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Abstract: With the improvement of computer performance and the emergence of cutting-edge 

artificial intelligence (AI) algorithms, the autonomous operation based on AI is being applied to many 

industries. An autonomous algorithm is a higher level of concept than conventional automatic operation 

in nuclear power plants. In order to achieve an autonomous operation, the autonomous algorithm needs 

to include the superior function level to monitor, control and diagnose automated subsystems, and AI 

algorithms need to be suitable to make these superior functions. The artificial neural network (ANN), 

which is one of the AI approaches, can solve problems about the dynamic system that include the non-

linear input and output values. Safety systems of nuclear power plants (NPPs) have non-linear values, 

and are controlled through a combination between the automation systems based on conventional 

controller and the manual control by operator. It means that the automation level of current NPPs 

corresponds to the shared control that is not autonomous control. This study aims at improving the 

safety system of automation level from the shared control to the autonomous control. This study 

suggests a model of safety systems in NPPs by using function based hierarchical framework, and 

autonomous algorithm to control and diagnose the safety function state by using the Long Short Term 

Memory (LSTM) that is one of the recurrent neural network (RNN) methods. 
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1 Introduction 

An autonomous system is one that has the power and ability 

for self-governance in the performance of functions [1]. An 

autonomous system consists of hardware and software which 

can perform the necessary control function, without external 

intervention over extended time periods. According to the 

Billing’s definition about the level of automation, the 

autonomous control, which is a high level of automation, can 

be defined as the system in which human operators have no 

role in operation or are minimally involved in the operation, 

e.g., critical decision. 

One way to achieve autonomy, in some applications, is to 

utilize high level decision making techniques, i.e., 

“intelligent” methods, in the autonomous controller. The field 

of artificial intelligence (AI) offers some of tools to add the 

higher level decision making abilities [1].  Traditionally, AI 

must fundamentally understand the world around us, and this 

can be achieved if a learner can identify and disentangle the 

underlying explanatory factors hidden in the observed milieu 

of low-level sensory data [2]. In the early days of artificial 

intelligence, the field rapidly tackled and solved problems 

that are intellectually difficult for human beings but relatively 

straight-forward for computers problems that can be 

described by a list of formal, mathematical rules [3]. AI has 

embraced classical control theory, neural network, fuzzy 

logic and genetic algorithm. Recently, the performance of AI 

has explosively grown due to develop the hardware, 

multiprocessor graphics cards or graphics processing units 

(GPUs), and new AI algorithms (e.g., Deep Learning). 

Nuclear power plants (NPPs) is one of highly automated 

systems. NPPs are controlled through the collaboration 

between personnel and plant automation, including the 

responsibilities of the crew for monitoring, interacting, and 

overriding automatic systems [4].  Generally, automated 

systems in current NPPs, which has a low level of automation, 

require the operator’s intervention more extensively than in 

autonomous systems. According to Billings' proposed level 

of automation, the level of automation at nuclear power plants 

corresponds to the shared control [5]. 

There is an increased use of automation in the design for new 

plants compared with currently operating ones. For example, 

GE-Hitachi stated that “The control systems for the ESBWR 

have a high level of automation. All systems are automated 

unless regulation or human factor engineering analysis results 

dictate otherwise” [6]. Similarly, commenting on the concept 
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of operation for the U.S. Evolutionary Power Reactor (US-

EPR), AREVA stated that “Because of the levels of 

automation inherent in the I&C architecture, only one 

licensed operator will be required to be at the controls during 

normal, at power operations”. Furthermore, “…the initial 

MCR staffing level is established based on experience with 

previous four loop PWR plants and takes into account the 

increased levels of automation…”. Looking to future 

Generation IV NPP operations, two to four operators may 

manage up to a dozen modular plants [7]. 

Along with this increased interest in the automation, the 

application of autonomous control is also becomes 

highlighted in NPPs. Some studies have designed 

autonomous control systems for spacecraft nuclear power 

plants using PID controller [8]. Some applications of 

autonomous control to the system level in NPPs have been 

attempted using intelligent controllers (e.g., fuzzy, neural 

networks, and genetic algorithms) [9],[10]. 

