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Abstract: Recently, software has been used within nuclear power plants (NPPs) to digitalize many 

instrumentation and control (I&C) systems. To guarantee the safety of the NPP, the software 

reliability of the safety-critical systems must be properly quantified. In this study, the input-profile-

based software test method using simulation-based software test-bed is proposed. The simulation-

based software test-bed was developed by emulating the microprocessor architecture (CPU register, 

memory) of a programmable logic controller (PLC) used in NPP safety-critical applications and 

capturing its behavior at each machine instruction line. The software test cases which represents the 

possible states of software input and internal variables were developed in consideration of the digital 

signal processing of the safety-critical PLC as well as the plant thermo-hydraulics data in case of 

NPP accident. The effectiveness of the proposed safety-critical software test method is demonstrated 

via a case study for the KNICS RPS BP processor trip logic. Compared with the existing software 

testing methods, the proposed method can effectively generate the software test sets required for a 

software exhaustive testing, and reduce the software testing time by avoiding the repeated test for 

the same software input. Furthermore, the method can be employed to quantify the software 

reliability of NPP safety-critical I&C applications, and ensure the safe operation of the NPP. 
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1 Introduction 

With a shift in technology to digital systems due 

to analog systems approaching obsolescence and 

to functional advantages of digital systems, 

existing plants have begun to replace some analog 

instrumentation and control (I&C) systems, while 

new plant designs fully incorporate digital 

systems[1]. Since the dedicated software is used in 

nuclear power plant (NPP) digital I&C systems, 

the failure of the safety-critical software failure 

can induce the common cause failure (CCF) of 

processor modules in NPP digital I&C system[2][3]. 

Therefore, the quantification of software 

reliability plays a very important role in ensuring 

the safety of the NPP, and the verification of very 

low software failure probability is crucial 

regarding the probabilistic risk assessment (PRA) 

of digitalized NPP. 

Previous quantitative software reliability models 

(QSRMs) include the methods such as software 

reliability growth model (SRGM), Bayesian belief 

network (BBN) model, and test-based method[4]. 

The SRGM is widely used to assess the reliability 

of software by estimating the increment of 

reliability as a result of fault removal over time. 

However, the SRGM is not applicable to safety-

critical software because of its high sensitivity in 

estimating the number of faults to time-to-failure 

data and due to the lack of sufficient software 

failure sets in NPP safety-critical applications[5]. 
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The BBN is a method for software reliability 

assessment that aggregates disparate information 

on the software, such as software failure data and 

quality of software lifecycle activities[6][7]. 

However, the limitation of the BBN model on 

quantifying software reliability includes 

developing a credible BBN model that requires 

identification of a set of complete and independent 

software attributes, and the qualification of 

experts to estimate model parameters and 

qualitative evidence. Due to those limitations, the 

uncertainty in the software residual faults and 

failure probability estimates may be very large 

which makes it difficult to demonstrate the small 

failure probabilities of safety-critical software[4]. 

The test-based approach is another method to 

assess the reliability of NPP safety-critical 

software. Test-based methods are those employing 

standard statistical methods to the results of 

software tests, in the same way as hardware data 

is analyzed. Some studies relevant to this 

approach have been conducted in the nuclear field 

and are mainly divided into two testing methods: 

(1) black-box testing[8][9][10], and (2) white-box 

testing[11][12]. 

The black-box testing method, also known as 

functional test, considers a software program as a 

single entity, take random samples from its input 

space, determine if the outputs are correct, and use 

the results in standard statistical analyses. 

However, since the black-box testing is conducted 

without the knowledge on the program’s internal 

logic or structure, the limitations of black-box 

testing include the limited coverage and the 

completeness of the test cases[13]. 

The white-box testing methods have the 

advantage in taking into consideration the internal 

structures (e.g. paths and nodes of software), so 

that tests can be performed to ensure that certain 

parts of the software are tested. However, since the 

white-box testing intends to test all possible paths 

and nodes of the software, the number of tests that 

must be carried out for the exhaustive testing is 

very large[12]; thus, efficient and effective testing 

framework for the white-box testing of a safety 

software is required. 

Therefore, this study aims at developing 

simulation-based software test-bed and input-

profile-based test cases for effective and 

exhaustive white-box testing of the NPP safety-

critical software. Fig. 1 shows an overview of the 

proposed software white-box test-based method. 

