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Abstract: Human errors is one of the major factor for events that can aggravate the plant safety. 

Therefore, in case of abnormal or emergent situation, monitoring safety functions or diagnosis of 

Nuclear Power Plant (NPP) states are burdensome in spite of necessity. This study attempts to 

develop algorithms for monitoring the status of safety functions and diagnosis of accident. Therefore, 

it is expected that this approach can be applied to diagnose the overall NPP states. 
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1 Introduction 

 

Monitoring the state of current nuclear power 

plants (NPPs) is performed under the judgment of 

operators considering indicators and alarms based 

on the procedures. Safety functions which are 

critical for the NPP integrity should be monitored 

repeatedly and periodically while performing 

procedures. In case of abnormal or emergency 

situation, continuous monitoring of safety 

functions may be a mentally burdensome task for 

operators, because they should try to identify 

possible success paths at the same time [1]. In 

addition, diagnostic activities in emergency 

situations may cause not only delay of effective 

responses, but also occurrence of serious 

consequences due to selecting an inadequate 

procedure (i.e. wrong diagnosis) [2]. 

According to the Operational Performance 

Information System (OPIS) [3], the human error is 

one of the major factors for unexpected reactor 

trips. From 2000 to 2016, about 17% of events (i.e., 

47 of 274) were caused by human errors. 

Early detection of anomalies and accurate 

diagnosis are very crucial for the safety of NPPs. In 

that sense, this study attempts to develop an 

algorithm for the on-line monitoring of the status of 

safety functions and the diagnosis of accidents. This 

study applies two approaches. First, a rule-based 

algorithm is suggested for monitoring safety 

parameters. Then, Long Short Term Memory 

(LSTM), which is one of the Recurrent Neural 

Networks (RNNs) is suggested for the diagnosis of 

accident. 

 

2 On-line monitoring of safety 

functions 

 

2.1 Parameters for monitoring of safety functions 

For developing an on-line monitoring algorithm for the 

safety functions of NPPs, this study selects safety 

parameters. A power plant of Westinghouse 900 MWe 

with three loops has been used as a reference plant. Six 

critical safety functions (CSFs) will be monitored, i.e., 

subcriticality, corecooling, heat sink, RCS integrity, 

containment integrity and RCS inventory. Fig.1 shows 

the hierarchy of CSFs. Total 29 parameters are selected 

for monitoring of six CSFs. Table 1 shows the selected 

parameters by function. 

 

2.2 Rule based expert system 

To monitor parameters related with CSFs, a rule-based 

expert system has been developed. A rule-based expert 

system mimics the reasoning of human expert based on 

rules as the knowledge. Therefore, it can provide a way 

to code expert knowledge for narrow areas. By using 

assertion sets and a set of rules that designate how 

assertions work such as a set of if-then statements (i.e., 

IF-THEN rules), rule based expert systems can be 

created [5]. 
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Fig.1 The hierarchy of critical safety functions in Westinghouse PWR 

 

Table 1 Selected parameters 

CSF Parameters Number 

Subcriticality 

Power range, Intermediate 

range, start-up rate (source , 

intermediate) 

4 

Corecooling 

Core exit temperature, 

hotleg temperature, RCS 

pressure 

5 

Heat sink 

SG narrow range lvl and 

pressure, feedwater and aux 

feedwater flow 

12 

RCS integrity RCS average temp 3 

Containment 

integrity 

Containment pressure, 

spray pump operation, 

sump lvl, 

4 

RCS inventory Pressurizer water lvl 1 

Total 29 

 

The rule base has been developed based on CSF tree of 

emergency operating procedure. Fig. 2 shows an 

example of CSF tree for heat sink. The integrity of heat 

sink function can be determined by the narrow range 

level and pressure of steam generators and total 

feedwater flow. Depending on the severity, the status of 

CSF are classified into 1 to 4 levels, i.e., the normal 

condition, abnormal state, risk-significant and extreme 

threat. The on-line monitoring algorithm using the rule 

base was implemented with Python 3.5.3. Fig. 3 shows 

a part of Python code for the on-line monitoring for the 

heat sink function.  

 

 

 

 
Fig. 2 An example of CSF tree for heat sink

 

Is indicator value 

of SG NR lvl

more than (xx%)?

Yes

No

All SGs pressure 

less than (xx 

kg/cm2)?

Yes

No

All SGs NR lvl

less than (xx %)?

Yes

No

All SGs pressure 

less than (xx 

kg/cm2)?

Yes

No

Level 2

Level 2

Level 2

Level 4

Is total feedwater 

flow to SG more 

than (xx l/s)?

Yes

No

All SGs NR lvl

more than (xx %)?

