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Abstract: The safe operation of nuclear power plants (NPPs) is a common goal for all nuclear 

industries. NPPs sometimes face with tiny events or rarely encounter accidents which are more 

severe than events. But events and accidents will not largely spread by well-activating safety systems 

and by correctly diagnosing and controlling the plants by the operators. Nevertheless, accidents 

including severe accidents have occurred only once in a while which caused by combining problems 

of human errors, natural disaster, failure of systems, etc. Therefore, the researches of preventing and 

mitigating those accidents have to keep going on future.  

In this paper, we focused on diagnosing the initiating events or accidents in order to help main 

control room (MCR) operators and technical support center (TSC) members. In addition, we 

considered not only diagnosing the initiating events or accident but also giving the information about 

malfunctioning instrumentations in real time by comparing signal trends of each instrumentation to 

MCR operators and TSC members. We designed the recurrent neural network (RNN)-based plant 

diagnosis system for giving information to MCR operators and TSC members and also we conducted 

the case study to verify the suggested system. Moreover, we compared the suggested RNN-based 

system with traditional rule-based expert system. 
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1 Introduction 

The safe operation of NPPs is a common goal for 

all nuclear industries[1]. Many research areas 

including not only nuclear engineering but also 

mechanical engineering, electrical engineering, 

physics, etc. have been studied to make NPPs safe. 

Nevertheless, lots of events and small accidents 

have occurred consistently since NPPs were 

started to generate the electricity. Moreover, 

severe accidents have occurred three times in the 

history even though NPPs have been safely 

constructed, cautiously maintained, and securely 

operated. Hence events and accidents may occur 

inevitably from small events to severe accidents. 

Operators follow abnormal operating procedure 

(AOP) or emergency operating procedure (EOP) 

respectively depending on the situation. But if 

EOP couldn’t prevent and mitigate the accident, 

the core may be damaged. From that time, the 

responsibility is shifted from EOP to severe 

accident management guideline (SAMG). 

Decision-making procedure is necessarily 

required at this time to establish strategies step by 

step because SAMG doesn’t give the accurately 

correct answer to mitigate the core like EOP. 

Because of the weakness of SAMG, several 

approaches have been studied. JH Moon and CS 

Kang (1999) suggested fuzzy based decision 

making support system[2]. Not only the fuzzy 

based system but also expert systems such as 

SAMOS (Vayssier et al., 2003), ADAM (Zavisca 

et al., 2002), SAMEX (KAERI, 2010) have been 

suggested to support the operators to mitigate the 

severe accident[3]. These are quite good systems 

but they are rule-based system. They also have 

strong points to mitigate the accident by following 

rules but accident scenario designers have to input 

all accident sequences and each symptom directly 

into their database. It is impossible to cover the 

infinite scenarios and to put the all scenarios 

because all severe accidents are beyond design 

based accident. 

Decision making support systems which are also 

called accident management support tools 
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(AMSTs) are composed of three steps: tracker, 

predictor, and decision making support[4]. In this 

paper, we focused on the tracker step which main 

tasks are discerning the accident initiators, 

speculating size of postulated breaks, detecting 

the location of postulated breaks and failures, etc. 

If we want to bisect accident’s sequence in NPPs, 

the first step is to prevent core damage and the 

next step is to mitigate the accident sequence. 

Researches about event identification, fault 

detection, plant diagnosis, etc. are closer to the 

preventive step. These researches have been 

conducted from early 90s but they have been 

focused on the accident of the transient progress. 

Diagnosing plant status, detecting initiating event, 

etc. may be more important in the prevention 

domain but this process is also needed in the 

mitigation domain. According to Man Gyun Na, it 

is important for operators and technical staffs to 

find out what an initiating event of a severe 

accident is by observing initial short time trends 

of major parameters in order to effectively 

accomplish severe accident management 

strategies[5]. And since plant operators are 

provided with only partial information so it is very 

difficult for operators and TSC members to predict 

the progression of the events by staring at 

temporal trends of some parameters on large 

display panels in the MCR and TSC[5]. In addition, 

potential wrong diagnosis of the initial accident in 

preventive domain can be possible[6]. 

Not only diagnosing initiating event but also 

recognizing the state of each instrumentation is 

also important. If the accident caused by extreme 

hazard occurs, it will arise multiple hardware 

failures that can affect equipment to 

malfunctioning[7]. Therefore, providing the 

information about state of each instrumentation 

for operators and TSC members is also very 

helpful to mitigate the accident in the extreme 

situation. 