 

Fig.1 Proposed software input-profile based test method. 

 

Since a programmable logic controller (PLC) 

widely used in NPP control systems uses a 

programmable memory to store program 

instructions and to implement functions such as 

logic, arithmetic, timing, counting as a binary 

form[14], the test-bed for software used in reactor 

protection system (RPS) is developed by 

emulating its microprocessor architecture of the 

PLC (e.g. CPU register, memory) and capturing its 

behavior (e.g. code execution, memory access 

sequence) at each machine instruction line while 

conducting its dedicated safety function. 

In addition, the software test cases for exhaustive 

white-box testing are developed based on the 

software input-profile[11]. The test inputs for the 

safety-critical application of a nuclear power plant 

are the inputs which cause the activation of 

protective action of a NPP (e.g. reactor trip). Since 

a digital system treats inputs from instrumentation 

sensors as discrete digital values using an analog-

to-digital converter (ADC), the test profile of 

software input and internal variable can be 

developed in consideration of those characteristics 

of NPP digital processing units as well as plant 

thermo-hydraulics and physics properties during 

plant transient or design basis accident (DBA).  

To demonstrate the effectiveness of the proposed 

software test method, the test cases for the 

pressurizer-pressure-low trip logic of RPS bistable 
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processor (BP) of the Korea Nuclear 

Instrumentation and Control System (KNICS) 

project[15], are derived and tested on the developed 

software test environment. 

 

2 Target System 

2.1 KNICS IDiPS-RPS BP software 

The Integrated Digital Protection System-Reactor 

Protection System (IDiPS-RPS) is a digitalized 

reactor protection system developed in the KNICS 

project for newly constructed NPPs, as well as for 

upgrading existing analog based RPS[16]. It has the 

same function as an analog-based RPS to 

automatically generate a reactor trip signal, and 

engineered safety features actuation signals 

whenever process variables reach their 

corresponding predefined trip set-points. 

For an IDiPS-RPS application, the safety-graded 

PLC platform (POSAFE-Q) was designed[16]. The 

POSAFE-Q consists of various modules such as a 

processor module, communication modules, and 

I/O modules. Especially, the processor module 

consists of a Texas Instrument C32 DSP CPU and 

various types of memories (e.g. flash memory, 

SRAM)[17]. In the memories embedded within the 

processor module, the IDiPS application software 

(e.g. BP trip logic, CP voting logic) developed 

with the POSAFE-Q software engineering tool 

(pSET) is downloaded. The overview of the RPS 

software structure is shown in Fig. 2[18]. 

 

Fig.2 An overview of RPS safety software[18]. 

 

As shown in Fig. 2, the application software that 

will be loaded into a PLC memory is designed 

based on function block diagram/ladder diagram 

(FBD/LD) programming[19]. In implementation, 

the FBD/LD programs and the user-defined 

function blocks are translated into C programs, 

and the converted C files are compiled to generate 

machine instruction code which is loaded to PLC 

memory area and executed by PLC 

microprocessors. 

 

2.2 Trip logic of KNICS IDiPS-RPS BP  

In KNICS RPS, the BP compares the measured 

process variables with the predefined trip set-

points for determining the reactor trip state. 

Especially, BP generates a trip signal to the CPs 

by comparing values of 18 process variables 

against predefined threshold values[20]. There are 

four different trip logics built in KNICS BP: (1) 

fixed set-point trip (10 variables); (2) variable set-

point trip (3 variables); (3) manual reset trip (3 

variables); and (4) digital trip (2 variables). Table 

1 presents the BP trip logics of the prototype 

KNICS RPS[21] and the description of each trip 

set-point (TSP) type is as follows: 

 

- Fixed set-point logic: As the process input 

signal rises or falls through the pre-trip or 

trip set-point, the BP generates the pre-

trip or trip signal, and the trip set-point is 

decreased by the hysteresis. When BP is 

un-tripped, it restores the trip set-point. 

- Variable set-point logic: BP generates a 

pre-trip or trip signal when the process 

input signal reaches the level of the trip or 

pre-trip set-point, but the set-point value 

can change depending on the rising or 

falling of the process input signal and 

external manual reset, if operator bypass 

(OB) is permitted. 

- Manual reset logic: The BP operation is 

identical to that of variable set-point logic, 

but an operator can delay the trip by 

moving the trip set-point to an upper or 

lower value by pushing a reset button. 

