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FSI with application in hemodynamics
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[1]A.G. Brown et al., “Accuracy vs. computational time : Translating arotic simulations to the clinic”, Journal of
Biomechanics, Vol. 45, pp. 516-523,2012.

[2] R. Torii et al., “Fluid-structure interaction analysis of a patient-specific right coronary artery with physiological
Velocity and pressure waveforms”, Communications in Numerical Methods in Engineering, Vol. 25, pp. 565-580, 2009.



Mono vs. Staggered Algorithm

- Staggered algorithm - Monolithic algorithm (Combined formulation)
M, G|lu, _ F, M, G Cgllu, F,
G 0 Pf 0 G’ 0 0 Pi=10
Co Cop Mg || dy Fs

+ Interface coupling - AL¥s 1 L7 s
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Partitioned method solving Fluid-Structure Interaction problems

—

Partitioned (staggered) method => Iteration algorithm is used
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Flow chart of FSI algorithm

Denote: X, is a predicted variable on interface (displacement) at kth-(FSI)

iteration of time level n

The solution vector after solving FSI
Xy = S°F (Xg) 5
FSI Error 1y, = X,- X,

If || ri || < € = FSI convergence = exit

Otherwise predict X1 for
next FSI iteration



Governing equations

= Fluid flow M :f T 0
(ALE form): {— } =-Vp+V-1, 1= ,u[va +(va') }
o0u
» Elastic structure: Vot+pb=p % (2)

O - Cauchy stress tensor

L . c=c:e 3)
= Constitutive equations

:%[(wy(v“s )T}

&: Strain tensor

linear elastic structure (small deformation)



Governing equations

= Nonlinear (*) S=C:E=JF'cF"' T=JF'c

(Large deformation)
S 1s the second Piola-Kirchhoff stress tensor

Right Cauchy deformation tensor C: C=FTF  Deformation tensor F =[+Vxu J =det(F)

Non-linear term

: 1 1
Green strain tensor E: E = E(C -1 = 5 [(VxW)T + (Viu) +(Vxu)T- (V,u)]

2
% Total Lagrangian formulation V.,T+pb=p, 8_1;
Ot

All variables corresponding to the initial configuration (t=0)

O’u
<+ Updated Lagrangian formulation V.S + pb = ,0—a >
t

All variables corresponding to the current configuration (t)

(*) Peter Wriggers, Nonlinear Finite Element Methods



Governing equations

Hyper-elastic material

S=C:E C: Non-linear material tensor
Stress and material tensors can be calculated from elastic strain energy (y):
oE oE CGECE
Or S:Eﬁ_w: .E:EE:d. ﬁL[{f
eC eC eCeC

Mooney-Rivlin model
Linear MR: =0 -3)+ B2 -3+ - 1)?

High-order(*)
v =c9(l; —3) +co1(I; = 3) + 303 = 3)2 + 1.1, = 3)(L, - 3)
+ co2(I; — 3)% 4 c30(I; — 3)* + c21(I; — 3)*(I — 3)

_ _ _ k
+ ¢ —3)I; — 3)* + cp3(I; —3)3 + EU — 1)

where I, I, Jare the invariants of C

(*) S.T. Ha and H.G. Choi, Investigation on the effect of density ratio on the convergence behavior of partitioned method for fluid—structure interaction simulation, JFS 2020.



Main publication lists of FSI algorithm

1. Monolithic method (2012, International journal for numerical methods in engineering)

S. Kang, H. G. Choi, J. Y. Yoo, “Investigation of fluid—structure interactions using a
velocity-linked P2/P1 finite element method and the generalized-a method”

2. Partitioned method (2020, Journal of Fluids and Structures)

S. T. Ha & H. G. Choi, “Investigation on the effect of density ratio on the convergence
behavior of partitioned method for fluid—structure interaction simulation”

3. Semi-implicit method (2023, Journal of Mechanical Science and Technology)

S. T. Ha, H. G. Choi, N. C. Long, S. W. Lee, “A semi-implicit finite element formulation
of the partitioned method for fluid-structure interaction based on a flux boundary condition
of pressure equation”