In this paper, we are going to discuss about RNN-

based plant diagnosis system for extreme 

conditions. First, we will deal with RNN in detail. 

Next, we will do the case study with constructed 

RNN based model and we will compare between 

a developed RNN-based system and traditional 

expert-based systems for diagnosis plant status. 

 

2 Comparing rule-based system with 

neural network-based system 

2.1 Neural network 

Neural network was firstly introduced by Warren 

McCulloch and Walter Pitts in 1943[8]. After that 

suggestion, lots of neural network related researches 

were conducted for several decades. However, 

neural network related researches have critical 

problems they cannot have been demonstrated 

because the lowness of computer performance and 

the lack of data. So neural network related researches 

just have been laid the theoretical study. After early 

2010, these researches began to study vibrantly 

because of the improving of the computer GPU 

performance and generating tremendous data called 

big data. 

The simple structure of three layers neural network 

is represented in figure 1. Neural network is 

composed of input layers, hidden layers and output 

layers. Each layer is connected with edge 

respectively. Neural network can find the optimal 

output through iterating of feedforward networks 

and backpropagation. All edges have their own 

weights respectively. The weight of each edge is 

calculated by applying its activation function to a 

weighted sum of the values of its input nodes. 

  
Fig. 1 A structure of three layers neural network. 

 

Then, this neural network shows calculated value 

through output nodes. This process is called 

feedforward networks. Backpropagation is the 
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process of updating the weights on each edge 

respectively. It uses the chain rule to calculate the 

derivative of the loss function with respect to each 

parameter in the network. The weights are then 

adjusted by gradient descent.  

There are lots of gradient descent methods for error 

backpropagation to minimize a loss function such as 

stochastic gradient descent, momentum, adaptive 

gradient, and adaptive gradient, etc. Anyway, the 

main purpose of feed forward neural network is to 

calculate with some functions using input data and 

find the output value through hidden layer. And the 

purpose of the backpropagation is to update the 

weights of each edge in order to make more precisely. 

 

2.2 Recurrent neural network 

In a conventional neural network that all inputs 

and outputs are independent of each other. But 

some tasks, sequential information, are not 

appropriate for training with conventional neural 

network. However, RNNs can be useful for 

dealing with sequential information. They 

perform the same task for every element of a 

sequence, with the output being depended on the 

previous computations. They have a ‘memory’ 

which captures information about what has been 

calculated so far. 

However, conventional RNNs have a critical 

problem which is a vanishing gradient problem. It is 

a difficulty found in training neural networks with 

gradient-based methods and backpropagation. As it 

was explained in section 2.1, each of the edge weight 

receives an update proportional to the gradient of the 

error function with respect to the current weight in 

each iteration of training. It has the effect of 

multiplying n of these small numbers to compute 

gradients. So the gradient decreases exponentially 

with number of itneration while the front layers’ train 

very slowly. 

To overcome the problem of vanishing gradients, 

Long Short-Term Memory (LSTM) was 

introduced by Hochreiter and Schmidhuber in 

1997[9]. The LSTM model resembles a standard 

RNN with a hidden layer, but each node in the 

hidden layer is replaced by a memory cell. Each 

cell (ht ) takes as input the previous state ht−1 

and current 𝑥t. These cells internally decide what 

to keep in or what to erase from memory. Then 

they combine the previous state, the current 

memory, and the input. 

 

2.3 Comparing expert system with neural network 

based system 

Several researches about AMSTs have been 

studied and developed. As I explained in 

introduction part, AMST is composed of tracker, 

predictor, and decision making support. Current 

AMST tracker is a conventional rule-based expert 

system. They are based on the premise that expert 

knowledge can be encapsulated in a set of ‘If-

Then’ type rule. However, adapting these 

conventional rule-based expert systems to tracker 

of AMSTs may lead some troubles when the real 

accidents occur because they have some 

limitations.  

First, people cannot predict all possible accident 

scenarios. Expert systems can only help to MCR 

operators and TSC members in the special 

situation when the saved accident scenario 

matches up with the real occurred accident. If the 

apposite accident scenario was not saved in the 

expert system database, then this AMST would be 

a useless thing. Therefore, if these are made with 

sophisticated systems based on tremendous 

database not saved whole scenarios, expert system 

may not help having limitations. In addition, 

predicting the whole BDBA scenarios and then 

storing these scenarios to the database of expert 

system is unreasonable.  

