
ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017 1

Development of Software Testing Environment for Safety-

critical Software Reliability Quantification

Sang Hun LEE1, Seung Jun LEE2, Jinkyun PARK3, Eun-chan LEE4, Hyun Gook

KANG1

1. Department of Mechanical, Aerospace and Nuclear Engineering department, Rensselaer Polytechnic Institute

(RPI), 110 8th street Troy NY USA, 12180, Republic of Korea (lees35; kangh6@rpi.edu)

2. School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology

(UNIST), 50 UNIST-gil Ulsan Republic of Korea, 44919, Republic of Korea (sjlee420@unist.ac.kr)

3. Integrated Safety Assessment Division, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-daero

989beon-gil Yuseong-gu, Daejeon Republic of Korea, 34057, Republic of Korea (kshpjk@kaeri.re.kr)

4. Korea Hydro & Nuclear Power Co., Ltd., 1655 Bulguk-ro Gyeongju-si Gyeongsangbuk-do Republic of Korea, 38120,

Republic of Korea (eclee@khnp.co.kr)

Abstract: Recently, software has been used within nuclear power plants (NPPs) to digitalize many

instrumentation and control (I&C) systems. To guarantee the safety of the NPP, the software

reliability of the safety-critical systems must be properly quantified. In this study, the input-profile-

based software test method using simulation-based software test-bed is proposed. The simulation-

based software test-bed was developed by emulating the microprocessor architecture (CPU register,

memory) of a programmable logic controller (PLC) used in NPP safety-critical applications and

capturing its behavior at each machine instruction line. The software test cases which represents the

possible states of software input and internal variables were developed in consideration of the digital

signal processing of the safety-critical PLC as well as the plant thermo-hydraulics data in case of

NPP accident. The effectiveness of the proposed safety-critical software test method is demonstrated

via a case study for the KNICS RPS BP processor trip logic. Compared with the existing software

testing methods, the proposed method can effectively generate the software test sets required for a

software exhaustive testing, and reduce the software testing time by avoiding the repeated test for

the same software input. Furthermore, the method can be employed to quantify the software

reliability of NPP safety-critical I&C applications, and ensure the safe operation of the NPP.

Keyword: Software Reliability, Digital I&C System, Nuclear Power Plant

1 Introduction

With a shift in technology to digital systems due

to analog systems approaching obsolescence and

to functional advantages of digital systems,

existing plants have begun to replace some analog

instrumentation and control (I&C) systems, while

new plant designs fully incorporate digital

systems[1]. Since the dedicated software is used in

nuclear power plant (NPP) digital I&C systems,

the failure of the safety-critical software failure

can induce the common cause failure (CCF) of

processor modules in NPP digital I&C system[2][3].

Therefore, the quantification of software

reliability plays a very important role in ensuring

the safety of the NPP, and the verification of very

low software failure probability is crucial

regarding the probabilistic risk assessment (PRA)

of digitalized NPP.

Previous quantitative software reliability models

(QSRMs) include the methods such as software

reliability growth model (SRGM), Bayesian belief

network (BBN) model, and test-based method[4].

The SRGM is widely used to assess the reliability

of software by estimating the increment of

reliability as a result of fault removal over time.

However, the SRGM is not applicable to safety-

critical software because of its high sensitivity in

estimating the number of faults to time-to-failure

data and due to the lack of sufficient software

failure sets in NPP safety-critical applications[5].

Sang Hun LEE, Seung Jun LEE, Jinkyun PARK, Eun-chan LEE, Hyun Gook KANG

2 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017

The BBN is a method for software reliability

assessment that aggregates disparate information

on the software, such as software failure data and

quality of software lifecycle activities[6][7].

However, the limitation of the BBN model on

quantifying software reliability includes

developing a credible BBN model that requires

identification of a set of complete and independent

software attributes, and the qualification of

experts to estimate model parameters and

qualitative evidence. Due to those limitations, the

uncertainty in the software residual faults and

failure probability estimates may be very large

which makes it difficult to demonstrate the small

failure probabilities of safety-critical software[4].