4. Semi-monolithic method (2023, Computers & Mathematics with Applications)

S. T. Ha & H. G. Choi, “Semi-monolithic formulation based on a projection method for
simulating fluid—structure interaction problems”



Partitioned method solving Fluid-Structure Interaction problems

2 A

dr} dr
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(without under-relaxation) Multi-step prediction
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Partitioned method solving Fluid-Structure Interaction problems

—

The formulations

1- Fixed relaxation X = @ * X* + (1-0)*XF , 0 <m<1
Or Xk*1 = XF+ *rk Where r* = X¥ — X*
|—'—l
Incremental vector
X*:  predicted value of current iteration
Xk Solution of current iteration: X* = S°F(X¥)
X**1. predicted value of next iteration

('”)(r

k
l'—l'
)

2- Aitken’s relaxation (adaptive relaxation) [1]| @, =

X**1 = Function (X*, X*~1 Xk,

[1] Ulrich Kiittler et al, 2008, Fixed-point fluid—structure interaction solvers with dynamic relaxation.



Partitioned method solving Fluid-Structure Interaction problems

Staggered formulation (rigid-body):
Kleefsman et al ; JCP : 2005. (COMSOL)

Fal Y

1
aB :m—FB
B

1. Explicit (Staggered) (Unstable)

a n+1 — —F n._____ 1
B m, ® (1
n+ ma n . . .
a,"" = . dg - (2) (Assume F," ~m;a,/" by inertial force dominant)
B

(2) Is stable only when My <<M,

Iteration with
Under relaxation

2. iterative (Staggered) with under relaxation. So, [
aE,”‘1 = (VB”‘1 —VB”)fEit

} Is introduced

k ~ up to 20 for lighter body ?




Partitioned method solving Fluid-Structure Interaction problems

—

3- QN _ILS [2] : Quasi-Newton with Inverse Jacobian from a Least-Squares model

PN Parameters c*
/ \
k+1 — ywk L IAawk+11 — vk vk+1 k+1 — ; ;
Xt = X+ AXT =X+ AXTT - Ar 1k Arf Ly YR ARE 4 ol = [V]x
N~
rF =X —X AXi= Xi Xk Al‘i=l‘i—l‘k(1SiSk—1)
. AXK+1 Zly—ll AXE * ¢l Least-square method is used to
i = minimize R(c) = [V]x ¢ + r¥
L — 0
Oc
. . — VTv)_lvT _k
E> Xk+1= Xk + ZQC_—ll AXE % ¢t + I.k C= ( ( r )
Xk
If on.l(}if ong previous value is Xk+1z Xk 4 AXK-1 4 ck=14 pk = xk 4 (in1_ X¥) % k1 4 rk
consiaereda:

~ Xk + (Xk_ )_(k) % Ck—l + l‘k =Xk + (1 _ Ck—l) " rk
o - 7

[2] Joris Degroote et al, 2010 , Performance of partitioned procedures in fluid—structure interaction. Computers and Structures Vol.88, p.446-457.



Semi-Implicit method

v’ Semi-Implicit based on Projection scheme [4]

= Second order extrapolation of the fluid-structure interface:

- 3. 1.
d*tl = d" + At(z d" — E dn_l)
= Mesh moving:

Viwntl = 0 in Qf

dn+1 _dn
whtl == onX;

= Definition of the new domain:

Qf 1t = O™ 4 At Wt

= Advection-diffusion step (explicit)

JNn+1__

fu
P At

u” n pf(ﬁn _ wn+1).vﬁn+1 -MV-[Vﬁn+1+(Vﬁn+1)T] =0, in Ofn+1

ﬁn+1 — Wn+1, on Zn+1

[4] Jean-Frederic Gerbeau et al. ‘A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid . I/NME
(2007)



Semi-Implicit method

v Semi-Implicit based on Projection scheme

= Implicit coupling:

un+1_ﬁn+1

pf = —+vp™ti =0, in @/

Fluid domain . Vau"tl =0, in Qfntl

dn+1_dn
a*tl.nf = = -nf, on Xn+1
- < dn+1_dn _— . P
Solid domain p Ar Jog™ =0, in Q%

ottln® = o} (@, p"*)-n®, on "




