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Abstract: This work proposes a framework to enable dynamic PRA by leveraging information from 

the well-established static PRA. The framework starts by segmenting accident mitigation process 

into multiple stages based on static Event Trees and Emergency Operating Procedures. Variations to 

the initiation of each stage were derived from Fault Trees.  

Plant parameters as the exit condition of each mitigation stage were estimated using MARS system 

code. Because transient simulations through system codes are computationally expensive, the stage’s 

uncertainties were sparsely sampled. A Reduced Order Model (ROM) method was formulated to 

interpolate and obtain a continuous distribution of the stage’s exit condition from these entry 

condition’s samples. It utilizes the Taylor Kriging (TK) method to capture nonlinearities of plant 

parameters in response to the stage’s entry condition variations. Total Variation Regularization 

(TVR) was used to estimate the Taylor regression order. Numerical error from the time-stepping 

method, round-offs and ROM construction was formulated and propagated as the next stage’s IC 

error.  

A case study on Large Break LOCA (LBLOCA) with uncertainties on Low Pressure Safety Injection 

(LPSI) actuation timing and capacity is presented. Results show that the proposed ROM method can 

provide a continuous response and error estimate on plant parameters from finite samples. The 

methodology enables the plant’s safety margin and propagated error to be quantified by using 

cascading stage ROMs. 
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1 Introduction 

Probabilistic Risk Assessment (PRA) techniques 

have provided crucial information regarding the 

quantitative safety level of Nuclear Power Plants. 

Conventional PRAs were developed with several 

important assumptions such as the fixed entry 

condition for each of accident mitigation function 

and the averaged probability over component 

lifetime in order to estimate its failure probability. 

This limitation results in an averaged and 

simplified risk information. Dynamic PRA  

(DPRA) relaxes these assumptions to obtain 

further risk insights due to various uncertainties in 

mitigation actions. However, a thorough DPRA 

analysis is challenging since the various 

uncertainties may lead to an infinite number of 

cases to be investigated.  

Because the accident mitigation process has been 

documented in a categorized and step-by-step 

manner in the conventional PRA, it can be 

leveraged to project possible sets of dynamic 

scenarios. Mitigation process can be segmented 

into stages built from Event Tree information. The 

uncertainties in each stage can be extracted from 

Fault Trees and Emergency Operating Procedures. 

In that sense, plant’s risk can be estimated by 

simulating plant’s response at each stage and 

relaying it to the next stage. It is known that 

transient simulation for accident mitigation is 

computationally expensive. Therefore this work 

proposes a method to construct a Reduced Order 

Model (ROM) to create a full-rank stage’s 

response from sparse samples. Additionally, the 

ROM’s error estimate and its propagation to next 

stages are analyzed. 
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2 Methods 

 

Fig. 1. Uncertainties in system simulation codes  

  

As plant’s response is estimated by simulation 

codes, it is important to ask how accurate the 

simulation’s output is to the actual response. As an 

approximation to real-world phenomena, the 

codes have epistemic and aleatory uncertainties as 

illustrated in Figure 1. Zou et. al. [1] has proven that 

the largely overlooked aleatory uncertainties may 

be more significant than the epistemic uncertainty. 

For that reason, this uncertainty will be analyzed 

further in the next subsection.  

 

2.1 Numerical Uncertainties 

Transient analysis in accident mitigation 

simulations is more prone to temporal 

discretization error than steady-state analysis. 

Existing system analysis codes typically utilize 

first-order implicit Backward Euler (BDF1) time 

integration scheme [1] as illustrated in Figure 2. 

Given a PDE of: 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑡, 𝑥) (1) 

 

The solution’s Local Truncation Error (LTE) 

solved by BDF1 method is: 

 

𝐸𝑛+1 = 𝑥(𝑡𝑛+1) − 𝑥𝑛+1 = 𝜀𝑥 + ℎ𝜀𝑓 + 𝑂(ℎ2) (2) 

 

where xn+1 is the code’s approximation to exact 

PDE solution x(tn+1) after one time step h, and 

O(h2) is the Taylor higher order terms. The εf and 

εx are the machine round-off error in computing 

the tangent and xn+1 of this linear time-stepping 

scheme.  