Second, I&C systems may fail to operate by the 

impulse caused by the accident. Current AMST 

tracker cannot help highly depending on the 

integrity of sensors of instrumentations because 

they are rule-based expert system. If extreme 

hazard like Tsunami in Fukushima plant can break 

the sensors and shuts off the information from 

sensors, then current AMST’s tracker would not 

notice and provide the correct prospective 

Fig. 2 A simple structure of RNN. 
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directions to operators and TSC members and so 

these tools would not reassure people on that 

extreme situation. Accidents have infinite accident 

scenarios and some of them may lead operators 

and TSC members to panic. Rule-based expert 

systems have limits to help them to manage the 

unexpected accident sequences. 

However, neural network-based systems are very 

flexible. These systems make decisions by using a 

set of mathmatical process rather than searching 

related rule. So they are more rapid and precise 

than previous system[10]. Moreover, neural 

network-based systems are tolerance to noise, 

dynamical adjustment of changes in the 

environment, ability to generalize, and ability to 

discover new relations between variables may be 

significant benefits[10]. Expecially, accidents 

including extreme hazard may incur the 

detriments of instrumentations. As I explained 

before, if the input data to AMSTs’ tracker from 

the instrumentation were wrong, the output of the 

rule-based expert system would lead operators and 

TSC members wrong way even though these 

systems have been perfectly designed. However, 

neural-network based systems have robustness of 

thes tolerances so we expect these systems can 

operate well even in the extreme situation. 

 

3 Case study 

3.1 Model construction 

The event identification system has been 

constructed with the neural network based model. 

Among of the neural network, we selected RNN 

and we selected LSTM model among the RNN. 

The reason why we selected LSTM-RNN model 

among the whole neural network models is our 

simulation data is sequential data. The accident 

sequences in NPPs always follow time-sequential 

process. RNN model which can show splendid 

performance for sequential data and has been used 

for stock market, weather forecasting, natural 

language processing was chosen for this research. 

Surely, there are lots of architectures of RNN 

models such as simple recurrent model, echo state 

model, Bi-directional RNN, LSTM, etc. Each 

architecture has advantages and disadvantages 

respectively. Especially, the major advantage of 

LSTM architecture has no vanishing gradient 

problem which is the very splendid trait for 

iterating the feedforward network and 

backpropagation. Therefore, we selected the 

LSTM architecture through the whole RNN model. 

We gained input data from the compact nuclear 

simulator (CNS). The simulator uses reference 

plants as Westinghouse pressurized water reactor 

(PWR). The plant modeled in the CNS is a three 

loop Westinghouse PWR. The primary system and 

the primary side of steam generators are described 

using advanced SMABRE code with two phases 

capability. We can gain several hundred of 

measured instrumentation parameters from the 

CNS. We also take more than hundreds of 

initiating events by the CNS. In this lab-scale 

case-study, we used a hundred instrumentation 

parameters and five initiating events including 

normal operating condition. The instrumentation 

parameters are composed of binary parameters 

expressed only 0 (closed) or 1(open) such as 

valve’s state and numerate parameters expressed 

continuous number such as pressurizer pressure, 

steam generator level, reactor average temperature, 

etc. 

So, this RNN based plant diagnosis system is 

composed of one hundred inputs which are 

instrumentation parameters and used LSTM 

double layer model with one thousands of hidden 

nodes per each layer. This model is described in 

figure 3. The reason why we designed LSTM-

RNN double layer model and used one thousands 

of hidden nodes in each layer is that model was 

showed the highest performance through the trial 

and error approach. Trial and error approach is an 

Fig. 3 A structure of the constructed model. 
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almost unique method to make the proper model 

because neural network has a non-convex 

optimization problem. Finding the global 

minimum is quite difficult in non-convex 

optimization as you can see in figure 4. 

 

3.2 Results comparing rule-based expert system and 

RNN-based system 

As I explained in the previous section, we were 

supposed to deal with a normal operating scenario 

and four accident scenarios – ‘normal sequence’, 

‘drop of all control rods in CBA’, ‘Rod bank 

uncontrolled in’, ‘pressurize (PRZ) PORV stuck 

open’, and ‘PRZ spray valve open, ‘fails to close 

or jammed shut’. The form of each scenario is 

time-series sequential data which express 

parameters measured by instrumentations. And we 

assumed that the ‘PRZ PORV stuck open’, one of 

the five scenarios, occurred in this case study. 

 

3.2.1 Traditional rule-based plant diagnosis system 

Rule-based expert system has to follow the rule. 