Semi-Implicit method

Semi-implicit using pressure Poisson equations

Step 4: Strong-coupling partitioned method of pressure variable and solid displacement

v2pttl = Ly y* in Qf
Sub-step 1: Pressure solver: At
dn+1 _ dn
wtt=———  on IS

:> qu. Vvphtl dQ:Aﬁt qu.u*d.Q— jqu““.ndr
0 0 I

pS d™tt—d» -0 Gn+1 =0 in QS,TL+1
Sub-step 2: Solid displacement solver: At S ’
G?+1'ns — c$]7c1+1(i~in+1’pn+1)_nS’ on Zn+1

Step 5: Update of fluid velocity

un+1 = u* - %Vprwl in Qf



Semi-monolithic method (version 3 FSI)

Monolithic method for Strong-coupling Pressure and displacement

Step 4: Strong-coupling method of pressure variable and solid displacement (the other steps are unchanged).

Vviphtt = éV- u” in Qf
Pressure: n+l _ qn
u™t! =—d " d on T/$
S U n+1 : sn+1
Solid displacement: P Ar L og =0, in Q>
G?+1.ns — cs]7;L+1(ﬁn+1’pn+1).ns, on Xntl
FEM formula:
[ n+1 P _ P * 1 P n+1,1 n
qu- vp"TtdQ + (AD? fqd(d)-nd[’— E{qu-u do— fqu-ndf}—w fq(d A —d")-ndl”
_J 0 rfS 0Q FE rfs

[as]d(d)n+1,i+1 + o}”l(ﬁn"'l,pnﬂ)-nf — (PS)n _ (Qs)n+1,i

—

(Ad = d(d) = dntlitl _ gntli)

Lp+T'Ad/S=F i T
D ﬁpf8+c’;'Ad=de o [T? G] [A%]zlﬁi;]




Application for simulating blood vessel

2D flow in a circular channel (T, = 0.2 s, dt = 2x103s) T L,

vy = 4vo(t) (2 -3 N — E
P
a=0.5
————— Aitken
QN-ILS
Schematic of the flow Grids of fluid and solid g
in a circular channel h P =96
CPU time normalised by that of the semi-implicit method <5
FSI ANSYS Aitken’s QN-ILS Semi-implicit | Monolithic p=r/r
algorithms
g method method method o
CPU time (44) 96) 3.1) 1) (1.6)
a=10.1
Ailken's
QN-TLS
El|
T T/ R

llerations

Convergence histories

Heavy solid p =96 Lightsolid p=1 at time = 1.2 s



Application for simulating blood vessel

2D flexible beam behind a cylinder (T, = 0.01 s, dt = 5x1045s)

Dimension of the simulation domain
A Dimension Value [m]
r th
i @ $ Channel Width 0.41
14
Channel Length L 2.5
’ —m— Cylinder Radius r 0.05
(0,0) .
L Flag Length 1 0.35
The schematic of the 2D simulation. Flag Width h 0.02
Cylinder Center C (0.2,0.2)
Reference point A (0.6,0.2)
CPU time normalised by that of the semi-implicit method in 2D problem
FSI algorithms Semi-implicit partitioned Implicit partitioned Monolithic method
CPU time 1.0 3.1 1.6







Application for simulating blood vessel

T, =2x102s; dt = 1x10*s

L

o F|
Flexible pipe configuration
Geometry
L=0.1m D=0.02m t=0.002 m

Material properties

Fluid Py = 1000 kg/m* | u=0.004 Pa.s

Solid o, =1000 kg/m® | E=1.0e6 v=0.3
Pa

CPU time for 80 time-steps

Solvers ANSYS Aitken’s method = QN-ILS Semi-implicit method | Monolithic method

CPU Time (hours) | 12.28(52) |3.52(14) 0.85 (3.6) 0.24 (1) 0.41 (1.7)