The test-based approach is another method to

assess the reliability of NPP safety-critical

software. Test-based methods are those employing

standard statistical methods to the results of

software tests, in the same way as hardware data

is analyzed. Some studies relevant to this

approach have been conducted in the nuclear field

and are mainly divided into two testing methods:

(1) black-box testing[8][9][10], and (2) white-box

testing[11][12].

The black-box testing method, also known as

functional test, considers a software program as a

single entity, take random samples from its input

space, determine if the outputs are correct, and use

the results in standard statistical analyses.

However, since the black-box testing is conducted

without the knowledge on the program’s internal

logic or structure, the limitations of black-box

testing include the limited coverage and the

completeness of the test cases[13].

The white-box testing methods have the

advantage in taking into consideration the internal

structures (e.g. paths and nodes of software), so

that tests can be performed to ensure that certain

parts of the software are tested. However, since the

white-box testing intends to test all possible paths

and nodes of the software, the number of tests that

must be carried out for the exhaustive testing is

very large[12]; thus, efficient and effective testing

framework for the white-box testing of a safety

software is required.

Therefore, this study aims at developing

simulation-based software test-bed and input-

profile-based test cases for effective and

exhaustive white-box testing of the NPP safety-

critical software. Fig. 1 shows an overview of the

proposed software white-box test-based method.

Fig.1 Proposed software input-profile based test method.

Since a programmable logic controller (PLC)

widely used in NPP control systems uses a

programmable memory to store program

instructions and to implement functions such as

logic, arithmetic, timing, counting as a binary

form[14], the test-bed for software used in reactor

protection system (RPS) is developed by

emulating its microprocessor architecture of the

PLC (e.g. CPU register, memory) and capturing its

behavior (e.g. code execution, memory access

sequence) at each machine instruction line while

conducting its dedicated safety function.

In addition, the software test cases for exhaustive

white-box testing are developed based on the

software input-profile[11]. The test inputs for the

safety-critical application of a nuclear power plant

are the inputs which cause the activation of

protective action of a NPP (e.g. reactor trip). Since

a digital system treats inputs from instrumentation

sensors as discrete digital values using an analog-

to-digital converter (ADC), the test profile of

software input and internal variable can be

developed in consideration of those characteristics

of NPP digital processing units as well as plant

thermo-hydraulics and physics properties during

plant transient or design basis accident (DBA).

To demonstrate the effectiveness of the proposed

software test method, the test cases for the

pressurizer-pressure-low trip logic of RPS bistable

Development of Software Testing Environment for Safety-critical Software Reliability Quantification

 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017 3

3

processor (BP) of the Korea Nuclear

Instrumentation and Control System (KNICS)

project[15], are derived and tested on the developed

software test environment.

2 Target System

2.1 KNICS IDiPS-RPS BP software

The Integrated Digital Protection System-Reactor

Protection System (IDiPS-RPS) is a digitalized

reactor protection system developed in the KNICS

project for newly constructed NPPs, as well as for

upgrading existing analog based RPS[16]. It has the

same function as an analog-based RPS to

automatically generate a reactor trip signal, and

engineered safety features actuation signals

whenever process variables reach their

corresponding predefined trip set-points.

For an IDiPS-RPS application, the safety-graded

PLC platform (POSAFE-Q) was designed[16]. The

POSAFE-Q consists of various modules such as a

processor module, communication modules, and

I/O modules. Especially, the processor module

consists of a Texas Instrument C32 DSP CPU and

various types of memories (e.g. flash memory,

SRAM)[17]. In the memories embedded within the

processor module, the IDiPS application software

(e.g. BP trip logic, CP voting logic) developed

with the POSAFE-Q software engineering tool

(pSET) is downloaded. The overview of the RPS

software structure is shown in Fig. 2[18].

Fig.2 An overview of RPS safety software[18].

As shown in Fig. 2, the application software that

will be loaded into a PLC memory is designed

based on function block diagram/ladder diagram

(FBD/LD) programming[19]. In implementation,

the FBD/LD programs and the user-defined

function blocks are translated into C programs,

and the converted C files are compiled to generate

machine instruction code which is loaded to PLC

memory area and executed by PLC

microprocessors.