Therefore, making rules are necessary to operate 

this system. We brought the CNS procedure firstly 

to make rules which interprets symptoms of each 

accident scenario, and checked relevant sequences 

of our five scenarios. We checked the critical 

instrumentations which can classify those five 

scenarios. Critical instrumentations are backup 

heater, PRZ level, PRZ pressure, etc. Second, we 

decided the probability of each accident can 

happen and so the probability was assumed 0.0001 

of each scenario. Third, sensor-error probabilities 

are also assumed to 0.0001 for fail-high and fail-

low and 0.0008 for stuck at steady. Last, we took 

the Bayes’ rule to calculate the probability that this 

rule-based expert system has to follow up. 

Summarizing rules of a rule-based expert system: 

Rule 1. Four accident scenarios and one normal 

operation scenario can happen. 

Rule 2. The probability of occurring each accident 

scenario is 0.01%. 

Rule 3. The probability of each sensor error is 0.01% 

(for fail-high, fail low) 

Rule 4. The probability of each sensor error is 0.08% 

(for stuck at steady) 

Rule 5. The calculation has to be followed by 

Bayes’ rule. 

The result is represented in Table 1. If we assumed 

that PRZ PORV stuck open accident happened, 

then traditional rule-based expert system can  

Table 1 Result of rule-based plant diagnosis system 

Symptoms 
Normal 

scenario 

Drop of all control 

rods in CBA 

Rod bank 

uncontrolled in 

PRZ PORV 

stuck open 

PRZ spray valve 

open, fails to close 

or jammed shut 

Initial condition   9.9960E-01 1.0000E-04 1.0000E-04 1.0000E-04 1.0000E-04 

Rx trip sign on 2.5009E-01 2.4997E-01 2.4997E-01 2.4997E-01 2.4997E-01 

Turbine trip on 3.5732E-02 3.2142E-01 3.2142E-01 3.2142E-01 3.2142E-01 

Backup heater on 3.7089E-06 3.3333E-01 3.3333E-01 3.3333E-01 3.3333E-01 

PRZ level decrease 3.7122E-10 3.3333E-01 3.3333E-01 3.3333E-01 3.3363E-05 

PRZ level increase 1.1145E-13 1.0007E-04 1.0007E-04 9.9980E-01 1.0007E-04 

PRZ pressure 

decrease 
1.1155E-17 1.0007E-04 1.0007E-04 9.9980E-01 1.0007E-04 

PRT temperature 

increase 
1.1167E-21 1.0018E-08 1.0018E-08 1.0000E+00 1.0018E-08 

Fig. 4 An example graph of non-convex 

optimization. 
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detect the correct accident through the fixed rules. 

This rule based system can alert to MCR operators 

and TSC members that PRZ PORV stuck open 

accident happened with 100%.   

However, we cannot be assured all instrumentations 

can normally operate if the accident occurred. 

Therefore, it is needed to check if one or more 

instrumentations were failed caused by the accident, 

how the calculated result would be changed. In this 

case, we intentionally broke the instrumentation of 

measuring of PRT temperature which was increased 

in real but indicated steady to operators because of 

malfunctioning. Then, the probability of detecting 

that accident reduced from 100% to 72.71% in the 

Table 2. It means rule-based expert system has to be 

affected the condition of the instrumentations. If 

accidents make several critical instrumentations 

malfunctioning, then correct diagnosis of the 

accident may be impossible by the rule-based plant 

diagnosis system. 

 

3.2.2 RNN-based plant diagnosis system 

The RNN-based plant diagnosis system doesn’t need 

to have any rules. Designer just makes up the 

algorithm and sets up the architecture. Then 

computer keeps self-learning by iterating 

feedforward network and backpropagation to 

optimize given works what designer delineated. The 

architecture what we used in this case study is double 

layer LSTM-RNN model as it was described 

previous part. And we trained this RNN-based model 

with the CNS time-sequential data. 

We also assumed PRZ PORV stuck open accident 

scenario occurred the same as previous rule-based 

system assumed. Before the training the model, the 

system couldn’t classify the all accidents when we 

put each accident. However, after self-training by 

using designed algorithm, the system can classify all 

accident scenarios with high confident level. The 

predictive probability of occurring of PRZ PORV 

stuck open accident of RNN-based system is 99.58%. 

Surely, the probability of occurring the same 

accident as 100% which rule-based system showed 

is higher than the RNN-based system did. But the 

result of the RNN-based system, 99.58%, is also said 

quite accurate system. 

We also checked the situation of malfunctioning PRT 

temperature instrumentation which we did using 

rule-based system. We were supposed to the effect of 

malfunctioning instrumentations in the RNN-based 

system is lower than in the rule-based system 

because the trait of neural network. When the 

measuring PRT temperature instrumentation was 

failed, the probability was also the same as 99.58%. 