Application for simulating blood vessel

o w=005
200} * Aitken 200F DL
- v OQN-ILS F ON-ILS
oo i
E OODOOOOOOOQOO ODOO oOO E
Esof %50 500000 £150
= r s
pie B
- 100F = 100 b
2 | a 2 |
g ) 5 )
z z
sob . . 50
| ‘VVVIVVVVVVTVVVVVVF'VVVVVVIVWV‘Vvv _VVvVvvavlvv v "IVVVV'V Ve A ‘ VVVIVvVVI
0 0002 0004 0006 0008 0.0 0 0002 0004 0006 0008 0.0
Time [s] Time [s]
The number of FSI coupling versus time;
a) small displacement, b) large displacement
of 0
R a=0.15 5 —e—ee @=005
- - Aitken's o - Aitken's
i QN-ILS 1:\ QN-ILS
2 He monolithic BYinY Monolithic
z = | \,'\
= A} S
%-3-1[ Egl’, N\
1R W || N
3 T 5 F : N\,
4H | ! 4H | \
HY 1 o N
IR a) | N b)
SH sH ! \
a | L
S 1 R R T i BT T ]
200, 0 100 300 300

Flow in 3D straight flexible tube

200,
Tterations

» The QN-ILS is much faster than others
In large displacement case: fixed under-
relaxation and Aitken’s were divergence.

>

With a heavy solid (p = 10) there are not big
different of partitioned methods in terms of
convergence behaviour

With same density case( p = 1.2): QN-ILS is
much faster than others methods

With slight solid ( p = 0.5): Fixed-relaxation

Very poor.
QN _ILS is comparable with monolithic
method [3]
0 H
i a=002
-1 :‘ } ————— Aitken's
s QN-ILS
2 \:ll\ Ny Monoelithic
= i N
5 i ~.
LI._', -3 i \‘\‘
%D [ | \”\
— i ~.
4H \'\_\
E \ C) h \‘\
SHO ~
I I
O Teo 200 300 400
Iterations

The history of convergence a) p = 10,b)p = 1.2,¢) p= 0.5

[3] S. Kang et al, 2012 , Investigation of fluid—structure interactions using a velocity-linked P2/P1 finite element method and the generalized- a
method, International Journal for Numerical Methods in Engineering. vol. 90. pp:1539-1547.



Semi-monolithic method (version 3 FSI)

Performance of Semi-monolithic versus the full Monolithic method

A 2D flexible beam behind a cylinder

Velocity magnitude [m/s]

051 152253354

t=1498s

3D benchmark problem

Radial displacement [m]

0 2.5E-05 5E-05 7.5E-05 0.0001

t=0.008 s

CPU times (s) for one time-step (2D).

Case Full monolithic Semi-monolithic
p=1 1.32 0.312
(4.23) (1.0)
p=10 1.179 0.283
(4.17) (1.0)

i N i

AT VAPAT AN
ok

S
CPU times (s) for one time-step (3D).
Case Full monolithic Semi-monolithic
p=1 159.68 56.58
(2.82) (1.0)
p=10 151.58 53.31
(2.84) (1.0)




Applications

Simu
Simu

Simu

ation for Carotid Flow
ation for Flow-Regulator
ation for Artificial aortic valve



Blood flow interaction with a vessel in a carotid bifurcation of a rat

Point A

Contraction

Expansion

v
Expansion ICA

)\

I
. 50 — — — — Elasticwall | |

Rigid wall

prm————

\ ‘
Elastic wall ’ [[[ XT_.\

g 2
5 30
= 0 ! Numerical solution Experimental images
Va7 \\/—
v - . . .
1 j N N Comparison the vessel wall deformation obtained by
numerical solution and the experimental data [17]
0O 0.2 0.4 0.6 0.8 1

WSS of a point A at branch

Rigid wall

Oscillatory shear index

B

0.01 0.02 0.03 0.04 0.05

[17] Yeom et al. 3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images, Ultrasonics 54.8 2 5
(2014): 2184-2192.