- Digital logic: BP generates a pre-trip or 

trip signal based on the digital input signal 

(0 or 1) from other RPS modules such as 

core protection calculator (CPC).  
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Table 1 KNICS RPS BP application software modules[21] 

Software Modules Description OB TSP type 

VA_OVR_PWR_HI Trip (_1_) Variable Over Power Hi Trip - RR, Rising 

LOG_PWR_HI Trip (_2_) Log Reactor Power Hi Trip Y Fixed, Rising 

LPD_HI Trip (_3_) Local Power Density Hi Trip - Digital 

DNBR_LO Trip (_4_) Departure from Nucleate Boiling Ratio Low Trip - Digital 

PZR_PR_HI Trip (_5_) Pressurizer Pressure Hi Trip - Fixed, Rising 

PZR_PR_LO Trip (_6_) Pressurizer Pressure Low Trip Y MR, Falling 

SG1_LVL_LO_RPS Trip (_7_) SG-1 Low Level Trip - Fixed, Falling 

SG2_LVL_LO_RPS Trip (_8_) SG-2 Low Level Trip - Fixed, Falling 

SG1_LVL_LO_ESF Trip (_9_) SG-1 Low-Low Level Trip - Fixed, Falling 

SG2_LVL_LO_ESF Trip (_A_) SG-2 Low-Low Level Trip - Fixed, Falling 

SG1_LVL_HI Trip (_B_) SG-1 Hi Level Trip - Fixed, Rising 

SG2_LVL_HI Trip (_C_) SG-2 Hi Level Trip - Fixed, Rising 

SG1_PR_LO Trip (_D_) SG-1 Low Pressure Trip - MR, Falling 

SG2_PR_LO Trip (_E_) SG-2 Low Pressure Trip - MR, Falling 

CMT_PR_HI Trip (_F_) Containment Hi Pressure Trip - Fixed, Rising 

CMT_PR_HH Trip (_G_) Containment Hi-Hi Pressure Trip - Fixed, Rising 

SG1_FLW_LO Trip (_H_) SG-1 Low Coolant Flow Trip - RR, Falling 

SG2_FLW_LO Trip (_I_) SG-2 Low Coolant Flow Trip - RR, Falling 

CWP Trip (_J_) CPC-CWP  - Digital 

* Fixed: Fixed Trip Setpoint; MR: Variable Trip Setpoint by Manual Reset; RR: Variable Trip Setpoint by 

Automatic Rate-Limiting; Digital: On/Off Trip; OB: Operator Bypass;  

 

As previously discussed, the BP trip logics shown 

in Table 1 are programmed with FBDs. Fig. 3 

shows a part of RESET_FALLING logic[21]. The 

value of output TRIP_LOGIC is generated from 

the combined execution of several function blocks. 

The LE_REAL function block in the leftmost 

position receives the process variable (PV_OUT) 

and internal variable (TSP) as inputs and 

computes the output. The result of LE_REAL 

function block combined with TRIP_LOGIC 

variable passes and is used in next function blocks 

(MOVE_BOOL, ADD2_REAL) as inputs. If the 

result is true, each function block sets 

TRIP_LOGIC variable as true and increases the 

value of TSP variable with the value of HYS 

variable. 

The functions of whole BP trip logic are 

configured by a network of function blocks in the 

form of a circuit as a function between input 

variables and output variables. Therefore, the 

possible states of the input, internal, and output 

variables can be analyzed based on the software 

logic and the correlation between each variable. 

 

Fig.3 A part of BP RESET_FALLING logic. 

 

3 Methods 

3.1 Development of BP software test-bed 

The most fundamental characteristic of PLC 

operation is their cyclic operation mode[22]. 

Especially, each iteration of the cyclic operation of 

PLC, called a scan cycle, consists of several 

operation stages that are sequentially repeated.  

After checking its own status, the equipment will 

copy all the physical input values into its memory, 

which is called an input scan. Then the output of 

the software will be updated based on the 

embedded logics. These operations are repeated at 

a fixed interval of time, called a scan time. 
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Therefore, by capturing both the internal (e.g. 

