SMR 운전환경에서의 인적수행도 관련 규제 고려사항

Transparency.

Responsibility

Independence

국민에게 신뢰받는 안전 최우선의 KINS

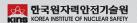
2025.05.21 KINS 계측제어전기평가실 한 지 윤

Contents

- 1 배경
- 2 SMR 설계특성/운전개념 관련 인적수행도 현안
 - 인간공학 활동요소별 규제 고려사항
- 4 결론

❖ SMR 필요성

- 탄소중립·에너지 전환 가속화로 인한 유연하고 안전한 무탄소 전원 필요성 증대
- 재생에너지 확대에 따른 전력망 안정성 보완 필요
- 기존 대형원전 대비 소형·모듈화·자동화로 경제성·안전성·유연성 강화
- 미국(NuScale), 캐나다(BWRX-300), 중국(ACP100) 등 SMR 건설 및 심사 본격화
- 각 국의 규제체계 정비와 실제 건설·운영 착수 확대를 통한 SMR 도입 가속화



국내에서는 혁신형 SMR(i-SMR)의 2030년대 상용화를 목표로 2022년도 9월부터 사전설계검토에 착수하여 본격적인 설계 인허가 준비 단계에 돌입함

1. 배경

❖ KINS 규제현황

- 사전설계검토 수행 (2023.12 ~ 2024.12)
 - 초기 설계단계부터 현행 규제기준의 적용여부 및 안전성 입증방안 검토
 - 표준설계인가 이전에 현 규제요건과의 격차로 인하여 예상되는 현안을 사전에 도출하여 해소방안 및 규제입장 논의
 - '주제어실 운전조 구성 및 자격 인간공학 적합성 평가' 설계 기술보고서 심사 수행
 - NUREG-1791, NUREG-0711에 따라 FRA/FA, TA 등의 인간공학 분석 활동을 기반으로 가정한 운전조 구성의 적합성이 분석 및 평가되어야 하며 운전조 구성 검증을 위한 인적수행도 평가방법 및 기준이 제시되어야 함.
- i-SMR 안전심사지침 개발 (2025.1~2025.11)
 - SMR은 설계특성 및 운전개념 등이 기존 경수로원전과 차별성이 크므로, 이를 반영한 맞춤형 심사지침이 필요함
 - 인간공학 활동요소별 SMR 설계특성을 고려한 규제요건과 심사방향 수립 예정임
- 표준설계인가 신청 및 심사 착수 예정 (2025.12~)
 - 사전설계검토 및 안전심사지침 개발을 기반으로 SMR 설계특성을 반영한 맞춤형 심사 본격화

❖ 자동화·피동형 안전계통 설계로 인한 운전원 개입을 최소화한 운전전략

운전원 개입을 최소화하고, 사고 시에도 자동화 및 피동형 안전계통으로 대응하는 운전전략

SMR 설계 특성 설명

인적수행도 관점 주요 현안

자동화 시스템 오작동 시 운전원 개입 시점 지연, 상황 인지·

고도 자동화 운전 개념 적용

- 정상·비정상·사고 상황까지 자동화 처리 확대 운전원 개입 최소화
- 감시·판단 중심 역할 전환, 운전원 개입은 최 종 백업 수단으로 역할 변화
- 판단 오류 가능성 증가
- 자동화 신뢰도에 대한 과신으로 운전원이 시스템 상태를 지 속적으로 모니터링하지 않게 될 우려
- 낮은 개입 빈도와 단순 감시 중심 업무로 인해 **운전원의 상** 황 대응 숙련도 저하 및 복구능력 약화