 

Fig. 2. Implicit time integration method 

 

Accumulated LTEs after m time steps form a 

Global Truncation Error (GTE) given by: 

 

𝐸𝑛+𝑚 = 𝐸𝑛+𝑚−1 (1 − ℎ
𝑑𝑓

𝑑𝑥
) + ℎ𝜀𝑓 + 𝑂(ℎ2) + 𝜀𝑥 (3) 

 

The df/dx term and round-off errors may self-

correct GTE. However, in the worst case scenario 

the terms may have a uniform sign, in which the 

maximum possible error can be bound as: 
 

|𝐸𝑛| ≤
(𝜀𝑓 +

𝑀ℎ
2

+
𝜀𝑥

ℎ
)

𝐾
(𝑒𝐾𝑡𝑛 − 1) (4) 

𝐾 = max
(𝑡,𝑥)𝜖𝑅

|
𝑑𝑓

𝑑𝑥
| < ~ (5) 

 

𝑀 = max
(𝑡,𝑥)𝜖𝑅

|
𝑑𝑓

𝑑𝑡
+ 𝑓

𝑑𝑓

𝑑𝑥
| < ~ (6) 

 

If there is an error portion in the Initial Condition 

(IC), at t=0, equation (4) expands into: 
 

|𝐸𝑛| ≤
(𝜀𝑓 +

𝑀ℎ
2

+
𝜀𝑥

ℎ
)

𝐾
(𝑒𝐾𝑡𝑛 − 1) + 𝐸0(1 + 𝐾ℎ)𝑛 (7) 

 

Equation (7) expresses the upper bound on 

numerical error due to relay of mitigation stages’ 

output by using ROM. The ROM’s error is 

represented by E0 which is formulated in the next 

subsection. 

 

2.2 ROM Creation and Error Estimate 

ROM approximates a continuous stage response 

from observations obtained from system code 

simulation. In that sense, it may introduce further 

error to the system code’s output. To avoid such 

degradation, we established the following criteria 

the ROM has to fulfill: 

Physical phenomena 

Finite order PDE 

Spatio-temporal discretization 

Iterative solver 

Epistemic uncertainty 

Discretization error 

Truncation and 

rounding errors 
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1) Provides unbiased estimates at sampled points 

2) Error variance at unsampled points is 

minimized 

3) Provides error estimate at every points      

 

The Taylor Kriging (TK) method [2] among other 

interpolation-based methodologies satisfies the 

aforementioned criteria. TK response function is 

composed of a regression model and stochastic 

term as illustrated in Figure 3.  

 

 
Fig. 3. TK response function 

 

The regression part is approximated by Taylor 

polynomial to capture a nonlinear trend between 

sample points. The TK response 𝑦̂(𝑥)  at an 

unsampled point x is a linear weighted 

combination of responses at sample points xα 

given by: 

𝑦̂(𝑥) = ∑ 𝜆𝛼𝑦(𝑥𝛼)

𝛼

 (8) 

Where the weights are inversely proportional to 

difference between x and xα , calculated by the 

following set of equations: 

 

[
𝑈
𝜆

] = [0 𝐹𝑇

𝐹 𝑆
]

−1

[
𝑓
𝐶

] (9) 

 

𝐹 = [
𝑓1(𝑥1) ⋯ 𝑓𝑀(𝑥1)

⋮ ⋱ ⋮
𝑓1(𝑥𝑁) ⋯ 𝑓𝑀(𝑥𝑁)

] (10) 

 

𝑆 = [
𝐶𝜀11 ⋯ 𝐶𝜀1𝑁

⋮ ⋱ ⋮
𝐶𝜀𝑁1 ⋯ 𝐶𝜀𝑁𝑁

] (11) 

 

𝑈 = [𝑢1 ⋯ 𝑢𝑀]𝑇 (12) 

 

𝜆 = [𝜆1 ⋯ 𝜆𝑁]𝑇 (13) 

 

𝑓 = [𝑓1 ⋯ 𝑓𝑀]𝑇 (14) 

 

𝐶 = [𝐶𝜀1𝑥 ⋯ 𝐶𝜀𝑁𝑥]𝑇 (15) 

 

𝑓𝑙(𝑥) = (𝑥 − 𝑥0)𝑙 ,  0 ≤ 𝑙 ≤ 𝑀 + 1 (16) 

 

Where M is the order of Taylor polynomial and N 

is the number of samples. The variable Cε is the 

covariance among sample data in the S matrix and 

covariance between unsampled data and sampled 

data in C array. TK’s error variance is given by: 

 

𝜎̂𝑒
2 = ∑ 𝜆̂𝛼𝐶𝜀𝛼𝑥

𝑁

𝛼=1

− ∑ 𝜆̂𝛼 ∑ 𝑢̂𝑙𝑓𝑙(𝑥𝛼)

𝑀

𝑙=1

𝑁

𝑖=1

 (17) 

 

To minimize TK’s error variance, the degree of 

nonlinearity M needs to be properly estimated. 

Because the uncertainty sources are not explicitly 

represented in the PDEs, M cannot be determined 

analytically. A numerical approach is pursued 

instead by using the Total Variation 

Regularization (TVR) method [3]. 

 

2.3 Total Variation Regularization 

The regularization method fits a function which 

minimizes discrepancy between it and the sample 

data while penalizing any irregularities to prevent 

overfitting. Therefore TVR is suitable to estimate 

the TK’s regression term. The TVR 

implementation in estimating a derivative u to a 

function f on the interval [0,L] minimizes an 

objective function F(u): 

 

𝐹(𝑢) =
1

2
∫ |∫ 𝑢 − 𝑓|

2
𝐿

0

+ 𝛼 ∫|𝑢′|

𝐿

0

 (18) 

   

Where α is the regularization parameter which 

balances penalty term and data fidelity term. The 

derivatives are estimated from sample data until 

the ratio of M order derivative to M-1 order drops 

significantly.  