CPU architecture) and external (e.g. input/output 

states of program variables) representation of PLC, 

a PLC microprocessor emulator can be developed 

which can be used to simulate the behavior of the 

software for various states of input/internal 

variable and validate the output for specific 

software program. In this study, a test-bed for 

KNICS RPS BP trip logic software was developed 

in C environment by emulating the 

microprocessor architecture (e.g. CPU register, 

memory) of a POSAFE-Q which uses 

TMS320C32 processor[23] and capture the 

execution characteristics (e.g. CPU register, 

memory access sequence) of the BP trip logic at 

each machine instruction line. 

The main part of the test-bed is the CPU of the 

PLC microprocessor, which contains the CPU 

internal resources (CPU registers) and the 

processor’s logic, such as arithmetic logic unit 

(ALU), floating-point/integer multiplier.  

The second module of the test-bed is the memory 

units that is accessible to the CPU, which contains 

the total memory space of 16M 32-bit words. 

Within the 16M-word address space, the program, 

data, and I/O space are contained, allowing the 

storage of tables, coefficients, program code, or 

data of the BP trip logic software. In order to 

simulate reading/writing from/to memory space, 

several different memory addressing modes (e.g. 

register, direct, indirect, immediate) were 

implemented in the test-bed. 

After implementing the CPU architectures into the 

test-bed, a total of 113 TMS320C3x instruction 

sets were implemented in the test-bed to emulate 

the instruction execution at each PLC scan cycle. 

All instructions are defined as a single machine 

word long (32-bit), and most instructions require 

one cycle to be executed. The instruction sets 

contain the instructions for load and store, 2-/3-

operand arithmetic, program control, interlocked 

operations, and parallel operations. The syntax of 

instructions contains their specific 9-bit opcodes, 

and the addressing mode and operands are defined 

for each instruction. Based on the instruction 

execution, the contents in the CPU registers, 

memory, and system stack are changed, and the 

conditional flags stored in the CPU status register 

are updated by the result of each instruction. In 

consideration of the characteristics of each 

instruction set, the function of each instruction set 

was written in C code and integrated within the 

test-bed, as shown in Fig. 4. 

 

Fig.4 Implementation of TMS320C3x instruction sets within 

software test-bed. 

 

In order to conduct a finite exhaustive test of 

KNICS BP trip logic using the developed test-bed, 

the program file of the BP trip logic and the 

constant file which contains the memory map of 

the input (e.g. pressure, water level) and internal 

variable (e.g. counter, test parameter) used in the 

BP trip logic were loaded to the test-bed, and the 

output file after the program execution (i.e. after 

one scan time of PLC) given a specific software 

input file was automatically created and the 

specific memory area related to safety signal 

output (e.g. trip/pre-trip signal) were checked to 

verify the output of the test-bed. 

 

3.2 Verification of the BP software test-bed 

In order to validate the correctness of the 

developed simulation-based software test-bed, 

both the unit testing and functional testing for the 

software test-bed were conducted. 

 

3.2.1. Unit testing of BP software test-bed 

The unit testing is a software testing method by 

which individual units of the source code, such as 

associated control data, usage procedures, and 

operating procedures, are tested to determine 

whether each unit of the code generates correct 

output[24]. In this study, the Cutest framework[25], a 

C unit testing framework, was used to write and 
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run the unit tests for each instruction sets 

implemented in the developed test-bed. The unit 

test cases for each instruction set were developed 

in consideration of all possible addressing modes 

and operands, and validated whether all code areas 

were correctly executed by verifying the result of 

the generated test cases on the developed test-bed 

by comparing with its expected results as shown 

in Fig. 5. 

 

 

Fig.5 An example of instruction set testing of test-bed. 

 

3.2.2. Functional testing of BP software test-bed 

Functional testing is a type of black-box testing for 

the source code that are tested by checking the 

correctness of the program by comparing the results 

for a given specific input. In this study, the generated 

machine languages of the function block diagrams 

defined in IEC61131-3[26] (e.g. ADD, AND, EQ) 

using TMS320C3x compiler are used to test the 

functionality and correctness of the output of the 

developed test-bed, as shown in Fig. 6. 

 

 

Fig.6 An example of function block testing of test-bed. 

4 Case Study 

4.1 Test case generation of BP trip logic 

The generation of software test cases by mapping 

the software for all its possible transition states is 

one of the key steps in software test-based method. 