피동형(passive) 안전계통 기반 사고대응 설계

• 전원 상실, 계통 고장 시 자연현상(중력, 대류 등)에 의해 자동 안전 확보운전원 직접 개입 없이 사고 대응 가능

- 피동형 계통은 운전원 개입 없이 작동하므로, **운전원이 사** 고 징후를 능동적으로 인지할 기회가 제한됨
- 자동 개입을 전제로 한 설계로 인해, 운전원이 상황 변화에 따른 개입 시점 판단이 늦어질 수 있음
- 감시 및 판단 역할이 확대되면서, 운전원의 주도적 대응 능력 약화 우려

❖ 다수모듈을 통합제어실에서 감시 및 운전

통합제어실에서 다수의 원자로를 통합 감시·운전하며, 동시 사고 대응 시 운전원의 판단 및 대응의 복잡성이 증가

SMR 설계 특성 설명

인적수행도 관점 주요 현안

다수모듈에 대한 감시 및 운전

- 다수의 원자로를 통합제어실에서 감시·운전
- 감시 및 판단 업무의 복합성 및 정보량 증가

- 다수모듈에 대한 정보 감시로 인해 운전원의 인지부하 증가
- 감시 대상이 늘어나 주의가 분산되고, 사고 징후 파악이 지 연될 위험
- 판단·조치 집중 시, 복합상황 내에서 **의사결정 지연 또는 오** 류 발생 가능성

다수모듈 동시 사고 대응 필요성 증가

- 두 개 이상 모듈에서 비정상 상황 동시 발생 가능
- 판단·조치 순서·자원 배분 부담 가중

- 동시 사고 인지 및 판단으로 인한 직무부하 급증 및 상황인 식 저하, 수행 순서 혼선 위험
- 사고 절차를 병행 수행할 경우, 작업 누락 또는 판단 순서
 오류 발생 가능성
- 모듈 간 상태 비교 및 우선순위 판단 수행시 혼선 발생가능

❖ 다수모듈 운전환경에 맞춘 정보 집중형 디지털 통합제어실 설계

다수모듈 상태, 경보, 자동화 상태가 집약적으로 표시되는 디지털 제어실 환경으로, 운전원의 정보 인지 및 판단의 복합성 증가

SMR 설계 특성 설명

인적수행도 관점 주요 현안

다수모듈 운전 환경에 최적화된 디지털 통합제어 실 적용

- 다수모듈 상태, 경보, 자동화 상태정보가 통합 적으로 제공되는 디지털 제어실 환경
- 운전원이 다수 원자로의 운전 상태를 동시에 감시하고 판단해야 하는 운전환경
- 정보 우선순위와 상황 중심의 직관적 표시 등 사용자 중심 설계 필요

- 정보량이 많고 밀도 높은 HSI 환경에서 상황 탐색, 인식, 판 단 부담이 증가할 수 있음
- 다양한 정보가 한 화면에 표시되어 **탐색 범위가 넓어지고**, 주요 정보 인식이 지연될 수 있음
- 통합된 정보 구조에서 **우선적으로 해석·판단해야 할 정보** 선택에 혼선이 발생할 수 있음
- 운전원이 판단에 필요한 정보를 빠르게 선별하지 못하면 대응 판단 흐름이 지연될 수 있음
- 복잡한 시각 정보 처리로 인해 **인지 피로가 누적되고 의사** 결정 오류 및 지연 가능성 있음

❖ 기존 대형원전 대비 소수 인원 운전체계 적용

기존 대형원전 대비 소수 인원 운영을 목표로 하는 SMR 운전개념 적용으로 운전원 역할·책임 명확화, 모듈별 대응 적정성, 사고 대응 시 상황 인식·판단 신뢰성 확보 필요

SMR 설계 특성 설명

인적수행도 관점 주요 현안

운전전략 가정

- 원자로차장(RO) 2인, 발전부장(SS) 1인으로 구성된 주제어실 운전조 구성 가정
- 안전차장(STA) 1인 소내 대기, 사고시 지원 투입
- 기존 대형원전 대비 소수인원 운영을 목표로 한 🔸 다수모듈의 상태를 한정된 인원이 감시·판단할 경우 인지 부 하 및 판단 오류 가능성 증가
 - 발전부장(SS)은 4개 모듈의 전체 상태와 비상상황을 **동시에** 통합적으로 인식해야 하므로 상황 인지 부하가 매우 큼
 - STA가 주제어실에 상주하지 않을 경우, 주제어실 상주 운전 원의 업무부하 증가 우려

