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Abstract: Recently, human error has rarely (although it is not often) occurred during the power 

generation of nuclear power plants (NPPs). For this reason, many countries are conducting 

researches on the smart support systems of NPPs. Smart support systems can help decisions of 

operators in severe accident occurrence. In this study, a smart support system was developed to 

predict the core uncovery time, reactor vessel failure time, and containment failure time. Also, 

through this system, operator can predict the accident scenario, accident location and accident 

information in advance. In addition, it is possible to decide the integrity of the instrument and predict 

the life of the instrument. The data was obtained by simulating severe accident scenarios for the 

Optimized Power Reactor 1000 (OPR1000) using modular accident analysis program (MAAP) code. 

The prediction of the accident scenario, accident location and accident information is conducted 

using artificial intelligence (AI) methods. 
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1 Introduction 

Nuclear power plants (NPPs) are designed in 

consideration of design basis accidents (DBAs). 

However, if the emergency core cooling system 

(ECCS) is not working properly in a loss of 

coolant accident (LOCA) situation, it can induce 

a severe accident that exceeds a DBA [1]. For 

example, the Fukushima accident was caused by 

the natural disaster exceeding the DBAs. In the 

Fukushima accident, the situation inside the 

NPPs, leading to a major accident were not 

known. Therefore, accident diagnosis and 

prediction techniques are essential to 

understanding the progress of severe accidents. 

After the TMI accident in 1979 and the 

Chernobyl accident in 1986, safety problems at 

NPPs have emerged as a global concern [1]. 

These two accidents indicated that human error is 

the major contributor to accidents at NPPs [2]. 

For this reason, many countries are conducting 

researches on the safety problem and the operator 

support systems of NPPs.  

During transient occurrences in NPPs, operators 

analyze the trend of several parameters indicated by 

measuring instruments in the main control room 

(MCR) [3]. Many alarms from many different 

systems often occur at the same time during 

transient occurrences in NPPs [4]. Therefore, it is 

difficult for operators to predict the transients 

scenarios of the NPP through information acquired 

from various measuring instruments. If a transient 

occurs in an NPP, operators can make wrong 

decisions and actions, thereby leading to serious 

accidents [3]. 

Recently, interest in the fourth industrial 

revolution has been increasing worldwide and 

artificial intelligence (AI) has been applied to 

various research fields. AI methods have very 

low prediction error through the data training, 

and reliability of prediction data is very high. For 

these reason, scientists are conducting researches 

AI in recent years. 

In this study, a smart support system was 

developed to predict the severe accident. The 

prediction of the accident scenario, accident 

location and accident information is conducted 
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using AI methods. It is expected that the smart 

support system can contribute to improving the 

safety of the NPP by predicting the accident 

scenario. 

 

2 Smart support system modules 

The smart support system modules consist of five 

modules as subsystems. Table I shows the 

modular accident analysis program (MAAP) 

code parameters used for the smart support 

system diagnosis modules.  

Table 1 MAAP code parameter 

No. Parameter name 

1 pressure in cavity 

2 temperature of gas in cavity 

3 initial temperature of the water in containment node 

4 mass of water in the containment sump node 

5 core exit temperature 

6 pressure in pressurizer 

7 boiled-up water level from bottom of RPV 

… … 

78 collapsed water level in primary system 

79 water level in refueling water storage tank 

 

Fig. 1 shows the overview of the smart support 

system. Fig. 2 shows the information and 

accident diagnosis. Fig. 3 shows the data 

processing of smart support system. The data was 

obtained by simulating severe accident scenarios 

for OPR1000 using MAAP code. The data was 

predicted and analyzed using the MATLAB 

program. 

 

Fig.1 Overview 

 

 

 

Fig.2 Information and accident diagnosis 

 

 

 

Fig.3 The data processing of smart support 

system 

 

2.1 Transient state identification module 

In this module, the base scenarios are classified by 

seven initiating events. The base scenarios of 

seven events have been calculated for OPR1000 

plant: Hot-leg LOCA, cold-leg LOCA, steam 

generator tube rupture accident, station blackout 

accident, main steam line break accident, feed 

water line break accident, and total loss of feed 

water accident. We used three support vector 

classification (SVC) modules for seven initial 

event categories. Fig. 4 shows the accident 

identification method using the trained SVC 

model. The seven accidents in NPPs are classified 

using the three SVC modules. The SVC models 

are trained to classify the transients as shown in 

Table II.  
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Fig.4 Accident identification method using the 

trained SVC model 

 

Table 2 Identification of the transients using the SVC 

model 

SVC 

model 

Hot- 

leg 

LOCA 

Cold- 

leg 

LOCA 

SGTR SBO TLOFW MSLB FWLB 

SVC1 1 1 1 1 -1 -1 -1 

SVC2 1 1 -1 -1 1 1 -1 

SVC3 1 -1 1 -1 1 -1 1 

 

2.2 Estimation module of LOCA break size 

The estimation module of LOCA break size 

consists of hundreds of accident simulation 

scenarios according to the LOCA break sizes. In 

case of a large break (LB) LOCA, the break 

location can be detected easily due to the 

noticeable change in pressure indicated by the 

measuring instrument. However, in case of a small 

break (SB) LOCA, it is difficult to accurately 

detect the break location due to a small change in 

pressure indicated by the measuring instrument. 