2.2 Trip logic of KNICS IDiPS-RPS BP

In KNICS RPS, the BP compares the measured

process variables with the predefined trip set-

points for determining the reactor trip state.

Especially, BP generates a trip signal to the CPs

by comparing values of 18 process variables

against predefined threshold values[20]. There are

four different trip logics built in KNICS BP: (1)

fixed set-point trip (10 variables); (2) variable set-

point trip (3 variables); (3) manual reset trip (3

variables); and (4) digital trip (2 variables). Table

1 presents the BP trip logics of the prototype

KNICS RPS[21] and the description of each trip

set-point (TSP) type is as follows:

- Fixed set-point logic: As the process input

signal rises or falls through the pre-trip or

trip set-point, the BP generates the pre-

trip or trip signal, and the trip set-point is

decreased by the hysteresis. When BP is

un-tripped, it restores the trip set-point.

- Variable set-point logic: BP generates a

pre-trip or trip signal when the process

input signal reaches the level of the trip or

pre-trip set-point, but the set-point value

can change depending on the rising or

falling of the process input signal and

external manual reset, if operator bypass

(OB) is permitted.

- Manual reset logic: The BP operation is

identical to that of variable set-point logic,

but an operator can delay the trip by

moving the trip set-point to an upper or

lower value by pushing a reset button.

- Digital logic: BP generates a pre-trip or

trip signal based on the digital input signal

(0 or 1) from other RPS modules such as

core protection calculator (CPC).

Sang Hun LEE, Seung Jun LEE, Jinkyun PARK, Eun-chan LEE, Hyun Gook KANG

 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017 4

Table 1 KNICS RPS BP application software modules[21]

Software Modules Description OB TSP type

VA_OVR_PWR_HI Trip (_1_) Variable Over Power Hi Trip - RR, Rising

LOG_PWR_HI Trip (_2_) Log Reactor Power Hi Trip Y Fixed, Rising

LPD_HI Trip (_3_) Local Power Density Hi Trip - Digital

DNBR_LO Trip (_4_) Departure from Nucleate Boiling Ratio Low Trip - Digital

PZR_PR_HI Trip (_5_) Pressurizer Pressure Hi Trip - Fixed, Rising

PZR_PR_LO Trip (_6_) Pressurizer Pressure Low Trip Y MR, Falling

SG1_LVL_LO_RPS Trip (_7_) SG-1 Low Level Trip - Fixed, Falling

SG2_LVL_LO_RPS Trip (_8_) SG-2 Low Level Trip - Fixed, Falling

SG1_LVL_LO_ESF Trip (_9_) SG-1 Low-Low Level Trip - Fixed, Falling

SG2_LVL_LO_ESF Trip (_A_) SG-2 Low-Low Level Trip - Fixed, Falling

SG1_LVL_HI Trip (_B_) SG-1 Hi Level Trip - Fixed, Rising

SG2_LVL_HI Trip (_C_) SG-2 Hi Level Trip - Fixed, Rising

SG1_PR_LO Trip (_D_) SG-1 Low Pressure Trip - MR, Falling

SG2_PR_LO Trip (_E_) SG-2 Low Pressure Trip - MR, Falling

CMT_PR_HI Trip (_F_) Containment Hi Pressure Trip - Fixed, Rising

CMT_PR_HH Trip (_G_) Containment Hi-Hi Pressure Trip - Fixed, Rising

SG1_FLW_LO Trip (_H_) SG-1 Low Coolant Flow Trip - RR, Falling

SG2_FLW_LO Trip (_I_) SG-2 Low Coolant Flow Trip - RR, Falling

CWP Trip (_J_) CPC-CWP - Digital

* Fixed: Fixed Trip Setpoint; MR: Variable Trip Setpoint by Manual Reset; RR: Variable Trip Setpoint by

Automatic Rate-Limiting; Digital: On/Off Trip; OB: Operator Bypass;

As previously discussed, the BP trip logics shown

in Table 1 are programmed with FBDs. Fig. 3

shows a part of RESET_FALLING logic[21]. The

value of output TRIP_LOGIC is generated from

the combined execution of several function blocks.