❖ 운전경험 검토

구분	고려사항
NUREG-0711 주요 심사사항	 참조원전 및 관련 산업으로부터 운전경험 수집 및 분석 설계, 절차서, 교육훈련 등 인간공학 활동에 적절히 반영되었는지 검토 운전경험 사례의 대표성, 적시성, 적용 타당성 확보 여부 평가
주요 인적수행도 현안	 자동화 오류 발생 시 운전원 개입 지연 및 판단 오류 위험 피동형 계통 이상 시 사고 진행 인식 오류 및 대응 시점 착오 다수모듈 사고 발생 시 상태인지 혼선, 사고 우선순위 판단 오류 동시사고 대응 시 절차 흐름 판단 지연 및 대응 착오 우려
규제 고려사항	 해외 SMR 및 타 산업 운전경험 활용을 통한 SMR 운전개념(자동화 오류, 피동형 계통 이상, 다수모듈 통합 감시 및 대응)과 유사한 운전경험사례가 적절히 분석되었는지 도출된 운전경험이 설계·절차·훈련 등 HFE 활동에 실제 반영되었는지여부 확인

❖ 기능요건 분석 및 기능할당 (FRA/FA)

구분	고려사항
NUREG-0711 주요 심사사항	• 시스템과 운전원 간 기능·역할·책임의 적정성 검토
주요 인적수행도 현안	 운전원 역할이 감시 및 판단 중심으로 전환 자동화 실패 또는 예외상황에서 운전원의 개입시점과 책임 범위가 불명확할 가능성 있음 다수 모듈 통합 제어실 환경에서의 인지적 과부하 및 모듈 간 작업 전환 오류 가능성 있음 최소 운전조 구성에서 특정 판단 및 대응기능이 운전원에게 집중
규제 고려사항	 기능할당 수행시 운전원이 수행하는 행위를 감시, 판단, 조작 등 구체적 역할 수준까지 구체적으로 분석 및 정의 자동화 오류 또는 실패 상황에서 운전원 개입의 가능성과 타당성에 대해 FRA/FA 단계부터 고려 및 분석 필요 다수 모듈 운영에 따른 인지적 과부하, 작업 전환 부담 등의 영향 요인을 기능요건 정의 시 반영 필요 최소 운전조 구성에 대한 적절성 검토를 위해 FRA/FA 기반 인력 수행가능성 입증 필요

❖ 직무분석(TA)

구분	고려사항
NUREG-0711 주요 심사사항	• 사고상황별 상세 직무단위별 정보요건 도출 및 분석, 직무부하 및 인적 오류 가능성 검토
주요 인적수행도 현안	 자동화 실패 및 비정상 상황에서 운전원 개입 시점 판단, 상황인식, 대응 지연 가능성 다수모듈 사고 발생시 우선순위 판단 및 절차 적용 간 혼선 가능성 제한된 인력(1인 2모듈 대응) 운전환경에서 다수모듈 동시 대응 부담 정보집약형 통합제어실에서의 상황인식 등의 인적수행도 부담
규제 고려사항	 자동화 실패시 운전원이 판단, 개입할 수 있도록 필요한 정보표시, 제어 권한, 판단기준 등이 실제 직무흐름과 연계되어 있는지 검토 필요(특히 절차서, HSI, 조작 기능 간 정보 간 일관성) 다수모듈 사고 발생시 운전원이 각 모듈상태를 비교하고 우선순위를 판단할 수 있도록 직무별 역할 분담, 정보전달흐름, 절차 적용순서가 명확히 정의되었는지 검토 최소 인력체계에서 각 직무가 실질적으로 수행가능 수준인지 평가, 판단오류 및 상황인지 지연을 줄이기 위한 지원수단(HSI, 절차 등) 검토