This study aims at developing an autonomous operation 

algorithm for safety systems in NPPs to increase the level of 

automation from the shared control to the autonomous control. 

To design the autonomous operation algorithm, two 

approaches have been applied, i.e., the function-based 

hierarchical framework to model the NPP safety systems, and 

Long Short-Term Memory (LSTM), which is an AI technique, 

to control the modeled NPP safety systems. 

The Compact Nuclear Simulator (CNS) was used to obtain 

training data, and to verify the autonomous operation 

algorithm designed for the safety system. The CNS can 

simulate normal and emergency states based on a 930 MWe 

Westinghouse 3 loops plant [11]. 

This paper is organized as below. Section 2 describes the 

function-based hierarchical framework and LSTM. The 

safety systems of the reference plant are modelled using 

function-based hierarchical framework in Section 3. Then, 

the design of LSTM network structure is presented in Section 

4. Training and test of the suggested algorithm in real time 

will be introduced in Section 5. Finally, Section 6 concludes 

this work and proposes future studies. 

 

2 Methodology 
2.1 Function-based Hierarchical Framework 

This study suggests a function-based hierarchical framework 

to model safety systems in NPPs. One way to model a 

complex system is through the construction of hierarchical 

structures, in which it is decomposed into subsystems through 

some ‘authority relation’ and these subsystems are further 

decomposed until the lowest, arbitrarily chosen level is 

reached [12]. In general, a hierarchical framework provides a 

method to describe complex systems in terms of abstract 

entities, which can be used to represent functions and 

multiple components in a systems. A hierarchical control 

structure is also desirable to achieve an increasingly 

sophisticated autonomous controller [13]. Therefore, the 

hierarchical structure helps to systematically analyze NPP 

safety systems, and understand the interrelationship between 

lower and upper layers. 

The function-based hierarchical framework is divided into 

three levels: goal, function, and system levels to analyze NPP 

safety systems as shown in Fig 1. The function-based 

hierarchical framework starts at the highest conceptual level 

with the NPP’s high-level mission goal and is decomposed 

down to details by dividing them into the functions necessary 

to achieve the goal. 

The goal level defines goals which have to be achieved 

ultimately by the entire system and to ensure the health and 

safety of the public by preventing or mitigating the 

consequences of postulated accidents. The goal of nuclear 

safety systems can be generally defined as the prevention of 

core damage. Core damage can cause radiation release to the 

outside of NPP, and the released radiation can induces human 

health bad effects (such as short-term injuries or long-term 

cancers) as well as land contamination around the NPP. 

Therefore, the goal level in NPP safety system is defined as 

the prevention of core damage. 

The function level consists of the functions which are 

designed to achieve the goal. For pressurized water reactors 

(PWRs), the goal of NPP safety can be typically 

accomplished by nine safety functions. The safety functions 

include reactivity control, containment integrity, reactor 

coolant system (RCS) inventory and pressure control, RCS 

heat removal, core heat removal, hydrogen control and 

maintenance of vital auxiliaries. These safety functions are 

designed to maintain or control a boundary or parameter 

important to assuring the plant’s integrity, and to preventing 

the release of radioactive materials. 

The system level identifies systems, components, and 

input/output parameters of components that are designed to 

satisfy the safety function. For instance, safety injection 

system (SIS) and the chemical and volume control system 

(CVCS) can function to satisfy RCS inventory control 

function. Then, those systems can be decomposed into 

components. For instance, SIS contains SI pump, SI tank and 

SI valve. Input and output values of each component are also 
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defined in the system level of Function-based Hierarchical 

Framework. These are to be used for input/output nodes of 

LSTM later. Input values are defined as an NPP physical 

variable necessary as an input for the component to operate, 

e.g., RCS temperature, RCS pressure, and pressurizer level. 

Output values are defined as a state of the component 

resulting from the input, such as valve and pump states. 