The LE_REAL function block in the leftmost

position receives the process variable (PV_OUT)

and internal variable (TSP) as inputs and

computes the output. The result of LE_REAL

function block combined with TRIP_LOGIC

variable passes and is used in next function blocks

(MOVE_BOOL, ADD2_REAL) as inputs. If the

result is true, each function block sets

TRIP_LOGIC variable as true and increases the

value of TSP variable with the value of HYS

variable.

The functions of whole BP trip logic are

configured by a network of function blocks in the

form of a circuit as a function between input

variables and output variables. Therefore, the

possible states of the input, internal, and output

variables can be analyzed based on the software

logic and the correlation between each variable.

Fig.3 A part of BP RESET_FALLING logic.

3 Methods

3.1 Development of BP software test-bed

The most fundamental characteristic of PLC

operation is their cyclic operation mode[22].

Especially, each iteration of the cyclic operation of

PLC, called a scan cycle, consists of several

operation stages that are sequentially repeated.

After checking its own status, the equipment will

copy all the physical input values into its memory,

which is called an input scan. Then the output of

the software will be updated based on the

embedded logics. These operations are repeated at

a fixed interval of time, called a scan time.

Development of Software Testing Environment for Safety-critical Software Reliability Quantification

 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017 5

5

Therefore, by capturing both the internal (e.g.

CPU architecture) and external (e.g. input/output

states of program variables) representation of PLC,

a PLC microprocessor emulator can be developed

which can be used to simulate the behavior of the

software for various states of input/internal

variable and validate the output for specific

software program. In this study, a test-bed for

KNICS RPS BP trip logic software was developed

in C environment by emulating the

microprocessor architecture (e.g. CPU register,

memory) of a POSAFE-Q which uses

TMS320C32 processor[23] and capture the

execution characteristics (e.g. CPU register,

memory access sequence) of the BP trip logic at

each machine instruction line.

The main part of the test-bed is the CPU of the

PLC microprocessor, which contains the CPU

internal resources (CPU registers) and the

processor’s logic, such as arithmetic logic unit

(ALU), floating-point/integer multiplier.

The second module of the test-bed is the memory

units that is accessible to the CPU, which contains

the total memory space of 16M 32-bit words.

Within the 16M-word address space, the program,

data, and I/O space are contained, allowing the

storage of tables, coefficients, program code, or

data of the BP trip logic software. In order to

simulate reading/writing from/to memory space,

several different memory addressing modes (e.g.

register, direct, indirect, immediate) were

implemented in the test-bed.

After implementing the CPU architectures into the

test-bed, a total of 113 TMS320C3x instruction

sets were implemented in the test-bed to emulate

the instruction execution at each PLC scan cycle.

All instructions are defined as a single machine

word long (32-bit), and most instructions require

one cycle to be executed. The instruction sets

contain the instructions for load and store, 2-/3-

operand arithmetic, program control, interlocked

operations, and parallel operations. The syntax of

instructions contains their specific 9-bit opcodes,

and the addressing mode and operands are defined

for each instruction. Based on the instruction

execution, the contents in the CPU registers,

memory, and system stack are changed, and the

conditional flags stored in the CPU status register

are updated by the result of each instruction. In

consideration of the characteristics of each

instruction set, the function of each instruction set

was written in C code and integrated within the

test-bed, as shown in Fig. 4.

Fig.4 Implementation of TMS320C3x instruction sets within

software test-bed.

In order to conduct a finite exhaustive test of

KNICS BP trip logic using the developed test-bed,

the program file of the BP trip logic and the

constant file which contains the memory map of

the input (e.g. pressure, water level) and internal

variable (e.g. counter, test parameter) used in the

BP trip logic were loaded to the test-bed, and the

output file after the program execution (i.e. after

one scan time of PLC) given a specific software

input file was automatically created and the

specific memory area related to safety signal

output (e.g. trip/pre-trip signal) were checked to

verify the output of the test-bed.

3.2 Verification of the BP software test-bed

In order to validate the correctness of the

developed simulation-based software test-bed,

both the unit testing and functional testing for the

software test-bed were conducted.