Previous test-based approaches[8][9] conducted in 

the nuclear field involves the development of an 

input set for a software test as a trajectory form (a 

series of successive values for the input variables 

of a program that occur during the operation of the 

software over time) by random sampling the test 

sets from the input profile. However, the 

limitation of those approaches involves the 

uncertainty caused by random sampling, the 

ambiguity on the necessary length of a trajectory, 

and a long execution time per test case. 

Since the software failure is basically a 

deterministic process, i.e. the software will follow 

the same execution path and generate the same 

output for the same input, it is possible to test 

software using input set composed of a 

combination of single values of each software 

input and internal variable. When the finite 

domains for each software input and internal sets 

are identified, the output of the software can be 

captured for each input/internal sets, thus there is 

no need to form a trajectory form of input. This 

allows the test execution time to be drastically 

reduced, and the total number of tests which 

covers all possible software states during its 

operation can be expressed mathematically. 

In this study, the software test cases for BP trip 

logic was developed by deriving the possible 

input/internal domain of the software. The test 

inputs for the NPP safety-critical applications (e.g. 

RPS) are the inputs which cause the activation of 

protective action such as a reactor trip signal 

generation. Since a digital I&C system in NPP 

treats inputs from instrumentation sensors as 

discrete digital values using an ADC, software 

input profile can be developed in consideration of 

the characteristics of digital components as well as 

the plant physical and thermo-hydraulic properties. 

In case of software internal variable, its profile can 

be developed based on the possible range of each 

internal variable and the software internal logic. 
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Table 2 Summarized variables for PZR_PR_LO (_6_) trip logic test case generation 

Variable Description Format Type* 

T_SCAN_FLAG Flag for PLC scan operation (operation/test) BOOL SV 

BP_INTEST BP test status  BOOL SV 

_6_PTSP_R PZR_PR_LO pre-trip set-point WORD SV 

_6_TSP_R PZR_PR_LO pre-trip set-point  WORD SV 

_6_RST_DELAY_CNT_R PZR_PR_LO reset delay count  WORD SV 

_6_OB_PERM Operator trip bypass permission  BOOL IV 

_6_OB_REQ_MCR Operator trip bypass request (from MCR) BOOL IV 

_6_OB_REQ_RSR Operator trip bypass request (from RSR) BOOL IV 

_6_RST_REQ_MCR_DI Trip set-point reset signal (from MCR) BOOL IV 

_6_RST_REQ_RSR_DI Trip set-point reset signal (from RSR) BOOL IV 

PAT_START Periodic automatic test start signal WORD IV 

_6_PV_OUT_AI PZR_PR_LO process parameter (PZR pressure) WORD IV 

* SV: State (or internal) variable; IV: Input Variable; 

 

Among various trip logics, the pressurizer-

pressure-low (PZR_PR_LO) trip logic was chosen 

as a case study for developing the test cases since 

it has more complicated logic (e.g. operator 

bypass function, reset delay timer, set-point reset 

by operator), thus has more cases to be tested 

compared to other fixed- and variable-type trip 

logics. First, the variables regarding the 

PZR_PR_LO trip logic were investigated. There 

are a total of 143 variables in this logic. When 

variables for constant and temporary variables that 

are automatically calculated based on input values 

between scan intervals are excluded, the 

remaining important variables for reactor trip 

signal generation can be summarized as shown in 

Table 2.  

Considering the resolution of the ADC used in 

RPS, the possible states of the PZR_PR_LO trip 

logic variables can be expressed by combining the 

possible states of the trip set-point and the reset 

delay time, and so on. The possible input sets can 

be expressed by combining the possible states of 

the input variables (current pressure, bypass from 

MCR or RSR, reset from MCR or RSR) which can 

be derived based on the plant thermo-hydraulic 

analysis and possible deviation of each variable in 

PLC scan interval (e.g. 50 ms). In this study, a 

large loss of coolant accident (LOCA) which is 

one of the fastest transients among the possible 

deviations regarding NPP reactor coolant system 

(RCS) pressure drop cases was considered as a 

target plant DBA for reactor trip signal generation, 

and the possible states of software input set 

(process variable) were derived based on the 

maximum pressure deviation before reactor trip 

signal obtained using the Multi-dimensional 

Analysis of Reactor Safety (MARS) code[27], 

developed in KAERI. 

In result, a total of 116,666,784 test cases were 

derived by combining the possible combinations 

of both input and internal variables of the BP trip 

logic shown in Table 2, and the test cases were 

used as an input to the developed software test-bed 

to analyze whether the output variable of the BP 

trip logic software in the memory area was 

updated correctly (e.g. trip signal generated in trip 

initiation condition). 