In case of SBLOCA, the complete loss of 

high-pressure safety injection is classified as a 

type of accidents with a high probability of 

occurrence. We used a cascaded support vector 

regression (CSVR) model for prediction of the 

LOCA break size [5]. Fig. 5 shows the 

architecture of the CSVR model. 
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Fig.5 Architecture of the CSVR model 

 

2.3 Prediction module of hydrogen concentration 

in nuclear power plant containment 

The prediction module of hydrogen concentration 

in NPP containment was developed to predict 

hydrogen concentration in NPP containment in 

the event of a severe accident. If the NPP 

operators can predict the hydrogen concentration 

in the containment under severe accident 

conditions using this module, the integrity of 

NPPs will effectively be maintained, and 

explosions can be prevented [6]. We used a 

cascaded fuzzy neural network (CFNN) model for 

predicting hydrogen concentration in NPP 

containment. Fig. 6 shows the architecture of the 

CFNN model.  
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1ŷ

2ŷ
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Fig.6 Cascaded fuzzy neural network (CFNN) 

 

2.4 Prediction module of reactor vessel water level  

The prediction module of reactor vessel water 

level was developed to estimate the nuclear 
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reactor vessel water level in the event of a severe 

accident. The CFNN model predicts the nuclear 

reactor vessel water level according to the elapsed 

time after reactor shutdown by using the inputs of 

the predicted LOCA break size and containment 

pressure [7]. 

 

2.5 Prediction of golden time module  

The prediction module of golden time was 

developed to predict the golden time for 

recovering the safety injection system (SIS) under 

a severe accident to prevent core uncovery, reactor 

vessel failure and containment failure. Even if the 

SIS is not normally operated in the event of LOCA 

but recovered during the golden time, it may be 

possible to prevent core uncover, reactor vessel 

failure and containment failure [1].  

 

3 Summary and conclusion 

The integrated early diagnosis prototype is being 

developed for the purpose of decision-making 

support for NPP operators during a severe 

accident situation. If the classification of events 

and the prediction of critical parameters are 

available from the integrated early diagnosis 

prototype, a decision-making will be of help and 

emergency actions can be very easy [8]. The 

MAAP code was used to describe the accident 

situation and the 81 measured signal data 

elements were used to diagnose the severe 

accident in NPPs. The smart support system was 

developed to find out the transient scenarios by 

using short time-integrated signals after reactor 

trip. Therefore, it is expected that the smart 

support system can be applied to identify and 

estimate the circumstances of the transient 

scenarios at NPPs and can be utilized effectively 

to support plant operators in critical situations. 

The early diagnosis of accidents and its 

predictions are useful and important information 

for NPP operators when they are faced with 

accidents.  

 

Acknowledgement 

This work was supported by the National Research 

Foundation of Korea (NRF) grant funded by the 

Korea government (MSIP), (Grant No. 

2012M2B2B1055611). 

References  

 

[1] K.H. Yoo, J.H. Back, M.G. Na, “Prediction of 

golden time using SVR for recovering SIS under 

severe accidents,” Annals of nuclear energy, Vol. 

94, pp. 102-108, 2016. 

[2] P. Xu, W.M. Yang, Y. Bai, Y. Somg, “Analysis of 

operator support method based on intelligent 

dynamic interlock in lead-cooled fast reactor 

simulator,” Annals of nuclear energy, Vol. 99, pp. 

279-282, 2017. 

[3] K.H. Yoo, J.H. Back, M.G. Na, “Prediction of 

transient scenarios using AI after severe accident 

occurrence,” Korea Nuclear Society Spring Mtg, 

Jeju, Korea, May 17-19, 2017. 

[4] Hsieh, M.H, Hwang, S.L, Liu, K.H, Liang, S.F.M, 

Chuang, C.F, “A decision support system for 

identifying abnormal operating procedures in a 

nuclear power plant,” Nuclear engineering and 

design, vol. 249, 413–418, 2012. 

[5] K.H. Yoo, D.Y. Kim, J.H. Back, M.G. Na, 

“Prediction of Golden Time Using SVM for 

Recovering SIS in Severe Post-LOCA 

Circumstances,” presented at INTELLI 2015, St. 

Julians, Malta, Oct. 11-16, 2015. 

[6] G.P. Choi, D.Y. Kim, K.H. Yoo, M.G. Na, 

“Prediction of hydrogen concentration in nuclear 

power plant containment under severe accidents 

using cascaded fuzzy neural networks,” Nuclear 

engineering and design, Vol. 300 pp. 393-402, 

2016. 

[7] D.Y. Kim, K.H. Yoo, M.G. Na, “Reactor Vessel 

Water Level Estimation During Severe Accidents 

Using Cascaded Fuzzy Neural Networks,” Nuclear 

engineering and technology, Vol. 48, No, 3, pp. 

702-710, 2016. 

[8] S.Y. Park and K.I. Ahn, “SAMEX: A severe 

accident management support expert,” Annals of 

nuclear energy, Vol. 37, No. 8, pp. 1067-1075, 

2010. 