3.2.1. Unit testing of BP software test-bed

The unit testing is a software testing method by

which individual units of the source code, such as

associated control data, usage procedures, and

operating procedures, are tested to determine

whether each unit of the code generates correct

output[24]. In this study, the Cutest framework[25], a

C unit testing framework, was used to write and

Sang Hun LEE, Seung Jun LEE, Jinkyun PARK, Eun-chan LEE, Hyun Gook KANG

6 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017

run the unit tests for each instruction sets

implemented in the developed test-bed. The unit

test cases for each instruction set were developed

in consideration of all possible addressing modes

and operands, and validated whether all code areas

were correctly executed by verifying the result of

the generated test cases on the developed test-bed

by comparing with its expected results as shown

in Fig. 5.

Fig.5 An example of instruction set testing of test-bed.

3.2.2. Functional testing of BP software test-bed

Functional testing is a type of black-box testing for

the source code that are tested by checking the

correctness of the program by comparing the results

for a given specific input. In this study, the generated

machine languages of the function block diagrams

defined in IEC61131-3[26] (e.g. ADD, AND, EQ)

using TMS320C3x compiler are used to test the

functionality and correctness of the output of the

developed test-bed, as shown in Fig. 6.

Fig.6 An example of function block testing of test-bed.

4 Case Study

4.1 Test case generation of BP trip logic

The generation of software test cases by mapping

the software for all its possible transition states is

one of the key steps in software test-based method.

Previous test-based approaches[8][9] conducted in

the nuclear field involves the development of an

input set for a software test as a trajectory form (a

series of successive values for the input variables

of a program that occur during the operation of the

software over time) by random sampling the test

sets from the input profile. However, the

limitation of those approaches involves the

uncertainty caused by random sampling, the

ambiguity on the necessary length of a trajectory,

and a long execution time per test case.

Since the software failure is basically a

deterministic process, i.e. the software will follow

the same execution path and generate the same

output for the same input, it is possible to test

software using input set composed of a

combination of single values of each software

input and internal variable. When the finite

domains for each software input and internal sets

are identified, the output of the software can be

captured for each input/internal sets, thus there is

no need to form a trajectory form of input. This

allows the test execution time to be drastically

reduced, and the total number of tests which

covers all possible software states during its

operation can be expressed mathematically.

In this study, the software test cases for BP trip

logic was developed by deriving the possible

input/internal domain of the software. The test

inputs for the NPP safety-critical applications (e.g.

RPS) are the inputs which cause the activation of

protective action such as a reactor trip signal

generation. Since a digital I&C system in NPP

treats inputs from instrumentation sensors as

discrete digital values using an ADC, software

input profile can be developed in consideration of

the characteristics of digital components as well as

the plant physical and thermo-hydraulic properties.

In case of software internal variable, its profile can

be developed based on the possible range of each

internal variable and the software internal logic.

Development of Software Testing Environment for Safety-critical Software Reliability Quantification

 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017 7

7

Table 2 Summarized variables for PZR_PR_LO (_6_) trip logic test case generation

Variable Description Format Type*

T_SCAN_FLAG Flag for PLC scan operation (operation/test) BOOL SV

BP_INTEST BP test status BOOL SV

_6_PTSP_R PZR_PR_LO pre-trip set-point WORD SV

_6_TSP_R PZR_PR_LO pre-trip set-point WORD SV

_6_RST_DELAY_CNT_R PZR_PR_LO reset delay count WORD SV

_6_OB_PERM Operator trip bypass permission BOOL IV

_6_OB_REQ_MCR Operator trip bypass request (from MCR) BOOL IV

_6_OB_REQ_RSR Operator trip bypass request (from RSR) BOOL IV

_6_RST_REQ_MCR_DI Trip set-point reset signal (from MCR) BOOL IV

_6_RST_REQ_RSR_DI Trip set-point reset signal (from RSR) BOOL IV

PAT_START Periodic automatic test start signal WORD IV

_6_PV_OUT_AI PZR_PR_LO process parameter (PZR pressure) WORD IV

* SV: State (or internal) variable; IV: Input Variable;