 

4.2 Test results of BP PZR_PR_LO trip logic 

Based on the derived test cases for PZR_PR_LO 

trip logic, the test cases which represent the 

reactor trip initiation condition were tested using 

the developed test-bed. The test was conducted in 

12.57 hours using sixteen 3.60 GHz logical 

processors (6.205 ms per test case). From the 

analysis, the followings were observed: 

 

- The BP trip logic software consists of 

32,566 lines of assembler lines and 

98,755 lines were executed in average for 

a single test case. Among the executed 

instruction sets, LDIU (load integer 
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unconditionally) and LDI (load integer) 

instructions were executed most 

frequently (44731 and 14666 times, 

respectively). 

- It was observed that 50.32% and 8.9% of 

the execution time were spent, and the 

internal CPU clock used per instruction 

were 303 and 163 for the LDIU and LDI 

instructions, respectively in the developed 

software test-bed. The longest internal 

CPU clocks used per instruction included 

instructions related to floating-point 

operations (e.g. CMPF (2406 clocks), 

LDFU (1104 clocks)). 

- The test results showed that all test cases 

generated the pre-trip/trip signals for 

PZR_PR_LO (i.e. _6_TRIP_R = 0x1, 

_6_PTRIP_R = 0x1) as well as the final 

pre-trip/trip signals of BP (i.e. 

PTRIP_R_a = 0x1, TRIP_R_a = 0x1) 

which will be sent to CP for the trip signal 

voting logic. Fig. 7 shows a part of test 

results conducted for trip initiation 

condition of PZR_PR_LO trip logic. 

 

Fig.7 A part of test results of BP PZR_PR_LO trip logic. 

 

5 Conclusion 

In this study, the input-profile-based software test 

method utilizing simulation-based software test-

bed was proposed. The test-bed for software 

white-box testing was developed considering the 

characteristics of machine language used by the 

safety-critical PLC and the CPU architecture of 

the PLC microprocessor. 

Since the software test inputs for the safety-critical 

application such as RPS of a NPP are the inputs 

which cause the activation of protective action, 

such as a reactor trip, the software input profile 

was developed in consideration of the digital 

signal processing features of the PLC as well as 

the plant thermo-hydraulics and physics data in 

case of plant transients or DBAs. As an 

application of the proposed software test method, 

a KNICS RPS BP software logic used in the trip 

signal generation of was tested based on the 

machine code of the BP trip logic and the software 

test cases developed for PZR_LO_PR trip. 

An important characteristic of the proposed 

software test approach is that the test sets can be 

quantitatively derived to achieve exhaustive 

testing of the safety-critical software. In addition, 

it can effectively reduce the software testing time 

per test case by emulating the software behavior 

given the software input/internal states in machine 

language level, compared to the black-box testing 

which uses trajectory inputs for software testing. 

The proposed input-profile based software test 

method is expected to support the software 

reliability quantification in NPP safety-critical 

I&C applications and further ensure the safety of 

the software.  

 

Nomenclature 
ADC  Analog-To-Digital Converter 

ALU  Arithmetic Logic Unit 

BBN  Bayesian Belief Network 

BP   Bistable Processor 

CCF   Common Cause Failure 

CPC   Core Protection Calculator 

CPU  Central Processing Unit 

DBA  Design Basis Accident 

DSP   Digital Signal Processing 

FBD  Function Block Diagram 

IDIPS-RPS Integrated Digital Protection System 

Reactor Protection System 

I&C   Instrumentation and Control 

KNICS Korea Nuclear Instrumentation and 

Control System 

LD   Ladder Diagram 

LOCA  Loss of Coolant Accident 

MARS Multi-Dimensional Analysis of 
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Reactor Safety 

MCR  Main Control Room 

NPP   Nuclear Power Plant 

PLC   Programmable Logic Controller 

PRA  Probabilistic Risk Assessment 

PZR   Pressurizer 

pSET POSAFE-Q Software Engineering 

Tool 

QSRM Quantitative Software Reliability 

Model 

RCS   Reactor Coolant System 

RPS   Reactor Protection System 

RSR   Remote Shutdown Room 

SRGM  Software Reliability Growth Model 

TSP   Trip Set-Point 
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