❖ 운전원 구성 및 자격

구분	고려사항
NUREG-0711 주요 심사사항	 발전소 상황별로 필요한 인력 및 역할, 자격요건에 대한 분석 수행 운전조 구성 및 자격기준이 운전환경 등을 고려하여 반영되었는지 여부
주요 인적수행도 현안	 운전원 1인이 다수모듈에 대한 직무를 병행 수행함에 따라 상황에 따라 직무부하 증가 자동화 확대로 운전원의 역할이 판단 및 감시 역할에 집중됨에 따른 상황인식 부하 증가 모듈 간 사고 동시 발생 또는 비정상 상황 발생시 우선순위 판단 부담 STA 현장 응소 시 상황 인식 지연, 대응 혼선 가능성
규제 고려사항	 자동화, 피동형 설계, 정보집약형 통합제어실, 다수모듈 운전 등의 설계 특성을 고려하여 요구되는 안전기능과 이를 달성하기 위한 직무분석 등을 기반으로 운전원 인원 수와 역할에 대한 분석 및 검증 필요 검증시 운전원 인적수행도, 직무수행도, 정확성, 오류발생 가능성 등 다양한 검증요소가 선정되고, 관련 검증방법 및 기준 수립 필요 STA를 주제어실 운전원에 배제할 경우, STA 직무수행 위치 및 주제어실 상주 여부, 직무 수행 적절성 및 다른 운전원에게 미치는 영향 등에 대한 검토 필요

❖ 중요 인적행위 관리 (TIHA)

구분	고려사항
NUREG-0711 주요 심사사항	 사고해석에 따른 결정론적 분석 및 확률론적 분석을 통해 발전소 안전운전에 영향을 미치는 중요 인적행위 도출 중요 인적행위의 인간-시스템연계 설계, 절차서, 교육훈련 등 인간공학 프로 그램에 적용, 확인 및 검증을 통해 설계반영 적절성 및 수행가능성 확인
주요 인적수행도 현안	 자동화 시스템으로 인한 복잡한 인터페이스와 운전원이 직접 조작하는 기회가 줄어들어 운전원의 상황인식 또는 의사결정 오류 및 지연 가능성 다수모듈 동시 사고 대비 상황인식 공유 및 우선순위 및 조치순서 전략 부재시 중요 인적행위 수행실패가능 단일 운전원이 다수 원자로를 관리하는 운영개념에서의 부담 증가 및 조치지연 위험
규제 고려사항	 통합제어실에서 경보, 계통상태, 자동화 정보가 화면에 집중 제공되는 운전환경에서, 중요 인적행위 수행시 필요한 정보가 적시에 제공되고 절차 및 제어권과 연계되어 오류없이 수행가능하도록 설계되었는지 검토 다수모듈에서 사고가 동시에 발생할 경우, 우선 대응 판단의 어려움과 운전자의 동시 작업 부담으로 인해 중요 인적행위 누락·지연 위험이 증가하므로, 이에 대한 수행 가능성과 오류 가능성을 고려해야 함

❖ 인간-시스템연계 설계 (HSI)

구분	내용
NUREG-0711 주요 심사사항	 정보 표시, 경보, 제어 장치 등의 설계가 인간공학 원칙을 만족하며 운전 원의 인적오류를 예방하도록 설계되었는지 검토 HSI가 절차·작업 흐름과 일관성 확보 여부 확인
주요 인적수행도 현안	 자동화 및 피동형 계통 운전 환경에서 운전원이 상태 정보를 능동적으로 인지 및 판단해야 함, 자동화 과신으로 인한 수행도 저하 다수모듈 상태 동시 감시 및 우선순위를 판단하는 것이 중요 다수의 알람, 상태 표시 등의 정보 과부하로 인한 상황인식 등의 인적수 행도 부담 증가
규제 고려사항	 다수모듈 상태 감시를 위한 정보 계층화, 우선순위 판단 지원, 시각적 대비 등 정보탐색 및 의사결정 지원을 위한 정보구조 및 상태표시 등의 설계 반영여부 검토 제한된 인력 기반의 운전환경에서 알람 과부하, 정보 밀도 증가, 조작 실수 가능성에 대한 인적오류 예방 설계여부 검토