Among various trip logics, the pressurizer-

pressure-low (PZR_PR_LO) trip logic was chosen

as a case study for developing the test cases since

it has more complicated logic (e.g. operator

bypass function, reset delay timer, set-point reset

by operator), thus has more cases to be tested

compared to other fixed- and variable-type trip

logics. First, the variables regarding the

PZR_PR_LO trip logic were investigated. There

are a total of 143 variables in this logic. When

variables for constant and temporary variables that

are automatically calculated based on input values

between scan intervals are excluded, the

remaining important variables for reactor trip

signal generation can be summarized as shown in

Table 2.

Considering the resolution of the ADC used in

RPS, the possible states of the PZR_PR_LO trip

logic variables can be expressed by combining the

possible states of the trip set-point and the reset

delay time, and so on. The possible input sets can

be expressed by combining the possible states of

the input variables (current pressure, bypass from

MCR or RSR, reset from MCR or RSR) which can

be derived based on the plant thermo-hydraulic

analysis and possible deviation of each variable in

PLC scan interval (e.g. 50 ms). In this study, a

large loss of coolant accident (LOCA) which is

one of the fastest transients among the possible

deviations regarding NPP reactor coolant system

(RCS) pressure drop cases was considered as a

target plant DBA for reactor trip signal generation,

and the possible states of software input set

(process variable) were derived based on the

maximum pressure deviation before reactor trip

signal obtained using the Multi-dimensional

Analysis of Reactor Safety (MARS) code[27],

developed in KAERI.

In result, a total of 116,666,784 test cases were

derived by combining the possible combinations

of both input and internal variables of the BP trip

logic shown in Table 2, and the test cases were

used as an input to the developed software test-bed

to analyze whether the output variable of the BP

trip logic software in the memory area was

updated correctly (e.g. trip signal generated in trip

initiation condition).

4.2 Test results of BP PZR_PR_LO trip logic

Based on the derived test cases for PZR_PR_LO

trip logic, the test cases which represent the

reactor trip initiation condition were tested using

the developed test-bed. The test was conducted in

12.57 hours using sixteen 3.60 GHz logical

processors (6.205 ms per test case). From the

analysis, the followings were observed:

- The BP trip logic software consists of

32,566 lines of assembler lines and

98,755 lines were executed in average for

a single test case. Among the executed

instruction sets, LDIU (load integer

Sang Hun LEE, Seung Jun LEE, Jinkyun PARK, Eun-chan LEE, Hyun Gook KANG

8 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017

unconditionally) and LDI (load integer)

instructions were executed most

frequently (44731 and 14666 times,

respectively).

- It was observed that 50.32% and 8.9% of

the execution time were spent, and the

internal CPU clock used per instruction

were 303 and 163 for the LDIU and LDI

instructions, respectively in the developed

software test-bed. The longest internal

CPU clocks used per instruction included

instructions related to floating-point

operations (e.g. CMPF (2406 clocks),

LDFU (1104 clocks)).

- The test results showed that all test cases

generated the pre-trip/trip signals for

PZR_PR_LO (i.e. _6_TRIP_R = 0x1,

_6_PTRIP_R = 0x1) as well as the final

pre-trip/trip signals of BP (i.e.

PTRIP_R_a = 0x1, TRIP_R_a = 0x1)

which will be sent to CP for the trip signal

voting logic. Fig. 7 shows a part of test

results conducted for trip initiation

condition of PZR_PR_LO trip logic.

Fig.7 A part of test results of BP PZR_PR_LO trip logic.

5 Conclusion

In this study, the input-profile-based software test

method utilizing simulation-based software test-

bed was proposed. The test-bed for software

white-box testing was developed considering the

characteristics of machine language used by the

safety-critical PLC and the CPU architecture of

the PLC microprocessor.

Since the software test inputs for the safety-critical

application such as RPS of a NPP are the inputs

which cause the activation of protective action,

such as a reactor trip, the software input profile

was developed in consideration of the digital

signal processing features of the PLC as well as

the plant thermo-hydraulics and physics data in

case of plant transients or DBAs. As an

application of the proposed software test method,

a KNICS RPS BP software logic used in the trip

signal generation of was tested based on the

machine code of the BP trip logic and the software

test cases developed for PZR_LO_PR trip.