Blood flow interaction with a vessel in a carotid bifurcation of a rat
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Simulation for Flow-Regulator

150 umJ

50 um I

150umJ

Schematics of Flow-Regulator

Closed - end microchannel \.|

Cross-sectional view along line AA’

b

Q)

b

Opend - end microchannel jé ]

Thin membrane

Geometry and mesh for simulation of Flow-Regulator
Fixed

Free

P inlet

Unstructured mesh (half domain)



Simulation for Flow-Regulator

0.4 T T T T I T T T T I T T T T I T T T T I T T T T
: ———-e—— FSI-simulation :
L Rigid-simulation |
0.3 ———&—— Experiment _
E = ]
Comparison of numerical and £ | I
the experimental result 2 02r .
i - -
s - i
=
B L ]
0.1 -
0 L | Il | | I Il | | | I | | | Il I | | Il Il I | | Il |
0 100 200 300 400 500
Inlet pressure (mbar)
50 mbar 100 mbar

etry plane of the channel for diff

erent inlet pressures (W =250 p - 300 mbar

m L T N C—
(x* = X/100) o
Pressure contour [mbar]

20 60 100 140 180 220 260



Simulation for Artificial aortic valve

flow rate [1/min]

30

Diastole

t/T
Flow rate at the inlet

Unstructered grid

Interpolation for Interpolation for

pressure (P1 element) velocity (P2 element)
| 1

Area shape function
N, = S./S
Ny = Sp/S 4
Ng =S5./5 3
S =8,+Sp+S,

2 2

N, =N,2N,-1); N,=N,(2N,-1); N,=N.Q2N,-1);
N,=4N,N,; N,=4N,N,; N,=4N_N_;
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Simulation for Artificial aortic valve

Animation of WSS Animation of VMS

Reduced Leaflet Motion

Grade 3
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Recently development of FIV for nuclear reactor [1,2]

Numerical methods

¢ Nek5000 code based on spectral element method (using LES e
model of fluid flow in a Helical Steam Generators (SG)) O <:'|>
» Mesh: 407,364 hexahedral elements, ~137 million DOFs (7’th- ®
order polynomial order). Re~ 8000. ' Disblo quad-§ surface representation
> AMG method is used to precondition the pressure step solver. (oaimalent v e ovior el
. . . tgzc)hematic representation of the exchange
+¢» Diablo code is used for structural model. of information on the two codes

» The tubes are modeled by using four-node quadrilateral elements of
two-dimensional shell. Support structures are modeled by using
eight-node hexahedral elements (3,691,464 nodes and 3,595,200
clements).

» Matric is ill condition -> Direct solver is employed.

» Linear material for structure model (£ =203 Gpa, v=0.275, p=8060
kg/m?), At =5x10° ( T~ 2x10%)

¢ One-way coupled method is used for SG problem:
(Nek5000 code -> Fluid load -> Diablo codes).

s Two-way coupled method for a high velocity problem:

new __ actual old
upg = g + (1 — o)ugg)

Fictitious mass and damping [2] are employed to improve the
performance of the fixed under-relaxation scheme.

[1] Merzari et al., High-Fidelity Simulation of Flow-Induced Vibrations in Helical Steam Generators for Small Modular Reactors, nuclear technology, 2019.
[2] Merzari et al., A high-fidelity approach for the simulation of flow-induced vibration , Proceedings of the ASME 2016 Fluids Engineering meeting, USA.



Recently development of FIV for nuclear reactor

—

Limitations of the method
¢ One-way coupling:

“At high flow condition, when deformations become significant, the one-way coupled approach is no longer
adequate, and tight coupling is required”.

% Two-way coupling method:

» Using the fixed under-relaxation scheme. The convergence is improved by employing the fictitious mass and
damping technique. However, it is sill slow compared to the Newton based of strong-coupling method or a
semi-implicit scheme.

» Using fictitious mass and damping -> two parameters tuning.

J
0.0

One of the biggest limitations of Nek5000 is that it can use only hexahedral meshes.

Generating full hexahedral meshes for a grid spacer geometry can be extremely challenging and time
consuming since each block typically needs to be laid out manually

In case of unstructured mesh, tet-to-hex conversion is necessary.
A tetrahedral mesh was created first to describe the geometry, and
then this mesh was converted to a hexahedral mesh. In this way,
one tetrahedral element is divided into four hexahedral elements.

¢+ Diablo code: solid simulation is based on (small
deform) linear-elastic.




A new FIV code for nuclear reactor

% Improvement of FSI coupling by employing a new semi-
implicit scheme. The simulation cost will be much cheaper.

