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Abstract: Nuclear power plants (NPPs) consist of very large complex systems. If accidents 

happen in NPPs, operators will try to find out abnormal plant states by observing the temporal 

trends of some important parameters. In this regard, the objective of this study is to identify 

the accidents when the accidents happen in NPPs. In this study, the loss of coolant accidents 

(LOCAs) were identified and their break sizes were predicted using the multi-connected 

support vector machine (MSVM) model. The optimal parameter values of the MSVM model 

are obtained using genetic algorithms (GAs). The proposed algorithm uses the short time-

integrated simulated sensor signals after the reactor trip. The results show that the MSVM 

model can predict the break position and size of the LOCAs accurately. Therefore, the LOCA 

identification and the accurate prediction of break size are useful for NPP operators when they 

try to manage LOCA accidents at NPPs. 

 

1 Introduction 

If an event or accident occur in nuclear power plants 

(NPPs), operators will try to figure out abnormal 

plant states by monitoring the temporal trends of 

several important parameters [1]. However, 

operators are provided with a part of information and 

also, there may be not enough time to recognize and 

diagnose the circumstance of a NPP. Thus, it is very 

difficult for operators to predict the progression of 

the accidents by observing the trends of some 

parameters on large display panels in the main 

control room (MCR). In this process, the wrong 

decisions and actions of the operator can cause 

severe accidents although the operators take action 

based on the emergency operating procedure (EOP). 

Therefore, it is necessary to study the operator 

support system of NPPs. 

In this regard, accurate prediction of the LOCA 

break position and size is the goal when LOCA 

occurs in NPPs in this study. Accurate information 

on LOCA break size and position has to be provided 

to the operators for effective accident management. 

In this paper, the authors used multi-connected 

support vector machine (MSVM) as a learning 

algorithm for classification and regression. Multi-

connected support vector classification was used to 

mainly identify the three break positions of LOCAs 

such as hot-leg, cold-leg, and steam generator tube 

rupture (SGTR). Moreover, the proposed MSVM in 

event classification identified other initiating events 

of several accidents such as total loss of feedwater 

(TLOFW), station blackout (SBO), steam generator 

tube rupture (SGTR), main steam line break (MSLB), 

and feedwater line break (FWLB). In addition, 

multi-connected support vector regression (MSVR) 

was utilized to predict the break sizes of each LOCA 

break position. 

Since, especially, LOCAs with small break sizes are 

difficult to be identified, the MSVM model is 

proposed to help to the operators to promptly 

identify the types of LOCAs and to recognize how 

the accidents go on under such circumstances. The 

MSVM model in this study is verified by using the 

simulation data of the modular accident analysis 

program (MAAP) code [2]. 

 

2 MSVM Methods 

 

In this study, the MSVM method consists of parallel 

or serial connection of the SVM structures. MSVM 

model includes two or more SVM modules. Fig. 1 

shows the parallel and serial connection of the 

MSVM model. The parallel-connected SVC model 

can classify two or more events according to the 

connected SVC model. The serial-connected SVR 

model repeats the inference processes by adding a 

new inference to a prior inference, which increases 

the estimation accuracy of the LOCA break sizes. 
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2.1 MSVC model 

 

The MSVM model with L  SVC modules can 

classify up to 2L  types of events. The support 

vector classification (SVC) model is used as a 

classifier to classify the data of a non-linear form. It 

makes the decision principle to classify a data vector 

into a binary form such as 

 , ),( , 1,, ) ,( ., 1y y R y   x x x  The optimal 

separating hyperplane is determined by maximizing 

the distance between the boundary surface and the 

closest data, which is called the margin. This is given 

by [3]: 
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This optimal separating hyperplane is able to be 

established by minimizing w  and b . T
w w  has to 

be minimized to maximize the margin. The 

generalized optimal separating hyperplane is 

determined by minimizing the following functional 

as follows: 
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The non-negative parameter i  in the second term 

of Equation (4) was proposed to deal with the 

problems associated with a misclassification due to 

the noise on the data. The parameter   controls the 

trade-off between the complexity of the SVC model 

and the number of non-separable points, and is 

referred to as a regularization parameter. 

In the case that the linear boundary in the input 

spaces is not able to separate the two classes properly, 

it is possible to create a hyperplane that allows a 

linear separation in a higher dimensional feature 

space. This can be carried out by mapping the 

training data from the input space into a higher 

dimensional feature space. The hyperplane in this 

feature space can classify the data as the two 

categories. Specifically, the primal space is 

transformed into high dimensional feature space by 

a nonlinear map ( )φ x . The function ( ) xi
, is called 

the feature that is nonlinearly mapped from the input 

space x , and  1 2 φ
T

N
. Finally, the SVC 

model with the kernel function as a classifier to 

classify the data of a non-linear form is expressed as 

Eq. (3). This is solved by the Lagrange multiplier 

technique and standard quadratic optimization 

technique [3]: 
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2.2 MSVR model 

 

After the introduction of the  - insensitive loss 

function, the SVMs use a robust learning algorithm 

used for regression problems. In the serial-connected 

SVM architecture shown in Fig. 1. (b), an SVR 

module in more than two stages uses its outputs of 

the prior stages as well as data from the original input 

signals. These serial-connected SVM architectures 

are proposed to enhance the inference process by 

adding a new inference to a prior inference. 

