harm MFM’s simplicity and 
qualitativeness. 
Unfortunately, estimation of TTE distributions 
based on Bayesian update is highly dependent to 
prior and posterior probability distribution models. 
It is an undoubtedly effective tool for hypothesis 
verification, but this high dependency leads to its 
lack of capabilities on multimodal distributions. 
Estimation of TTE distributions based on non-
Bayesian probability distribution approximation 
methods could solve the multi-modality problems, 
but requires more data for reliable analysis. It 
would be a serious obstacle for real-world 
applications of MFM. 
However, it is not necessary to choose only one 
approach for TTE distribution estimation. Mixed 
approach can be considered which applies 
Bayesian update when the amount of data is small, 
and applies another method when the data is 
sufficiently collected. Alternatively, if it is 
expected that the target TTE distribution is 
unimodal, continuous application of Bayesian 
update can be considered. 
As empirical approaches are inevitably highly 
dependent to observed or measured data and its 
uncertainty, quality of the collected data should be 
sufficiently high, and its uncertainty should be 
defined precisely. 
 
4.3 Relation between TTEs and event modes 
Previously mentioned probabilistic cause 
reasoning reveals which event path (including 
multiple functions) was induced observed 
phenomena with probabilities. In the other word, 
the resolutions of reasoning processes are the 
single function, implies that it is not able to know 
why abnormality happens to initial function. 
However, if following assumptions are valid, it 
would be able to conduct more detailed 
probabilistic cause reasoning, which reveals why 
initial function’s abnormality happens (i.e. event 
mode).  
 
(1) TTE distributions for specific event modes are 
unimodal.  

(2) TTE distributions for specific event modes 
have distinctive peaks to each other (i.e. 
sufficiently separable). 
(3) For each event mode, the probability of 
occurrence is sufficiently high to observe. 
 
If these assumptions are valid, specific function’s 
whole TTE distribution would be a multimodal 
distribution which can be decomposed into 
multiple unimodal distributions clearly, and then 
it would be able to infer which event mode 
induced abnormality for that function from the 
observed TTE, similar to the mentioned 
probabilistic cause reasoning process. 
However, not only validities of the assumptions 
should be checked but also relation between TTE 
and event modes should be revealed through 
additional analyses. Moreover, it is needed to 
consider the possibilities of having different TTEs 
for different input conditions (for same event 
mode) or having similar TTEs for different failure 
modes. 
Since this issue is beyond the scope, it will be not 
addressed in detail. Additional works on this issue 
should be conducted as future work.  
 
5 Conclusion 
In this paper, concepts of TTD and TTE were 
adopted from the modified system failure model 
in order to grant the capability for dynamic 
features to MFM. Additionally, empirical methods 
for actual TTD and TTE distribution estimation 
and advanced probabilistic reasoning based on 
estimated TTD and TTE distributions were 
introduced.  
Regarding empirical TTE distribution estimation, 
both Bayesian update and non-Bayesian 
probability distribution approximation methods 
have their own advantages and disadvantages. 
Bayesian update is data-efficient, but has 
limitation on considering multimodal distributions. 
Non-Bayesian methods can solve multi-modality 
problems, but relatively data-inefficient. It would 
be better to consider mixed approach in order to 
emphasize each method’s advantages and offset 
each other’s disadvantages. 
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Studies on multimodal distribution approximation 
and decomposition methods have been conducted, 
but none of them guarantee that they could be 
applied well for any type of multimodal 
distribution. Also for Bayesian update, studies to 
solve multi-modality problem are still on-going. 
Since mathematical and computational 
backgrounds of proposed methods are not perfect 
for practical applications but greatly affect the 
quality of TTE distribution estimation, it is needed 
to continuously check the related researches for 
the application of suggested concepts to MFM.  
It is expected that MFM’s applicability to various 
systems could be enhanced with the contents of 
this study, since more evidences become available 
while conducting reasoning processes compare to 
the conventional MFM. Especially, this kind of 
enhancement would be more emphasized for the 
systems with sparse instrumentation systems.  
As future works, it is needed to conduct case 
studies for the examination of practical 
applicability of suggested concepts and methods, 
and continuous monitoring on underlying 
algorithms should be conducted. Additionally, it 
would be meaningful to conduct studies on more 
detailed probabilistic cause reasoning for single 
function’s event modes.  
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