 

Fig.1 Function-based hierarchical framework 

 

2.2 Long Short Term Memory (LSTM) 

Artificial Neural Network (ANN), which is one approach in 

the AI, has a long time history in the scientific research. 

Various neural network structures have been proposed for 

solving different problems in control and machine learning 

fields. There has been continuously increasing interest in 

applying ANNs to identification and adaptive control of 

practical systems that are characterized by nonlinearity, 

uncertainty, communication constraints, and complexity [14]. 

The ANN is also a promising approach to implement a 

nonlinear approximation for developing a control system for 

NPPs. 

This study applies the LSTM method which has been 

advanced from the recurrent neural network (RNN), a kind of 

ANNs. The RNN can naturally represent dynamic systems 

and can capture the dynamic behavior of a system, and it is a 

powerful network to extract the information feature related to 

the dynamic system in its hidden layer [15]. RNN has input 

nodes, hidden nodes, output nodes, and delay nodes to reflect 

the previous data. RNN contains delay nodes unlike existing 

NN. Delay node is calculated through the linear combination 

of input data in input node at time t after calculating in hidden 

node at time t-1. 

These structural features enable the RNN to estimate time 

series data. Typical examples of application of time series 

data are speech recognition, motion picture recognition, 

dynamic system control, recognition of cursive writing, and 

translation. 

However, RNN can be used only between 5 and 10 time steps 

due to the gradient vanishing problem [16]. The problem is that 

gradient value becomes too large or vanishes exponentially 

quickly to zero due to many layers during updating weight. 

Therefore, there is a restriction on the data set for long-term 

memory with RNN. Thus, the LSTM has been suggested to 

solve these problems. 

LSTM was developed as a neural network architecture for 

processing long temporal sequences of data. LSTM, which is 

based on the RNN architecture, combines fast training with 

efficient learning on the tasks that require sequential short-

term memory storage for many time-steps during a trial [15]. 

LSTM can learn to bridge minimal time lags in excess of 

1000 discrete time steps by enforcing constant error flow 

through "constant error carrousels" (CECs) within special 

units, called cells [17]. Fig. 2 shows a structure of LSTM cell. 

The LSTM cell contains four main elements: input gate, 

output gate, forget gate and a cell with recurrent connection 

that is CECs. 

 

Fig.2 Structure of LSTM cell 

 

Each LSTM cell is composed of units that retain the state 

across time-steps as well as three types of specialized gate 

units (such as input, output and forget gate) that learn to 

protect utilize, or destroy this stats appropriate. The gates 

provide a context-sensitive way to update the contents of a 

memory cell and protect those contents from interference. It 

can also protect downstream units from minor effects by 

stored information that has not become relevant yet. The 

input gate controls which part of incoming signal should be 

blocked, and which part should be allowed to alter the state 

of the cell. Meanwhile, the output gate controls which part of 

output signal can have effect on next neurons. The forget gate 

modulates the recurrent connection to decides which 

information the cell should remember and forget. In addition, 

the weight of recurrent connection is set to 1 in order to 

prevent gradients from vanishing or exploding [18], [19]. 
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3. Modelling of safety system by 
using function-based hierarchical 
framework 
This section introduces the development of function-based 

hierarchical structure to model the safety systems in NPPs. 

This structure will be used as an architectural platform for the 

LSTM algorithm.  

The main purpose of NPP safety is to protect nuclear reactor 

core, and to alleviate damage to the core in the event of severe 

accident. Safety systems in typical PWRs are designed to 

satisfy nine safety functions. Then, each safety function 

includes subsystems necessary to satisfy its function, and the 

subsystem contains components (e.g. pump, valve, etc.). 

Each component performs automatic or manual controls (e.g. 

activation, stop, and regulation). This study develops a 

function-based hierarchical structure for a Westinghouse 900 

MWe, 3-loop PWR. 