An important characteristic of the proposed

software test approach is that the test sets can be

quantitatively derived to achieve exhaustive

testing of the safety-critical software. In addition,

it can effectively reduce the software testing time

per test case by emulating the software behavior

given the software input/internal states in machine

language level, compared to the black-box testing

which uses trajectory inputs for software testing.

The proposed input-profile based software test

method is expected to support the software

reliability quantification in NPP safety-critical

I&C applications and further ensure the safety of

the software.

Nomenclature
ADC Analog-To-Digital Converter

ALU Arithmetic Logic Unit

BBN Bayesian Belief Network

BP Bistable Processor

CCF Common Cause Failure

CPC Core Protection Calculator

CPU Central Processing Unit

DBA Design Basis Accident

DSP Digital Signal Processing

FBD Function Block Diagram

IDIPS-RPS Integrated Digital Protection System

Reactor Protection System

I&C Instrumentation and Control

KNICS Korea Nuclear Instrumentation and

Control System

LD Ladder Diagram

LOCA Loss of Coolant Accident

MARS Multi-Dimensional Analysis of

Development of Software Testing Environment for Safety-critical Software Reliability Quantification

 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017 9

9

Reactor Safety

MCR Main Control Room

NPP Nuclear Power Plant

PLC Programmable Logic Controller

PRA Probabilistic Risk Assessment

PZR Pressurizer

pSET POSAFE-Q Software Engineering

Tool

QSRM Quantitative Software Reliability

Model

RCS Reactor Coolant System

RPS Reactor Protection System

RSR Remote Shutdown Room

SRGM Software Reliability Growth Model

TSP Trip Set-Point

Acknowledgement

This work was supported by the project of

'Evaluation of human error probabilities and safety

software reliabilities in digital environment

(L16S092000),' which was funded by the Central

Research Institute (CRI) of the Korea Hydro and

Nuclear Power (KHNP) company.

References
[1] J.-G. Choi and D.-Y. Lee, “Development of RPS

Trip Logic Based on PLD Technology,” Nuclear

Engineering and Technology, vol. 44, no. 6, pp.

697–708, 2012.

[2] H. G. Kang and T. Sung, “An Analysis of Safety-

Critical Digital Systems for Risk-Informed Design,”

Reliability Engineering & System Safety, vol. 78, no.

3, pp. 307–314, 2002.

[3] H.-G. Kang, M.-C. Kim, S.-J. Lee, H.-J. Lee, H.-S.

Eom, J.-G. Choi, and S.-C. Jang, “An Overview of

Risk Quantification issues for Digitalized Nuclear

Power Plant using a Static Fault Tree,” Nuclear

Engineering and Technology, vol. 41, no. 6, pp.

849–858, 2009.

[4] T. L. Chu, M. Yue, M. Martinez-Guridi, and J.

Lehner, Review of Quantitative Software Reliability

Methods, Brookhaven National Laboratory, 2010.

[5] M.-C. Kim, S.-C. Jang, and J.-J. Ha, “Possibilities

and Limitations of Applying Software Reliability

Growth Models to Safety-Critical Software,”

Nuclear Engineering and Technology, vol. 39, no. 2,

pp. 129–132, 2007.

[6] N. Fenton, M. Neil, W. Marsh, P. Hearty, D.

Marquez, P. Krause, and R. Mishra, “Predicting

software defects in varying development lifecycles

using Bayesian nets,” Information and Software

Technology, vol. 49, no. 1, pp. 32–43, 2007.

[7] H. Eom, G. Park, S. Jang, H. S. Son, and H. G. Kang,

“V&V-based remaining fault estimation model for

safety–critical software of a nuclear power plant,”

Annals of Nuclear Energy, vol. 51, pp. 38–49, 2013.

[8] J. May, G. Hughes, and A. D. Lunn, “Reliability

estimation from appropriate testing of plant

protection software,” Software Engineering Journal,

vol. 10, no. 6, p. 206, 1995.