In this paper, only the first SVR module will be 

explained since a posterior stage SVR module is a 

simple extension of the first SVR module. Let a 

break size data set be expressed in the form 

  
1

,

 x

N m

i i i
y R R , where xi  is the input vector 

for the first SVR module. The SVR module output 

(LOCA break size) is expressed as  
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where 1 2[  ] ,T

Nw w w w  1 2[    ]T

N   Φ . 

The input vector x is mapped into vector ( )Φ x  of a 

high-dimensional kernel-induced feature space. To 

estimate the LOCA break size, the parameters w  

and b  should be optimized first. Using a kernel 

function, an input space of data can be mapped into 

a high-dimensional kernel feature space [4]. The 

- insensitive loss function is determined as follows: 
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In existing SVR approaches, in order to solve the 

following quadratic optimization problem with 

constraints, the Lagrange multiplier technique is 

used. 
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Finally, the regression function using the kernel 

function becomes: 
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where i
 is a real value and ( , )x xiK  is a kernel 

function. The training sets that correspond to non-

zero i
 are called the support vectors. The 

coefficient i
 is expressed by the Lagrange 

multipliers  i  and * i . Since the radial basis 

function (RBF) kernel is the most frequently applied 

to the nonlinear regression [5] and also, provides 

better performance than other kernels in estimating 

the LOCA break size, the RBF kernel is used in this 

study [6].  

The SVM parameters such as       of the 

kernel function are optimized using a genetic 

algorithm (GA). The optimized parameters are used 

to construct the SVM model for estimation. A fitness 

function for the GA is proposed to minimize the 

errors of the data set as follows: 

 

 1 1 2 2expF E E     (9) 

 

where 
1  and 

2  are weighing coefficients, and 

1E  and 
2E  denote the root-mean-square (RMS) 

error and maximum error, respectively, and are 

defined as follows: 
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where N  denotes the number of data points, 
ky  

and ˆ
k

y are the target and estimated values, 

respectively. 

 

3 Application of MSVM models for 

LOCA break position and size 

prediction 

3.1 Prediction of the break position 

Input variables for the MSVC model are composed 

of the signals measured at reactor coolant system, 

steam generator and containment vessel. After 

reactor trip, major accidents were classified by using 

very short time integral values of the measured 

signals.  

Input variables of MSVC model are integral values 

of 13 simulated sensor signals obtained from the 

MAAP code. The total simulation number of 

accident scenarios is 618. These acquired data are 

divided into training data and test data. The training 

data consist of 190 hot-leg LOCAs, 190 cold-leg 

LOCAs, 190 SGTR, 2 SBOs, 2 TLOFWs, 5MSLBs, 

and 5 FWLBs. The test data consist of 10 hot-leg 

LOCAs, 10 cold-leg LOCAs, 10 SGTR, 1 SBO, 1 

TLOFW, 1 MSLB, and 1 FWLB. 

In this paper, three SVC modules connected in 

parallel were used to identify the LOCA break 

positions and other events. Three SVC modules were 
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trained to identify as shown in Table 1. As a result, 

the MSVC model accurately identified the break 

positions when there is no measurement error. That 

is, perfect classification was accomplished even 

though pretty short time measurement values were 

used. Next, three types of measurement errors model 

was assumed to check the influence on the MSVM 

model in event classification. Finally, in order to 

verify the effect of the safety system actuation on the 

MSVR model, we assumed that the safety system 

actuated. Table 2 shows the result for the 

measurement errors. Despite of measurement errors, 

MSVC model identified events more accurately than 

98.5%. Table 3 shows results when the safety system 

operated. In this case, MSVC model identifies events 

accurately. 

 

3.2 Prediction of the break size 

 

In this paper, we predicted break sizes in hot-leg 

LOCA, cold-leg LOCA, and SGTR using the MSVC 

model. The number of simulation data is 200 for 

each break position. The 200 accident simulations 

were divided into 160 training data, 30 verification 

data, and 10 test data. Verification data were used to 

check the overfitting occurrence of the MSVR 

module. Table 4 shows prediction results in case that 

there are no measurement errors. The root mean 

square (RMS) errors for the test data are 0.38%, 

0.32%, and 0.58%, respectively. Fig. 2 shows the 

target and predicted values for the hot-leg LOCA. 

Table 5 shows the estimation error of the break sizes 

when there is a measurement error. If there is a 5% 

measurement error in the input signal, the RMS 

errors for the test data are 3.41%, 3.89%, and 7.28%, 

respectively. Fig. 3 shows the target break sizes, 

predicted break sizes, and relative errors in hot-leg 

LOCA, cold-leg LOCA, and SGTR. The Small 

break (SB) LOCA has a higher relative error than the 

large break (LB) LOCA, and the break size is 

predicted more accurately as the break size increases. 