 

3.1 Goal and Function Level 

The function-based hierarchical structure consists of three 

levels as shown in Fig. 3. The top node is the NPP safety. The 

NPP safety aims at preventing core damage and release of 

radiation the public, and mitigating the consequences of 

postulated accidents. Core damage has been conservatively 

assumed to result in any state of the core where fuel 

temperature exceeds the design limit, or, if the available 

thermal-hydraulic models cannot demonstrate successful 

cooling of the core. Core damage can cause radiation release 

to outside NPPs, and the released radiation can induces 

human health bad effects (such as short-term injuries or long-

term cancers) as well as land contamination around the NPP.  

Function level defines nine safety functions to satisfy the 

ultimate goal of NPP safety to prevent the core damage. 

Safety functions are serving to verify high-level safety 

objectives, and often are defined in terms of a boundary or 

entity important to assuring the plant’s integrity, and to 

preventing the release of radioactive materials. Table 1 shows 

the nine safety functions and their purposes. 

 

Fig.3 Overall model of NPP safety system 

 

Table 1 Nine safety functions 

No Safety function Purpose 

1 
Reactivity control 

Shut reactor down to reduce 

heat production 

2 Reactor coolant 

system (RCS) 

inventory control 

Maintain a coolant of reactor 

coolant system 

3 Reactor coolant 

system (RCS) 

pressure control 

Maintain a coolant pressure of 

reactor coolant system 

4 Reactor coolant 

system (RCS) 

heat removal 

Transfer heat out of coolant 

system medium 

5 
Core heat removal 

Transfer heat from core to a 

coolant 

6 Containment 

isolation 
Close opening in containment 

7 Containment 

environment 

Keep from damaging 

containment 

8 Hydrogen control Control hydrogen 

9 
Maintenance of 

vital auxiliaries 

Maintain operability of 

systems needed to support 

safety systems 

 

3.1.1 Reactivity control 

The objective of the core reactivity control critical function is 

to control and monitor the nuclear reactions taking place 

within the core.  

 

3.2.2 RCS inventory control 

The RCS inventory control is to keep the core covered with 

an effective coolant medium. The function monitors the 

group of actions to maintain control over either coolant 

volume or mass. The RCS inventory control involves loss of 

the ability to control the RCS coolant inventory, and it control 

continuous loss of mass and recovery from loss of inventory 

events. The satisfaction criteria for RCS inventory control is 

pressurizer water level between 17% and 96%.  

 

3.2.3 RCS pressure control 

The objective of this function is to assure an effective coolant 

medium by maintaining the RCS pressure boundary 

condition, and it is to maintain the RCS pressure at the 

designed value in steady state in order to achieve the goal 

level. In Pressurized Water Reactor (PWR), the reactor 

coolant should keep the subcooling condition in order to 

deliver properly the heat generated from the reactor core. 

Hence, the RCS pressure should keep the highly pressure to 

remain the coolant at high temperatures and to prevent bulk 

boiling of the coolant in the loops at high temperature. 
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3.2.4 RCS heat removal 

The RCS heat removal critical function is to assure the 

transfer of generated, stored, and decay heat out of the RCS 

to a heat sink. Thus, the purpose of RCS heat removal 

function is to transfer the heat from the RCS to the steam 

generators. The transfer of heat between the fuel in the core 

and the feed-water in the SG is carried out by the reactor 

coolant system (RCS). Therefore, the systems for the RCS 

heat removal control the water level of steam generator within 

the acceptable range. 

 

3.2.5 Core hear removal 

The objective of the core heat removal function is to monitor 

the transfer of heat from the reactor core to the primary 

coolant for heat removal by the RCS. A loss of core heat 

removal capability is alarmed by high core temperatures, 

and/or voiding in the reactor vessel upper head and hot leg 

areas. The core heat removal alarm algorithm monitors the 

core temperatures and other parameters indicative of RCS 

voiding to assure the core heat removal function is not 

compromised. 

 

3.2.6 Containment isolation 

The objective of this critical function is to prevent release of 

radioactivity through the containment by assuring that valves 

in piping paths penetrating containment close on appropriate 

isolation signals. The containment isolation function provides 

the means of isolating fluid systems that pass through 

containment penetrations such that any radioactivity that may 

be released into the containment following a postulated 

design basis accident will be confined. 