[9] T.-L. Chu, Development of Quantitative Software

Reliability Models for Digital Protection Systems of

Nuclear Power Plants, Nuclear Regulatory

Commission, 2013.

[10] S. Kuball and J. H. R. May, “A discussion of

statistical testing on a safety-related application,”

Proceedings of the Institution of Mechanical

Engineers, Part O: Journal of Risk and Reliability,

vol. 221, no. 2, pp. 121–132, 2007.

[11] H. G. Kang, H. G. Lim, H. J. Lee, M. C. Kim, and

S. C. Jang, “Input-profile-based software failure

probability quantification for safety signal

generation systems,” Reliability Engineering &

System Safety, vol. 94, no. 10, pp. 1542–1546, 2009.

[12] S. M. Shin, S. H. Lee, H. G. Kang, H. S. Son, S. J.

Lee, “Test Based Reliability Quantification Method

for a Safety Critical Software using Finite Test Sets”,

Proceedings of the 9th International Topical

Meeting on Nuclear Plant Instrumentation, Control

& Human–Machine Interface Technologies (NPIC

& HMIT 2015), Charlotte, NC, February 22~26,

2015.

[13] C. V. Ramamoorthy and W.-T. Tsai, “Advances in

software engineering,” Computer, vol. 29, no. 10, pp.

47–58, 1996.

[14] K. Yau, “PLC Forensics Based on Control Program

Logic Change Detection,” Journal of Digital

Forensics, Security and Law, 2015.

[15] J. H. Park, D. Y. Lee, C. H. Kim, “Development of

KNICS RPS Prototype”, Proceedings of ISOFIC

2005, Session 6, pp.160-161, Tongyeong, Korea,

Nov. 1~4, 2005.

[16] K.-C. Kwon and M.-S. Lee, “Technical Review on

the Localized Digital Instrumentation and Control

Systems,” Nuclear Engineering and Technology, vol.

41, no. 4, pp. 447–454, May 2009.

[17] M.-K. Lee, S.-W. Song, and D.-H. Yun.

Development and Application of POSAFE-Q PLC

Platform. IAEA-CN-194. 2012.

[18] H. S. Sohn, et al., High-Reliable PLC RTOS

Development and RPS Structure Analysis, Korea

Atomic Energy Research Institute, 2008.

[19] K. Koo, et al., "Development of Application

Programming Tool for Safety Grade PLC

(POSAFE-Q)," Transactions of the Korean Nuclear

Society Spring Meeting, Chuncheon, Korea, May

25~26, 2006.

[20] J. Yoo, J.-H. Lee, and J.-S. Lee, “A Research on

Seamless Platform Change of Reactor Protection

System from PLC to FPGA,” Nuclear Engineering

and Technology, vol. 45, no. 4, pp. 477–488, 2013.

[21] BP SDS for Reactor Protection System, KNICS-

Sang Hun LEE, Seung Jun LEE, Jinkyun PARK, Eun-chan LEE, Hyun Gook KANG

10 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017

RPS-SDS231 Rev.03, Doosan Heavy Industries and

Construction Co., Ltd, 2008.

[22] J. Palomar and R. Wyman, The Programmable

Logic Controller and its Application in Nuclear

Reactor Systems, Nuclear Regulatory Commission,

1993.

[23] TMS320C3x User’s Guide, Texas Instrument, 1997.

[24] D. Huizinga and A. Kolawa. Automated defect

prevention: best practices in software management.

John Wiley & Sons, 2007.

[25] A. Jalis, CuTest: C Unit Testing Framework, Ver.

2.1.2, April, 2013; http://cutest.sourceforge.net/.

[26] Programmable controllers - Part 3: Programming

Languages (IEC 61131-3), International

Electrotechnical Commission, 1993.

[27] J.-J. Jeong, K. S. Ha, B. D. Chung, and W. J. Lee,

“Development of a multi-dimensional thermal-

hydraulic system code, MARS 1.3.1,” Annals of

Nuclear Energy, vol. 26, no. 18, pp. 1611–1642, Dec.

1999.