 

3 Results 

To test the proposed ROM methodology, a Large-

Break LOCA (LBLOCA) accident was simulated 

with mitigation uncertainties arising from Low 

Pressure Safety Injection (LPSI) actuation timing 

and capacity. Figure 4 shows the core level and 

clad temperature when LPSI actuation was 



Robby CHRISTIAN, Hyun Gook KANG 
 

4 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017  

delayed between 0 and 10 seconds. Figure 5 

shows the same variables when LPSI injection 

capacity was sampled between 0 and 100%. The 

figures suggest that the LBLOCA phases, i.e. 

blowdown, refill and reflood occur at different 

times among the LPSI uncertainty samples as 

hypothesized.  

(a) Core level 

(b) Clad temperature  

Fig. 4. Plant response due to variation in LPSI 

actuation timing 

 

The timing difference of plant physics indicates 

that the interpolation neighbourhood must be 

carefully selected based on the interpolation 

location. In the stage-based DPRA methodology, 

the next stage has its own dynamic uncertainty 

which implies that its initial condition may come 

from various times of the preceeding stage’s 

response. Consider for example, that it is required 

to estimate the minimum core level during SIT 

depletion phase, which directly correlates to the 

clad temperature spike at t>100 s. If the sample 

data were taken from the same time step, it would 

include data from different phases, i.e. refill and 

reflood. It is only appropriate to cluster the 

interpolation neighborhood from similar physics 

by selecting a certain sampling direction. This 

sampling direction is presented as Local 

Anisotropies (LAs) in the data. The LA for our 

example (minimum core level during SIT 

depletion) is shown in Figure 6. 

 

(a) Core level 

 

(b) Clad temperature  

Fig. 5. Plant response due to variation in LPSI 

injection capacity 

 

     

Fig. 6. Local anisotropy in estimating 

minimum core level during SIT depletion 

 

The semivariogram for these data samples 

followed a power model as shown in Figure 7. It 

time variation 

Level (m) 

temperature 

variation 
time 

time 
variation 

Level (m) 

temperature 

variation 
time 
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implies that there is a significant regression trend 

between the samples. This trend was 

approximated by Taylor polynomial which 

derivatives were found using the TVR method. 

The ratio of successive derivatives is given in 

Figure 8. This data suggests that M=2, and that the 

best Taylor polynomial’s pivot location was at 

LPSI 0% capacity, where the derivative ratio was 

the least. 

 

Fig. 7. Experimental semivariogram fitted to a 

power function model 

 

     

Fig. 8. Ratio of successive derivatives 

calculated from TVR results 

Fig. 9. TK ROM on minimum core level 

during SIT depletion phase 

 

Having obtained the Taylor’s order and pivotal 

point, the TK continuous response along the LA of 

minimum core level is shown in Figure 9. The 

figure reveals that TK gives an unbiased response 

at sample points. The standard deviation band 

signifies the error that can be propagated to the 

next stage’s simulation. The error band diminishes 

at sample locations. Therefore next stage’s IC 

taken from these points will have numerical error 

of system code given in Equation 4 instead. 

 

4 Summary 

 

𝜀𝐴𝐵 = 𝑓(𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑖𝑜𝑛, 𝑟𝑜𝑢𝑛𝑑𝑜𝑓𝑓) 

𝜀𝐵𝐶 = 𝑓(𝜀𝐴𝐵, 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑖𝑜𝑛, 𝑟𝑜𝑢𝑛𝑑𝑜𝑓𝑓) 

𝜀𝐷𝐸 = 𝑇𝐾 𝑅𝑂𝑀 𝑒𝑟𝑟𝑜𝑟 

𝜀𝐸𝐹 = 𝑓(𝜀𝐷𝐸 , 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑖𝑜𝑛, 𝑟𝑜𝑢𝑛𝑑𝑜𝑓𝑓) 

 

Fig. 10. Uncertainty and error propagation 

scheme in stage-based DPRA 

 

We outlined a stage-based DPRA by leveraging 

static PRA information. To support this approach, 

we have proposed the TK ROM at each stage and 

formulated its numerical error. The propagation of 

uncertainties and error among stages is 

summarized in Fig. 10. The extent of numerical 

error depends on ROM sampling location. The 

error can be minimized by a proper estimation of 
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Taylor’s order and pivot point in TK methodology, 

and proper identification of Local Anisotropy in 

the sample data. The first two requirements have 

been automated by using TVR, while automation 

of the latter is still under active research. Case 

study results on LBLOCA scenarios proved has 

shown the successful application of the proposed 

TK ROM method 
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