 

3.2.7 Containment environment 

This critical function is to prevent radioactivity release from 

the containment by preventing the overstress of the 

containment structure. The containment overstress is 

prevented by maintaining control of both containment 

pressure and temperature. 

 

3.2.8 Hydrogen control 

The hydrogen control is necessary because of the potential for 

a hydrogen explosion following an accident. The purpose of 

hydrogen control is to remove hydrogen that is produced by 

the zirconium-water reaction e.g., in case of Loss of Coolant 

Accident (LOCA).  

 

3.2.9 Maintenance of vital auxiliaries 

Maintenance of vital auxiliaries function is required to 

accomplish the other safety functions discussed previously. 

These auxiliary systems provide such services as instrument 

air for opening and closing valves, electric power for running 

pumps and operating instruments and ultimate heat sink to 

which RCS and core heat can be transferred. 

 

3.2 System Level 

The system level defines safety systems to satisfy nine safety 

functions as well as the components to satisfy the safety 

system. Table 2 shows safety systems and components 

designed to satisfy each safety functions. For example, Plant 

Protection System (PPS), Digital control Rods System 

(DCRS) and Safety Injection System (SIS) are designed to 

control NPP’s reactivity. Then, the SIS includes components 

such as safety injection (SI) pump, SI tank and SI valve. 

 

Table 2 Safety system of system level 

Function System Component 

Reactivity 

control 
PPS 

Control element 

drive mechanism 

 DCRS 
Control element 

drive mechanism 

 SIS 
SI pump, SI tank, 

SI valve 

RCS inventory 

control 
SIS 

SI pump, SI tank, 

SI valve 

 
Chemical and Volume 

Control System 

Charging valve, 

letdown valve 

 

Safety 

depressurization and 

vent system 

Pilot operated 

safety relief 

valve 

 
RCS secondary 

heat removal system 

Main steam 

safety valve, 

Atmospheric 

dump valves 

 

Pressurizer (PZR) 

pressure control 

system 

PZR spray valve, 

PZR heater 

RCS hear 

removal 

Main feed water 

system 

Main feed water 

pump 

 
Aux feed water 

system 

Aux feed water 

pump 

 

Safety 

depressurization and 

vent system 

Pilot operated 

safety relief 

valve 

Core heat 

removal 

Reactor coolant 

system 

Reactor coolant 

pump 

Containment 

isolation 

Containment isolation 

system 

Containment 

isolation valves 
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Containment 

environment 

Containment spray 

system 

Containment 

spray 

 

Containment fan 

cooling 

system 

Fan cooler 

Hydrogen 

control 

Hydrogen mitigation 

system 

Hydrogen 

ignitors 

Maintenance of 

vital auxiliaries 

AC and DC power 

system 

Diesel generator, 

Station batteries 

 

4. LSTM Network Model for 
Autonomous Control of Safety 
Systems  
The safety systems’ model through the function based 

hierarchical framework is transferred to LSTM network. For 

transformation, the LSTM network requires input and output 

values that are defined from previous modeled safety systems. 

Fig. 4 shows the transformation from the function based 

hierarchical framework of safety systems to the LSTM 

network as an example of SIS included in RCS inventory 

control function. The physical values required for operation 

of components and the component state values in the system 

are transferred to the input values of LSTM network. The 

component state of the framework is transferred to the output 

values of LSTM network. 

 

Fig.4 Transformation from function based hierarchical 

framework to LSTM network 

 

The LSTM network is a network based on the NN 

architecture consisting of input layers, hidden layers, and 

output layers. The input layer is used to put in input data to 

network, and also prepares the normalized database to help 

training the network. The hidden layer connects between 

input layer and output layer. It can help to calculate the 

complex problem. The output layer shows the result of 

network and includes network output processing.  

Fig. 5 shows the LSTM network developed from the 

function-based hierarchical structure of safety systems. The 

input to the LSTM network is the safety system values that 

are defined as NPP physical values. The output is the state 

values of components defined from the function-based 

hierarchical model in the previous section. The numbers of 

safety system values are 168, respectively. The safety system 

values include 74 variables of physical value and 94 variables 

of component state values. 

