

 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017 1

VHDL Verification of FPGA based ESF-CCS

for Nuclear Power Plant I&C System

Restu MAERANI1, and Jae Cheon JUNG2

1. Department of NPP Engineering, KINGS, Ulsan, 45014, Indonesia (maerani@email.kings.ac.kr)

2. Department of NPP Engineering, KINGS, Ulsan, 45014, Republic of Korea (jcjung@kings.ac.kr)

Abstract: Verification becomes the focus of activities during the integration phase of design life cycle in the

development of the system. Verification methods that will not take much cost and time should be properly selected,

accordance with the Measurement of Effectiveness (MOEs) need. Verification is one phase that must be done after

completing the implementation process. Since Instrumentation & Control (I&C) system has a role as a very crucial to

the control protection system in Nuclear Power Plant (NPP), then software verification is very essential and shall to be

achieved for safety critical issue in system level. According to IEEE 1076-2008 standard, VHDL is a language that is

easy to read by machines and humans; and make it easier for process development, verification, synthesis and testing

for hardware reliability in the design. Because this design uses VHDL code for Field Programmable Gate Array (FPGA)

based Engineered Safety features – Component Control System (ESF-CCS) and by referring to the NUREG/CR-7006

during VHDL verification on behavioral simulation process, it should be equivalent with the post layout simulation.

Furthermore, Vivado will be used as the VHDL verifier, where the VHDL code itself is created, in order to simplify

the process of verification with this design life cycle phase on re-engineering process. By using this methodology, the

testing process will automatically can be represented as one of verification process from several software verification

methods that can be developed.

Keyword: Verification, FPGA, Software, Testing

1 Introduction
In the digital Instrumentation and Control System (I&C)

technology of nuclear power plants, is expected to have

the ability to meet the safety criteria of nuclear reactors

in order to avoid 3 problems that can occur; software

common-cause failure, failure interaction between

operator and Man Machine Interface System (MMIS)

and the non-detectability of software failure [1]. The

decision to choose FPGA rather than using PLC is due

to reduce the system complexity, safety from cyber-

attack and economic calculation if measured from the

Measurement of effectiveness (MOE).

Development of Field Programmable Gate Array

(FPGA) based Safety Injection Actuation System

(SIAS) should refer to reverse engineering process to

developed Group Controller (GC) and Loop Controller

(LC) modules of Engineered Safety features –

Component Control System (ESF-CCS) functions.

Starting from project planning and definition concept

phase, referring to the requirement, Design Basis

Document (DBE), design specification and design

requirements so that design implementation, phase of

test and verification can be develop for re-engineering

the system. VHDL verification is to verify software

which is used to generate the code for the operational

of the ESF-CCS system.

2 Theory
Safety Critical Software for I&C System

Instrumentation and control systems (I&C), systems

and components at Nuclear Power plants (NPP) can be

grouped into two categories: essential goods for safety

and non-essential items for safety [2]. The reason why

develop FPGA based system for the technology of I&C

system is because [3]:

 FPGAs attractive for safety applications, where

on-line reconfigurations would be unacceptable.

 Design and V&V for FPGA based platforms for

safety applications can be made much simpler and

less costly than for microprocessor based ones.

Software Classification and Category

 Protection (Safety Critical)

 Software whose function is necessary to directly

perform RPS control actions, ESFAS control

actions, and safe shutdown control actions.

"Protection" class software designation is applied

when the highest level of software quality

assurance is needed.

 Important to Safety (ITS)

 Software whose function is relied on to monitor or

test protection functions, or software that monitors

plant critical safety functions.

 Important to Availability (ITA)

 Software that is relied on to maintain operation of

Restu MAERANI1, and Jae Cheon JUNG2

2 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017

plant systems and equipment that are critical to

operate the plant.

 General Purpose

Software that performs some functions other than

that described in the previous classifications. This

software includes tools that are used to develop

software in other classifications, but is not installed

in the online plant system.

System Requirements

System requirements for ESF Actuation Response

Time are:

 For both cases, low pressurizer pressure and High

Containment pressure, total response time of safety

injection initiation signal should be less than 40

seconds [4].

 The response time between input of a GC and

output of a Loop Controller (LC) due to Plant

Protection System (PPS) initiation signal shall be

less than 240 milliseconds. This number includes

the data acquisition time, logic processing, and

communication time (Group Controller (GC) +

High Speed Link (HSL) + LC)[4].

 The response time between input of a Control

Panel Multiplexer (CPM) and output of a LC due

to manual Engineered ESFAS actuation shall be

less than 240 milliseconds. This number includes

the data acquisition time, logic processing time,

and communication time (CPM + HSL + GC +

HSL + LC) [5].

