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Abstract: The complexity of modern industrial plants poses significant challenges for the design of 

effective alarm systems. Rigorous alarm management is recommended to ensure that the operators 

get useful information from the alarm system, rather than being overloaded with irrelevant state 

information. Alarm management practices have been shown to significantly reduce the frequency of 

alarms in industrial process plants. These practices help focusing the operators’ attention on actually 

critical situations. However, they cannot resolve the cascades of critical situations frequently 

occurring during emergency situations. 

Multilevel flow modelling (MFM) has been proposed as a way of representing knowledge about the 

industrial process and infer causes and consequences of deviations throughout the system. The 

method enables the identification of causes and consequences of alarm situations based on an 

abstracted model of the mass and energy flows in the system. 

The application of MFM for root cause analysis based alarm grouping has been demonstrated and 

can be extended to reason about the direction of causality considering the entirety of the alarms 

present in the system for more comprehensive decision support. 

This contribution presents the foundation for combining the cause and consequence propagation of 

multiple observations from the system based on an MFM model. The proposed logical reasoning 

matches actually observed alarms to the propagation analysis in MFM to distinguish plausible causes 

and consequences. This extended analysis results in causal paths from likely root causes to tentative 

consequences, providing the operator with a comprehensive tool to not only identify but also rank 

the criticality of a large number of concurrent alarms in the system. 
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1 Introduction 

Modern industrial plants contain a large number 

of interacting control loops and concurrent 

processes affecting the productivity and safety of 

the system. 

While control practices for individual components 

and constrained processes are widely adapted in 

industry, plant-wide control often faces too many 

uncertainties from the environment and the 

interconnected processes to be economically 

feasible [1]. Human operators who rely on alarm 

systems to supervise the plant operation thus 

control the vast majority of plants in the energy, 

petrochemical and chemical industries. Due to the 

large risks for humans as well as the environment 

in case of failures, rigorous alarm management is 

recommended for these industries to avoid 

overloading the operators [2]. 

Alarm management practices have been shown to 

significantly reduce the amount of irrelevant 

alarms presented to the operator by thoroughly 

scrutinizing the necessity and importance of the 

most frequent alarms and where possible 

combining and removing redundant alarms [3]. 
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A well maintained alarm system can avoid 

operator overload during normal operation. 

However, emergencies frequently generate 

cascades of true critical situations throughout the 

plant that overwhelm the operator with so called 

alarm floods. To cope with such situations the 

relation of those alarms needs to be examined and 

compiled into concise information to aid the 

operator in identifying the most relevant and 

immediate threats. [4] 

To identify relevant information during alarm 

floods the causality relation of the occurring 

alarms is a key information. While the analysis of 

historian data on the alarms gives insight in 

common correlation between alarm occurrences, 

inference of causality requires incorporating 

process knowledge. [5] 

Multilevel Flow Modelling (MFM) provides an 

abstract representation of an industrial process as 

a decomposition of connected mass and energy 

flows [6]. MFM methodology has been proposed 

as a versatile process representation to analyze 

causal patterns in a plant [7]. Inoue et al. [8] 

propose to use MFM for counter action planning 

in unknown emergency situations. Larsson and 

DeBor [9] and more recently Wang et al. [10] 

have demonstrated the application of MFM for 

root cause identification and alarm reduction 

based on identified root causes. The combination 

of dynamic alarm reduction and a system to 

propose feasible counter-actions would enable 

operators to react efficiently to any situation in the 

plant. 

As a starting point toward this comprehensive 

operator support system the extension of the 

method for root cause identification is described 

here. The identification of root causes as well as 

propagation paths based on the causality between 

observed alarms is discussed in this contribution. 

The following sections introduce the MFM 

methodology and the propagation reasoning based 

on MFM models. Based on that the proposed 

method for combination is outlined and 

conclusions for future work are drawn. 

 

2 Multilevel Flow Modelling 

Multilevel Flow Modelling (MFM) represents the 

goals and functions of a system by decomposing the 

mass and energy flows as means and ends of operating 

the system. 

Each flow component along the means-end dimension 

is described by basic flow functions. By the 

combination of means-end decomposition of the 

overall operation and part-whole perspective of 

individual flows the function of the system is analyzed 

and can be represented as a graphical model using the 

MFM concepts shown in Fig. 1. As example the MFM 

model of a watermill is considered, adapted from 

Lind [11] and shown in Fig. 2. 

The model shows the main objective of grinding grain 

as obj1, which is achieved by the mass flow of grain in 

mfs1. The grains fed into the mill are converted to flour 

and split-up bran. Energy flow efs1 reflects the 

conversion of the energy from the water by the gears 

and mill stone to energy used for grinding and energy 

losses not used in the system. This energy in turn is 

supported by the mass flow of water into the flume 

across the water wheel represented by mfs2. In this way 

the interacting functions throughout the system are 

described for the nominal operation. 

Industrial plants, however, often have a multitude of 

different operational situations by design. Each of these 

operational modes is defined by different nominal 

functions in the system and thus requires an adaptation 

of the model [12]. As described by Inoue et al. [8] 

adapting the model also facilitates the investigation of 

alternative behaviors of the plant. 

Fig. 1 MFM concepts used for modelling. 
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3 Prognostic and Diagnostic Reasoning 

Based on the MFM modelling primitives the 

propagation of failures through the system can be 

analyzed. Combinations of propagated states and 

patterns in the model describe the failure propagation 

in the system. Zhang [13] describes the most recent 

version of these propagation rules. 