This section introduces the modeling process of each LSTM 

layers according to the characteristics of each layer. 

 

Fig.5 LSTM network 

 

4.1 Safety system values preprocessing 

This step describes the preprocessing of the input/output 

values to be applied to the LSTM input layer. This step 

rescales the range of values by using normalization tool. 

In order to train the LSTM network, all the values in the 

network need to be scaled by using normalization on each 

values from the previous modeled safety systems. It can help 

to reduce the chance of getting stuck in local optima. In this 

study, the min-max scaling method is used to scale the safety 

system values. 

Min-max normalization perform a linear transformation on 

the original data, and the data is scaled to fixed range from 0 

to 1 [20]. This function is typically done via the following 

equation: 

 

Xnorm = (𝑋 − 𝑋𝑚𝑖𝑛)/(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) (1) 

 

4.2 Determination of optimized LSTM network 

structure 

In order to design the structure of LSTM network, it is 

necessary to determine the following two parameters: 

 the number of input sequence length 

 the number of hidden layers and hidden nodes 

The input sequence length is the temporal length of the past 

data that LSTM will use to compute the output. RNN should 

use fewer than 10 sequence lengths. But LSTM has 

practically no limitation of sequence lengths. The number of 

hidden layers and nodes can affect the performance of 
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network, and the selection of the number of hidden layers 

depends on the problem domain.  

To select two parameters, the most common way in 

determining the number of each parameters is via 

experiments or trial-and-error [21]. This study applied the trial 

error approach to find the optimal number of hidden layers 

and the length of input sequence. Table 3 shows the result of 

determination of these parameters. Sequence lengths ranging 

from 6 to 10, and the number of hidden layers with one or two 

are tested. The test case has 60 hidden nodes. To evaluate the 

performance of the different shapes of networks, the root-

mean-squared error (RMSE) is used with the following 

equation:  

 

RMSE(x′, x) = √
1

𝑛
∑ (𝑥𝑛′ − 𝑥𝑛)2
𝑁
𝑛=1  (2) 

 

The equation uses the measured power time series x and the 

predicted power time series x′. It is assumed that both time 

series have N samples. 

As a result of the performance comparison, the optimal 

LSTM network structure has been determined with the 10 

input sequence length, 2 layer and total 60 hidden nodes. 

Table 3 Performance comparison between networks 

No Sequence Layer Hidden node RMSE 

1   6 1 60 0.02977 

2 8 1 60 0.02797 

3 10 1 60 0.02750 

4 10 2 30, 30 0.02555 

 

4.3 Network output processing 

The network output processing coverts the output of LSTM 

to the form of simulator value. The predicted output values in 

the LSTM network is generated as a range value. Therefore, 

to be applied to control the simulator, the output values from 

the LSTM network should be converted to be relevant for the 

simulator control. 

The components of simulator can be divided into two types: 

the regulation type and on/off type. An example of regulation 

type is a control valve which adjusts the position. The 

simulator uses a value ranging from 0 to 1. The values of 0 

and 1 mean that the valve is completely closed and open, 

respectively. The value between them means that the valve is 

located in the middle according to the proportion of value. 

Since the LSTM always produces a value ranging from 0 to 

1, the output of the LSTM can be directly used as an input to 

the simulator for the regulating system. 

Examples of on/off type components are pumps or on/off 

valve which have only binary states. For this type of 

component, it is necessary to post-process the output values 

of LSTM because the LSTM generates not only 0 or 1 (e.g., 

binary values), but also values around them. Thus, this study 

applies the following rule.  

 0 to 0.1 of LSTM output converted to the closed 

state in the component of simulator 

 0.9 to 1 of LSTM output converted to the open 

state in the component of simulator 

 

5. Training & Validation 
5.1 Training the LSTM Network 

The CNS has been used to train the LSTM developed in the 

Section 4. The CNS was originally developed by Korea 

Atomic Energy Research Institute (KAERI) and Studsvik Inc., 

and has been recently renewed by KAERI [11]. The reference 

plants is Westinghouse 900 MWe, 3-loop PWR. 