System Architectural Design Verification

The quality of an architectural description refers to its

capability to meet the needs and concerns of the

stakeholders for whom it was constructed. Such

concerns typically include understandability,

consistency, completeness, and analyzability of the

description [6].

The objectives of Architectural Design Verification are

to assure that [7].

 The architecture satisfies the system requirements,

 The system architecture is realizable,

 The selected architecture is based on specified

selection criteria,

 The basis for verifying the system elements is

defined

 The basis for integration of the system elements is

established.

IEEE 1012 defines several tasks to be carried out in this

process.

Software Design

The purpose of the Software Detailed Design Process

is to provide a design for the software that implements

and can be verified against the requirements and the

software architecture and is sufficiently detailed to

permit coding and testing [8].

In software design, software requirements are

transformed into an architecture and a detailed design

for each software component. The design includes

databases and system interfaces (e.g., hardware,

operator/user, software components, and subsystems).

The design of FPGA-based systems is expressed in

Hardware Definition Language (HDL). In this project,

VHSIC Hardware Description Language (VHDL)

which is defined in [9] was used. EPRI [10] provides

guidelines for the design of FPGA-based systems. HDL

coding rules are detailed in NUREG 7006 [11]. These

rules are aimed at ensuring that the hardware design

practices and HDL code results in a system that is

reliable, robust, traceable and maintainable.

Further requirements, specific to the design process are

detailed in IEC 62566 [12]. This is currently the only

standard that deals with FPGA-based safety I&C

systems. However, it is not endorsed by the U.S NRC

and therefore serves only as a reference.

Software Design Verification

The objective of Software Design Verification is to

demonstrate that the design is a correct, accurate, and

complete transformation of the software requirements

and that no unintended features are introduced.

The first verification task involves ensuring the design,

expressed in VHDL, is syntactically correct. The

design was developed using the Xilinx tool which has

the capability to verify that the code is correctly written.

In order to verify that the design is functionally correct,

test benches were designed.

Verification

Verification is the task of determining if the

implementation of a model has been done correctly. For

ordinary software systems, testing is conducted to

verify that the system generates absolutely predictable

VHDL Verification of FPGA based ESF-CCS for Nuclear Power Plant I&C System

 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017 3

3

outcomes based on test data.

Simulation models have an expected rather than an

absolute behavior, and may have widely differing

results depending on configuration and input data. The

kind of testing used in development of software

systems is used to get a simulation model in functional

order, but additional testing is required for verification

and validation of the simulation model [13].

Fundamentals of Verification:

1. Tracing the model flow via flow diagram or

otherwise to determine if the model is taking all

possible actions in the course of a run.

2. Model outputs making sense for various

combinations

3. Dumping data to see if the values are what they

should be at simulation end.

4. Observing model behavior Validation

Test Case Development

Test cases for this system were developed, based on [14]

as follows:

 Requirements based test case selection

 Normal Range Test Cases: The objective of normal

range test cases is to demonstrate the ability of the

software to respond to normal inputs and conditions.

Software Implementation Verification

The purpose of the development and implementation is

to realize a specified system element. This process

transforms specified behavior, interfaces and

implementation constraints into fabrication actions that

create a system element according to the practices of

the selected implementation technology. The system

element is constructed or adapted by processing the

materials and/or information appropriate to the selected

implementation technology and by employing

appropriate technical specialties or disciplines. This

process results in a system element that satisfies

specified design requirements through verification and

stakeholder requirements through validation [15].

Fig. 1. VHDL Code Verification Flow Chart

Restu MAERANI1, and Jae Cheon JUNG2

4 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017

3 Methodology
VHDL code Testing

Every VHDL implementation goes through extensive

verification. How do we verify the circuit behaves as

expected? We basically provide stimulus to the circuit

at its input port and check its output. We change the

input and check the output again. We continue doing it

until we exhaust all possible inputs. If output under all

conditions is as expected, the circuit stands verified.

In VHDL code verification process the following steps

had been done to verify the code:

1. Create writable folder outside VIVADO

2. Create a VHDL code using XILINX.

3. Run VIVADO and add XILINX file as a

source.

4. Run synthesis.

5. Run Implementation.

6. Run Schematic.

7. Run Simulation.

8. Use generated VHDL to simulate the

schematic for verification of all logic gates and

hardware functions.

9. Defines the unit of time which we will use to

change the values of the inputs x and y at certain

periods of time. The code changes the values of x and

y at defined intervals of time.

- Specify Input/output ports of VHDL

- Set Clock, Reset values and HDL start time

10. Run the simulation under all possible scenarios

11. Check the output waveform and compare it with

the designed truth table

12. Verify the possibility to generate bit stream file

that can deploy for FPGA

13. Write VHDL Verification Code

According to FPGA Basys3 board hardware features it

has limited digital inputs/output ports (24 I/O/digital

ports). According to system design there are more than

25 Input/output signals

The proper design is to use two FPGA Basys3 to

implement the whole SIAS to actuate Pump.