❖ 절차서 개발

구분	고려사항
NUREG-0711 주요 심사사항	 절차 흐름의 명확성, 일관성, 오류 예방성 등 인간공학 적절성 검토 절차가 HSI, 작업 흐름, 훈련 요구사항과 일관성 확보 여부 검토
주요 인적수행도 현안	 다수모듈 운전환경에서 모듈 간 절차 전환 및 착수 순서 혼동으로 인한 절차 수행 오류 가능성 자동화 시스템에 대한 과신 또는 운전원 개입시점 판단 실패로 인한 절차 누락 및 지연 위험 단일 운전원의 다수모듈 운전전략으로 인한 직무부하 및 판단 부담 증가
규제 고려사항	 자동화 오류 시 운전원 개입 시점, 판단 흐름이 절차에 명확히 반영되었는지 검토 피동형 계통 이상 시 착수 기준 및 운전 개입 시점의 명확성 확인 다수모듈 사고 대응 절차 간 우선순위 판단 기준과 흐름 일관성 검토 단일 운전원의 다수모듈 대응시 절차서 내 전환 흐름과 오류 예방 요소가 절차서에 반영되고, 절차서 검토 및 검증 과정을 통해 확인되었는지 검토

❖ 훈련 프로그램

구분	고려사항
NUREG-0711 주요 심사사항	• 훈련 프로그램 내용이 과업분석 및 설계특성을 반영하고 있는 검토
주요 인적수행도 현안	 자동화 오류·피동형 이상 상황 시 운전원 개입·판단 훈련 부족 다수모듈 사고 동시 대응 시 복합 상황 판단·자원 배분 훈련 미흡 위험 STA 응소 시 역할·정보 인식·협업 훈련 부족 위험
규제 고려사항	 자동화 실패나 피동형 계통이 작동하지 않거나 성능이 부족한 상황에서, 운전원의 개입 시점, 판단 절차, 조치 흐름이 훈련 시나리오에 포함되었는지 확인 다수모듈 또는 복합 사고 발생 시, 우선 대응 판단과 복수 작업 간 절차 전환 흐름이 훈련 시나리오에 반영되었는지 확인 STA가 주제어실에 상주하지 않을 경우 STA의 역할 수행, 정보 인식·전달, 운전원과의 협업이 실제 훈련 시나리오에 포함되었는지 확인

❖ 인간공학 확인 및 검증

구분	고려사항
NUREG-0711 주요 심사사항	 인간-시스템연계 설계, 운전원 구성, 절차서 설계 등의 통합 설계가 인간공학 요구사항을 적절히 반영하였는지 검증 운전전략 및 운전환경에 대하여 운전원 인적수행도의 적절성 검증
주요 인적수행도 현안	 자동화 오류 시 개입 흐름 오류, 사고 대응 지연 위험 다수모듈 동시 사고 시 판단 흐름 혼선, 사고 대응 착오 위험 1인 2모듈 대응 시 과업 흐름 오류, 인지 부하 위험
규제 고려사항	 다수모듈 동시사고 등 복잡한 상황에서 운전원 간 협업, 직무부하, 상황인식 등의 인적수행도 검증, 중요 인적행위에 대한 직무수행도 검증 검증 시나리오에 자동화 실패, 다수모듈 동시사고 상황 등 발생가능한 운전 상황을 포함하여 검토 다수모듈 동시 사고 대응 시 우선순위 등의 의사결정 오류, 절차 간 전환 오류 확인 검증대상 요소 및 기준 수립 필요(인적수행도, 직무수행도, 정확도, 오류 발생 가능성 등)