A wide range of operational data were collected to train an 

LSTM. The data for total 206 scenarios were collected with a 

sampling period of 1 sec, as shown in Table 4. In the training 

scenario, the plant safety is managed by the combination of 

automatic control and human operator. The average running 

time of scenarios is about 30 minutes. The scenarios include 

Loss of Coolant Accident (LOCA), LOCA + safety injection 

(SI) valve failure, Steam Generator Tube Rupture (SGTR), 

Loss of All Feed-water (LOAF) and SGTR+SI valve failure.  

Training data include 168 important operational parameters, 

state of components and physical state of simulator as the 

inputs to the LSTM. Output parameters are 94 operational 

signals for controlling the safety systems and components. 

 

Table 4 Database used for network training 

Types of accident scenarios Number 

Loss of coolant accident(LOCA) 60 

Loss of coolant accident(LOCA) + Safety 

injection fail 
60 

PZR safety valve fail 10 

PZR safety valve fail + Safety injection fail 10 

Steam generator tube rupture(SGTR) 18 

Steam generator tube rupture(SGTR) + Safety 

injection valve fail 
18 

Main steam line break(MSLB) 30 

Total 206 
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The data of accident scenario have been sliced in the length 

of 10 seconds for the LSTM training. Thus, the total number 

of training set for the LSTM is 225,538. 

 

5.2 Validation 

This study uses a LOCA scenario (loop2 hot-leg), i.e., an 

untrained accident scenario, to validate whether the LSTM 

network can manage the plant safety without any human 

intervention. This section compares the operation by the 

autonomous LSTM control with one by the combination of 

automatic system and human operators. 

 

5.2.1 System level simulation result 

The control signals of components between LSTM network 

output and the auto-human control are compared. Fig.4 shows 

the change of the pressurizer spray valve position. The 

accident occurs at 40sec. The purpose of spray valve is to 

control the pressurizer pressure. Fig. 6 shows that the LSTM 

control sprays more water to the pressurizer than the auto-

human control.  

Fig. 7 presents the change of reactor coolant pump 1 (RCP) 

state. The purpose of the RCP is to forcibly circulate the 

primary coolant to remove heat from the core. Figure 5 shows 

that the LSTM stops the RCP earlier than the auto-human the 

control. However, the comparison at the system and 

component level does not indicate which control approach 

shows a better performance. 

Therefore, it is necessary to compare them at the function 

level. 

 

Fig.6 Pressurizer spray valve position 

 

Fig.7 RCP state 

 

5.2.2 Function level simulation result 

Fig. 8 shows the water level of core for the validation scenario. 

The core level is related to the RCS inventory control that is 

one of the safety functions. As shown in the figure, the LSTM 

network can maintain higher water level, which is more 

desirable, than the auto-human control.  

Fig. 9 presents the change of RCS average temperature. The 

decrease in RCS average temperature indicates the cooling of 

reactor core. The result shows that the LSTM control can cool 

down the reactor faster than the auto-human control. 

 

Fig.8 An example of figure. 
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Fig.9 An example of figure. 

 

5.2.3 Discussion on the test result 

The simulation result indicates that the trained LSTM 

network can generate control signals without any human 

intervention. The LSTM network showed a better 

performance in managing safety functions than the auto-

human control within the scope of the trained accident. 

 

6. Conclusion 
This study attempted to develop an autonomous algorithm for 

the safety systems of NPP by using the LSTM method. In 

order to define the input and output values in LSTM, the NPP 

safety system is modeled by using the function-based 

hierarchical framework. The training data, which includes 

automatic control and manual control in accident scenarios, 

are collected through the CNS. The LSTM has been trained 

by training data. It was also tested to demonstrate the 

feasibility of the approach.  

The result indicated that the LSTM can capture not only the 

automatic control but also the manual control of operator. In 

addition, the LSTM control performed better than the auto-

human control. This study will continue to develop a high 

level of autonomous control by adding more features such as 

monitoring, diagnostics, and prognostics. 
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