The first board process the signal from PPS, MTC,

Minimum Inventory (MI) system level and rest signals.

The second board to process the signals coming from

selective 2 out of 4,signals related to SIAS from Main

Control Room (MCR) and the signals coming from

Fig. 2. Simulation Waveform (a) System Level, (b) Component Level

VHDL Verification of FPGA based ESF-CCS for Nuclear Power Plant I&C System

 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017 5

5

Remote Shutdown Room (SRS) to generate start /stop

signal to pump A.

VHDL Code Verification of Selective 2 out of 4

Logic.

After completion of synthesis verification process,

implementation verification process start to verify the

possibility of the hardwired logic gates structure and

the configuration file to deploy to FPGA board and

timing constrains for gate synchronization

One of the missions to verify if the same code after

synthesis and implementation verifying processes will

generate the designed logical synthesis using VIVADO

After completion of synthesis verification process,

implementation verification process start to verify the

possibility of the hardwired logic gates structure and

the configuration file to deploy the FPGA board and

timing constrains for gate synchronization

4 Conclusion

The purpose of verification activity is to prove the

completeness of the design, to make sure that the

design can be tested its reliability, has complete and

same specification and requirement from the design

specification, system criteria and technical

requirements that allowed. This method also we call it

with white box testing which is examine the structure

of the code by looking at the code itself. Unit testing is

generally done within a class or a component.

VHDL code verification technique are for the software

implementation level to test the program source code.

It targets the faults that the programmer may introduce

in the source code such as coding errors or bugs [16].

Acknowledgement

This research was supported by the 2017 Research

Fund of the KEPCO International Nuclear Graduate

School (KINGS), Republic of Korea.

References

[1] H.-W. Huang, C. Shih, S. Yih, and M.-H. Chen,

“Integrated software safety analysis method for

digital I&C systems,” Ann. Nucl. Energy, vol. 35,

no. 8, pp. 1471–1483, 2008.

[2] M. S. Farias, R. H. S. Martins, P. I. N. Teixeira,

and P. V. R. Carvalho, “FPGA-based I&C

systems in nuclear plants,” Chem. Eng. Trans.,

vol. 53, pp. 283–288, 2016.

[3] IAEA, “Application of Field Programmable Gate

Arrays in Instrumentation and Control Systems of

Nuclear Power Plants,” Iaea Nucl. Energy Ser.

Publ. NP-T-3.17, vol. 1995–7807, no. Viena,

2016.

[4] US.NRC, “Chapter 7. Instrumentation and

Controls,” in The AP1000 Design Control

Document Tier 2, no. Dcd, .

[5] “Chapter 6. Engineered Safety Features,” in

APR1400 SSAR Document, .

[6] “IEEE Recommended Practice for Architectural

Description of Software-Intensive Systems IEEE-

SA Standards Board,” 2000.

[7] IEEE, “Standard for System and Software

Verification and Validation,” in IEEE Std 1012-

2012, 2012.

[8] IEEE, “Systems and software engineering -

Software Life Cycle Processes,” in IEEE Std

12207-2008, vol. Second Edi, 2012.

[9] IEEE, “Std 1076-2008, Standard VHDL

Language Reference Manual,” 2009.

[10] R. Fink, C. Killian, and T. Nguyen,

“Recommended Approaches and Design Criteria

for Application of Field Programmable Gate

Arrays in Nuclear Power Plant Instrumentation

and Control Systems,” 2011.

 Fig. 3. ESF - CCS Operation

Restu MAERANI1, and Jae Cheon JUNG2

6 ISOFIC 2017, Gyeongju, Korea, November 26-30, 2017

[11] RTCA, “Software Consideration in Airbone

System and Equipment Certification,” in

RTCA/DO-178B, 1992.

[12] IEC, “Nucear Power Plants - Instrumentation and

Control Important to Safety - Development of

HDL - Programmed Integrated Circuits for

Systems Performing Category A functions,” in

International Standard IEC 62566, 2012.

[13] Verification and Validation of Simulation Models.

2009.

[14] RTCA, “Software Considerations in Airborne

Systems and Equipment Certification,”

RTCA/DO-17B, 1992.

[15] IEEE, “System and Software Engineering-

System Life Cycle Process,” in IEEE Std 15288-

2008, vol. Second edi, 2012.

[16] M. Kooli, F. Kaddachi, G. Di Natale, A. Bosio, P.

Benoit, and L. Torres, “Computing reliability: On

the differences between software testing and

software fault injection techniques,”

Microprocess. Microsyst., vol. 50, pp. 102–112,

2017.