❖ 설계이행

구분	고려사항
NUREG-0711 주요 심사사항	 인간공학 결함사항(HED)의 식별 및 설계 반영 여부 각 인간공학 활동 결과가 최종 설계에 일관성있게 구현되었는지 여부
주요 인적수행도 현안	 자동화·피동형 계통 상태 정보의 시각적 구분·판단 흐름 오류 발생 가능성 다수모듈 사고 발생 시 상태·경보 혼선, 사고 대응 우선순위 판단 오류 1인 2모듈 운전개념에서 정보 탐색 과부하, 판단 흐름 혼선 발생 가능
규제 고려사항	 자동화 상태·피동형 계통 상태 인식 오류 예방을 위한 계통 상태 표시, 상황인식 지원 기능의 구현 여부 확인 다수모듈 사고 대응 시 사고 우선순위 판단 지원, 모듈별 상태 구분, 통합 상태 표시 기능 구현 여부 확인 HSI 설계 결과에 대한 다수모듈 사고 시나리오 기반 검증 수행 여부 확인 HSI 구현결과가 절차, 알람, 훈련 시나리오와 일관성있게 반영되었는지 확인

❖ 인적수행도 감시

구분	고려사항
NUREG-0711 주요 심사사항	 통합시스템 검증에서 확인된 운전원 인적수행도가 운영단계에서도 적절히 유지되는지 감시 운영 중 설계, 절차, 훈련, 조직 및 인력 등의 변경사항 발생시 운전원 인적 수행도에 미치는 영향에 대해 감시
주요 인적수행도 현안	 자동화 실패 시 운전원 개입 흐름 감시 부족 다수모듈 사고 시 사고 대응 흐름 착오 모니터링 부재 1인 2모듈 대응 시 판단 오류, 사고 인식 지연 모니터링 미흡
규제 고려사항	 중요 인적행위가 운영 중에도 적절히 수행가능한지 추적하고, 수행 오류 또는 반응 지연 사례에 대한 원인분석 체계 확보 여부 검토 다수모듈 사고 시 우선순위 판단, 상황인식 등의 직무수행도 및 인적수행도의 적절성을 평가 및 분석하는 관리 체계 수립 여부 검토

SMR 설계특성 및 운전개념

자동화, 피동형 안전계통 설계로 운전원개입 최소화

> 다수모듈 통합 감시 및 운전

> > 정보집중형 디지털 제어실

소수 인력 기반 운전체계

주요 인적수행도 현안

자동화시스템 실패시 운전 원 조치수행 지연 및 오류

다수모듈 사고시 조치 우 선순위 판단 및 절차 병행 에 따른 직무부하 증가

통합제어실 내 정보 집중, 다수의 경보로 인한 상황 인식 저하

소수 인력 체계에서 직무 부하 증가

인간공학 활동요소별 규제 고려사항

FRA/FA: 다수모듈 감시 및 조치기 능에 대한 분석

TA: 다수모듈 사고시 상태비교, 우 선순위 판단 위한 직무,역할 적절성

TIHA: 다수모듈 사고시 중요인 적행위 누락,지연 가능성, 수행도

S&Q : 운전원구성에 대해 직무수 행도 검토, STA의 역할 및 위치

HSI: 정보계층화, 우선순위 지원

V&V: 자동화 오류, 다수모듈 사고 등 복합상황 인적수행도 검증

SMR 운전환경에서의 인적수행도는 설계 특성과 운전개념에 따라 재정의되어 야 하며, 이로부터 도출된 현안은 인간공학 활동요소별로 체계화되어 향후 정량적 심사 기준과 지침으로 구체화 되어야 함