The rules are defined for both, plausible causes and 

consequences of an observed state. The example in Fig. 

3 shows how a failure associated with a transport 

function has consequences on connected functions 

downstream of that transport. Applying all propagation 

rules to an observed failure, a fault tree of failures in 

the model can be generated. The resulting tree 

generally reflects alternative propagation paths at the 

same level. The alternative paths are not necessarily but 

frequently mutually exclusive. 

In conjunction with a set of truth-maintenance rules the 

possible propagation paths of each observation present 

in the system can be dynamically generated. This way 

changes to the observations as well as the considered 

configuration of the plant are taken into account at any 

given moment. The resulting causal paths are limited to 

plausible scenarios connected to specific observations, 

whereas a generic fault model as used by Wang 

et al. [10] comprises a comprehensive causal 

representation of all possible states. While the 

computational burden of this dynamic approach is 

higher than a precompiled causal graph, it yields more 

flexibility to accommodate changes of the system 

behavior. 

The propagation analysis for causes of two different 

faults is illustrated in Fig. 4. Each subordinate level in 

the tree structure reflects plausible causes for the 

immediate parent. 

The fault tra2:low equals to a low processing 

throughput of the mill, meaning that no grain is being 

milled. The other fault tra9:high corresponds to a too 

high flow of water from the flume over the waterwheel. 

The comparison of the two consequence trees reveals, 

that neither of the two observed alarms can be the cause 

for the other. In fact, if the low throughput were caused 

by a fault of the water flow it would be the opposite – 

low flow instead of a high flow as observed. 

In addition, a later observation of the flume level being 

high – sto2:high – is considered (Fig. 5). This 

observation may well be a direct cause for the high flow 

Fig. 3 MFM model of a watermill as described by Lind [11] 

Fig. 2 Downstream consequence propagation of faults on a 

transport function [13] 

Fig. 4 Cause analysis of two faults in the water mill, 

common cause bal3:leak is highlighted 
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of water from the flume. If it were the only fault in the 

system, however, it could not explain why the 

production of the water mill is low in the considered 

situation. Hence, a combined analysis of the possible 

causes and consequences is necessary. 

 

4 Combining Multiple Alarms 

By comparing the cause tree representation for the first 

two considered failures in Fig. 4 the common cause 

bal3:leak can be manually inferred. For a more 

complex system and a larger number of simultaneous 

observations, however, the proper inference becomes 

significantly more complex. This raises the need for a 

general and structured solution for reliable 

identification of the best explanation. 

Considering the combination of all suggested causes 

and consequences as a directed causal graph grants a 

better overview of the whole situation. Furthermore, a 

directed graph can be systematically analyzed by 

applying graph theory. 

The example of tra2:low and tra9:high results in the 

graph shown in Fig. 6. All edges are directed from 

cause to consequence. The green nodes represent the 

states that are supported by observations. The results 

generated from tra2:low are shown in blue and the 

results based on the observation tra9:high are shown in 

black. 

Fig. 5 Graph combining the causes and consequences suggested for two faults in the water mill. 

The graph is directed from cause to consequence. 

Fig. 6 Cause and consequence analysis for observation of 

high flume level 
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tra2:low and tra2:high both cause that the main 

objective of the water mill would fail, i.e. obj1:false. 

This relation is ommited here for readability. 

Finding the root cause in this graph is a matter of 

finding a minimal tree, which includes as many of the 

observations as possible while obeying the directivity 

of the graph.  

The tree rooted in bal3:leak thus yields the best 

explanation for the given observations. In terms of the 

physical system this can be interpreted as the water 

spilling over the water wheel instead of being 

transported by the buckets of the water wheel. This 

could for instance be caused by the water wheel being 

broken or bypassed. 

Each causal tree that can be identified by this analysis 

can be extended to also cover the consequence 

scenarios for the current situation. Considering a tree T 

whose leaves are the observations o(T), the tree can be 

extended by the consequences of each of these 

observations, so long as a consequence does not refer 

to a function that is already considered by any vertex in 

T or any observation from the system. 

Applying this method to the example results in the tree 

shown in Fig. 6. The states in grey are the relevant 

consequences beyond the observed states. 

The combined graph can be efficiently updated with 

new connected observations. Considering sto2:high, 

the complete cause and consequence analysis is already 

present in the graph and no new inference is necessary. 

As there exists no causal tree that also includes the new 

observation, the high flume level has to be an 

independent contribution to the high flow from the 

flume. 

The diagnosed causes would hence be a high inflow to 

the flume (sou3:high or tra8:high) as well as the spill 

of water represented by bal3:leak. The consequences 

will no longer include a low level in the flume 

(sto2:low) as the flume level has been identified as a 

likely cause for the situation. This shows, that the 

combined analysis of fault propagation from the 

observations yields a clear distinction of the causality 

between connected functions in the system. 

5 Conclusion 

This contribution outlined a generic method for 

situation analysis and distinction of causality based on 

MFM reasoning and graph interpretation. 

In the context of alarm management for a complex 

plant the underlying framework as well as the models 

have to be adaptive for many different configurations 

in the plant. 

The method proposed here takes in dynamic reasoning 

results based on an MFM model and has the potential 

to reliably distinguish the direction of causality as well 

as identifying the most plausible root causes and 

tentative consequences of any given scenario. 

This method is currently being implemented in a real-

time environment of a pilot-scale oil and gas 

production plant. Further investigation will be 

dedicated to the efficiency of the method and the 

integration of selective advanced signal processing for 

prognostic analysis of scenarios and fast distinction of 

situations. 
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