Table 6 shows the estimation error of break size for 

hot-leg LOCA, cold-leg LOCA, and SGTR. The 

RMS errors for the test data are 0.44%, 0.23%, and 

0.65%, respectively. Fig. 4 shows the target break 

sizes, predicted break sizes, and relative errors in 

hot-leg LOCA, cold-leg LOCA, and SGTR. As a 

result, the maximum relative error of the MSVR 

model in three types of LOCA does not exceed 4%. 

 

TABLE 1 

EVENT IDENTIFICATION USING THE MSVC MODEL 

MSVC 

Hot-

leg 

LOC
A 

Cold-
leg 

LOCA 

SGTR SBO 
TLOF

W 
MSLB FWLB 

1ŷ   -1 1 -1 1 -1 1 -1 

2ŷ  -1 -1 1 1 -1 -1 1 

3ŷ  -1 -1 -1 -1 1 1 1 

 

TABLE 2 

CLASSIFICATION RESULT OF THE TRANSIENTS BY THE MSVC 

MODEL (WITH MEASURED ERRORS) 

Integrating  

Time 

Misclassification No 
Don’t Know 

classification No. 

Random  

(5%) 

-

5% 
5% 

Random  

(5%) 

-

5% 
5% 

3 1 1 2 0 0 0 

5 1 1 2 0 0 0 

10 0 4 7 0 0 0 

 

TABLE 3 

CLASSIFICATION RESULT OF THE TRANSIENTS BY THE SVC 

MODEL (SAFETY SYSTEM ACTUATION) 

Integrating 

Time 

Misclassification 

No 

Don’t Know 

classification No. 

3 1 0 

5 0 0 

10 0 0 

 

TABLE 4 

PERFORMANCE OF MSVR MODEL (WITHOUT INSTRUMENT 

ERROR) 

Break 

position 

Number 

of SVR 
modules 

Development data Test data 

RMS 

error 

(%) 

Max 

error 

(%) 

RMS 

error 

(%) 

Max 

error 

(%) 

Hot-leg 3 0.44 0.38 0.38 0.80 

Cold-leg 11 0.22 1.59 0.32 0.98 

SGTR 2 0.66 2.34 0.58 1.13 

 
TABLE 5 

PERFORMANCE OF MSVR MODEL (INSTRUMENT ERROR 5%) 

Break 

position 

Number of 

SV 

Test data 

RMS error 
(%) 

Max error 
(%) 

Hot-leg 3 3.41 11.75 

Cold-leg 11 3.89 18.08 

SGTR 2 7.28 37.90 

 
TABLE 6 

PERFORMANCE OF MSVR MODEL (SAFETY SYSTEM ACTUATION) 

Break 
position 

Number of 
SV 

Test data 

RMS error 

(%) 

Max error 

(%) 

Hot-leg 3 0.44 3.38 

Cold-leg 11 0.23 1.59 

SGTR 2 0.65 2.34 
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1ŷ
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 (b) Serial connection 

Fig.1 Multi-connected support vector machine. 
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Fig. 2. Target and estimated break sizes (hot-leg LOCA) 
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(a) Hot-leg LOCA 
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(b) Cold-leg LOCA
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(c) SGTR 

Fig. 3. Target and estimated break sizes, and relative error 

(with measurement errors) 
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(a) Hot-leg LOCA 
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(b) Cold-leg LOCA 

 

0.0 0.2 0.4 0.6 0.8

0.00

0.02

0.04

0.06

0.08

 Target

 Testdata (Estimation)

Break size(m
2
)

E
st

im
at

ed
 s

iz
e(

m
2
)

-2

0

2

 Test data ( Relative error)

R
el

at
iv

e 
er

ro
r(

%
)

 

(c) SGTR 

Fig. 4 Target and estimated break sizes, and relative error 

(safety system actuation) 

 

4 Conclusion 

In this study, the proposed MSVM model is verified 

by using the simulation data of the MAAP code. We 

used an initial integral value of the simulated sensor 

signals to identify LOCA break position and size. 

The training data were used to train the MSVM 

model. And, the trained model was confirmed using 

the test data. The results show that the MSVM model 

can identify accurately the break position of LOCAs 

and estimate their break sizes. The RMS errors of the 

LOCA break size by the MSVM model does not 

exceed 8% error for hot-leg LOCA, cold-leg LOCA 

and SGTR even though there are 5% measurement 

errors in input signals. Since the proposed algorithm 

uses initial data after reactor trip and the initial 

simulation data were known to be accurate, it can be 

effectively used in an actual NPPs as well. Therefore, 

it is expected that the MSVM model can be applied 

to identify and estimate the circumstances of the 

LOCA accidents at NPPs and can be utilized 

effectively to support plant operators in an 

emergency situation. 
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