We cannot believe the result of changing nothing. 

Therefore, we made one more instrumentation which 

is measuring PRZ pressure malfunctioning. Then the 

system provided the probability to us that the system 

speculated accident sequence is also PRZ PORV 

open accident as 88.03%. The probability was 

decreased when two instrumentations were 

malfunctioning but it could detect the correct 

accident scenario. In summarizing, the result was not 

changed when one instrumentation was 

malfunctioning and slightly decreased when two 

Table 2 Result of rule-based plant diagnosis system with malfunctioning of instrumentation for PRT temperature 

Symptoms 
Normal 

scenario 

Drop of all control 

rods in CBA 

Rod bank 

uncontrolled in 

PRZ PORV 

stuck open 

PRZ spray valve 

open, fails to close 

or jammed shut 

Initial condition   9.9960E-01 1.0000E-04 1.0000E-04 1.0000E-04 1.0000E-04 

Rx trip sign on 2.5009E-01 2.4997E-01 2.4997E-01 2.4997E-01 2.4997E-01 

Turbine trip on 3.5732E-02 3.2142E-01 3.2142E-01 3.2142E-01 3.2142E-01 

Backup heater on 3.7089E-06 3.3333E-01 3.3333E-01 3.3333E-01 3.3333E-01 

PRZ level decrease 3.7122E-10 3.3333E-01 3.3333E-01 3.3333E-01 3.3363E-05 

PRZ level increase 1.1145E-13 1.0007E-04 1.0007E-04 9.9980E-01 1.0007E-04 

PRZ pressure 

decrease 
1.1155E-17 1.0007E-04 1.0007E-04 9.9980E-01 1.0007E-04 

PRT temperature 

steady 
1.0138E-14 9.0955E-02 9.0955E-02 7.2713E-01 9.0955E-02 
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instrumentations were concurrently malfunctioning.   

It shows that this constructed system has higher 

robustness of the sensor failures than traditional rule-

based systems. 

Not only identifying and classifying the initiating 

accidents but also detecting the failed sensors can be 

possible for this RNN-based plant diagnosis system. 

Detecting failed sensor and providing that 

information to MCR operators and TSC members 

are helpful and necessary to diagnose the plant state 

and mitigate the accident. If unknown accident 

occurs, this system analyses and classifies the 

correct accident scenarios by comparing the changes 

of the trend which provided each instrumentation. 

After diagnosing the proper accident, comparing 

each trend of parameter provided by each sensor and 

stored in the database can be possible. If the sensor 

provided trend of each instrumentation are not as 

similar as expected stored trend in the scenario, this 

system shows and alerts to MCR operators and TSC 

members that sensor might be failed. Then MCR 

operators and TSC members can perceive the 

possibility of sensor failure.  

In summary, RNN-based plant diagnosis system 

showed better performance than traditional rule-

based system. It has high robustness of sensor 

malfunctioning so it can more properly operate in the 

extreme situation caused by accidents. In addition, 

this system can provide instrumentations’ condition 

which are well-functioning or malfunctioning to the 

MCR operators and TSC members. Knowing each 

instrumentation’s condition is important and very 

useful to mitigate the accident, especially for SAMG 

domain.  

 

4 Conclusion  

Lots of researches have been conducted for 

making NPPs safe. Events and accidents may 

occur with even very low possibility by these 

researches. In this regard, operators have to 

diagnose the plant abnormal state as swiftly and 

accurately as possible when the events or 

accidents occurred. Only if operators did, 

operators control precisely and interrupt the 

ongoing accident sequence. Therefore, diagnosing 

initiating events is important step in the transient 

to EOP domain so most researches have been 

focused on this step. However, plant state 

diagnosing is also needed in the SAMG domain. 

Because there is possibility that operators 

diagnosed the accident incorrectly in previous 

domain so the accident became severe accident or 

the accident may occur largely and pacy with short 

time which operators may not correctly diagnose 

and control the plant before core damage. So the 

RNN-based plant diagnosis system was developed 

considering about these characteristics. 

This system is designed of neural network. So it 

has high robustness of sensor-malfunctioning and 

although unknown accident which scenario was 

not stored database occurs, it can correctly classify 

the accident. In addition, MCR operators and TSC 

members can check the sensor malfunctioning of 

each instrumentation from the system and the 

system also provides graphical trend information 

of instrumentations’ parameters. Being served 

graphical trend of parameters of each 

instrumentation and each instrumentation’s 

condition for MCR operators and TSC members 

are quite helpful to mitigate the accident.  
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