Yes

No

Level 2

Level 1
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Fig.3 An example algorithm for heat sink on python 

 

2.3 Test 

The on-line monitoring algorithms for six CSFs 

have been tested by using the Compact Nuclear 

Simulator (CNS). For the demonstration of 

algorithm, a Loss of Coolant Accident (LOCA) 

scenario with the size of 200 square centimeters in 

loop 1 hot-leg was used. The malfunction to the 

CNS simulator is injected after 30 seconds. The 

total simulation time is 2,265 seconds. There are 

no control or additional interventions. Fig. 4 and 5 

show the test results for monitoring the safety 

functions of heat sink and reactor coolant system 

(RCS) integrity. X-axis and Y-axis represents the 

time and levels of CSFs, respectively. 

  

 

Fig.4 Heat sink status monitoring result 

 

Fig.5 RCS integrity status monitoring result 

 

3 Accident diagnosis 

 

3.1 LSTM 

This paper suggests the accident diagnosis algorithm 

using Long Short-Term Memory (LSTM). LSTM is an 

improved Recurrent Neural Network (RNNs). In case 

of original RNN, it tracks past values and goes back in 

time (i.e., back propagation). However, too much back 

propagation by long time causes vanishing gradients 

problem [6]. To improve RNN for this problem, LSTM 

is introduced for sequence learning. The modern 

LSTM design of cell has remained close to the original 

with forget gate and peep-hole connection [7]. 

As other LSTM models, in this study, each LSTM cell 

adjusts the output value using the input gate, the 

forgetting gate, and the output gate while maintaining 

the cell state. The input gate determines capacity of the 

input value. The forgetting gate determines how much 

to forget the degree of previous cell state, and the 

output gate determines how much to output. The 

following Equations (1) to (4) stand for each gate 
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denoted by  𝑖 ,  𝑜  and 𝑓  respectively. 𝑔  means the 

input node and has a 𝑡𝑎𝑛ℎ  activation function 

denoted by 𝜙. Also, 𝜎 stands for a sigmoid function. 

  

𝑔𝑙
(𝑡)

=  𝜙(𝑊𝑙
𝑔𝑥
ℎ𝑙−1
(𝑡)

+𝑊𝑙
𝑔ℎ
ℎ𝑙
(𝑡−1)

+ 𝑏𝑙
𝑔
)   (1) 

𝑖𝑙
(𝑡)
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𝑜𝑙
(𝑡)

=  𝜙(𝑊𝑙
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(𝑡) +𝑊𝑙
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𝑜)    (4) 

 

These equations give the update for a layer of memory 

cells ℎ𝑙
(𝑡)

 where ℎ𝑙−1
(𝑡)

 stands for the previous layer at 

the same sequence step and ℎ𝑙−1
(𝑡)

 stands for the same 

layer at the previous sequence step. As output, a fully 

connected layer at the highest LSTM layer, because our 

problem is multi-label [7]. Fig.6 shows a simple LSTM 

model for multi-label classification that is applied in 

this study. At the end of model, softmax function layer 

shown in Fig.7 was used for deciding the order of 

accident probabilities. 

 
Fig. 6 A simple LSTM model for multi-label classification 

 

 
Fig.7 An example of softmax function layer 

 

Same as monitoring, the coding of algorithm was 

implemented with Python 3.5.3. A total of 168 

parameters were selected based on procedures, CSFs, 

and by importance for control of NPP operation. In 

addition, 112 scenarios (i.e., 122,609 datasets with 168 

variables) were used for training. Learning rate and 

iteration sets are 0.001 and 2,000 respectively. Also, 

hidden layers are 3. These hyper parameters are set by 

manual search (i.e. trial and error learning). 

 

3.2 Test 

The designed LSTM model was examined with some 

test scenarios. Fig. 7 shows an example for a LOCA 

with the size of 10 square centimeters in loop1 cold-leg. 

Fig.8 Loop1 Cold-leg LOCA (10cm2) 

 

Not only this case but also most cases, accidents are 

usually diagnosed within 200seconds. Fig. 9 to 10 

show some examples of diagnosis results. 

Fig.9 A result for diagnosis of MSLB  

 

 

Fig.10 A result for diagnosis of SGTR 
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5 Conclusion 

 

5.1 Discussion 

In case of accident diagnosis algorithm, if unknown 

events or untrained events are given, it cannot classify 

accidents by itself. Though untrained events can be 

overcome by gathering more data, to cope with 

unknown events, it needs specific standards (e.g., 

probability standards). Also, monitoring results can be 

applied to classify accidents after pretreatment with 

Python. 

 

5.2 Conclusion 

The goal of this study is to develop algorithms for 

monitoring CSFs in NPP and accident diagnosis to 

unload operator’s task in abnormal or emergent 

situation for safety. It is expected that this approach can 

be applied to not only the performance monitoring, but 

also the diagnosis of NPP states. 
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