T T TTTIY T T T T T

% A new Geometric multi-grid method is used to solve the - © GMG[1.03]
pressure equation. We have been developed a MG method for 10 + CC UML)
elliptic equations with a nearly optimal convergence. With 7
levels of MG, we can efficiently solve a problem of 100
million nodes (~ 50 nodes on the coarsest level)

** In case of ~100 million DOFs, -> MG is more than 50 times 10"k

faster than CG -> Must use MG.

L)

CPU time [s]

0

Bl e | | vl Ll | ;
100 10" 10° 10° 100 10°
Number of unknowns

Results for 3D elliptic equation [4]

¢ A Discontinuous Galerkin (DG) method is developed for
high-order computation with tetra element for unstructured grid
to avoid the limitation of the Nek5000 code.

-HDG is a highly scalable method(Fully explicit scheme for
momentum Eq.)

[4] S.T. Ha, H.G. Choi, A meshless geometric multigrid method based on a node-coarsening algorithm for the linear finite element discretization, Computers
& Mathematics with Applications, 2021



Conclusions

HEH(2HEBEE/FH Ex)7l 3X| %2 F0= F72IEE
dgko| A B =2, 22| 7|8 (Partitioned method)2| Al I = T 1}
22| SS MEis|of .

™
° 10
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2 H| (semi-monolithic) & Al 2} = & 2| 7] *H (partitioned method) 1}
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oM ne rx
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Hybridized Discontinuous Galerkin Method

The incompressible Navier-Stokes equations:

o
,-; \.‘1,
By introducing gradient tensor: L = Vu /S @ "x,x
o ¥
L =Vu,in Q P L
au "'i “. P .-"-; -:.;‘
. ] L] ¥ "
—+V7 - (u®@u)—vW- -L+Vp=finQ V3 /
4 ot u@u) p g BN o W
. ) \ F LY
V-u=0,inQ g A "
| u=g,ondQ e ulLlpe i @p Y

Local unknowns Global unknowns
We seek an approximation (L%, uj, p;, Up

pr,Up) € Gy X Vi, X Py, X My, (g) such that
(Lnl G)Qh + (u;lll G)Qh - <ﬁ;ll, Gn>th = 0

(% V)
ot "),

—(ui, Vq)q, + (U} -n,q)aq, =0

+ (VLY — pp1 —uj @ ufy, Vv)q, + ((—vL} + AR1 + U @ 6}, V>anh = (f,v)q,
h

((—vL} + pr1+ 0 @ 6} )n, ">aﬂh =0
(p;ll’ 1)Qh = 0

forall (G,v,q, 1) € G, X Vi, X P, X M;,(0) where the numerical trace is defined as

—vi! + PR+ 47 @ U} = —VL} + pll + G @ 6l + sp, (ul, i)



Hybridized Discontinuous Galerkin Method

Local lsolver Global solver involves only:
Ay, Ay Ay O :' Az Ayl (u) [f] +) U : velocity trace (defined on face of element)
A, Ay O 0 i Ain ALl |L 0 +) p : mean of the pressure in each element
A,, O 0 Agp Ay O p 0 Local solver: element solution
0 0 A,, O L0 -1 \ 2 (= 0 +) computed in element-by-element fashion
Agy Aa, Agy 0 1 Agy O i t
0 0! Az 0](r) ]o Saddle-point system \GE'al = E'lr’
Solve Global system for: U, p
Static condensation { ] \
_ -1 -1
A B1(Z1 r, z,=—A""Bz, + A"y S, Assembly R
— A BT| (i I, E Hj(i r
-1 _ -1 — —
C D] {zz} [rz] m=m) (-CA"'B+D)z, =1, - CA™'ry “[B 0 {p} (| == [G 0]{;)} lo]
Elemental system Global system

Example: Kovasznay flow
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High-order DG method for turbulent flows

Discontinuous Galerkin method for incompressible turbulent flows

N. Fehn et al,, [1], C. C. de Wiart et al., [2] LES

G. Noventa et al., [3], A. Crivellini et al. [4] RANS

B. Krank et al., [5], F. Bassi et al., [6] DNS and LES
F. Bassi et al. [7], B. Landmann et al. [8] RANS and k-w

Hybridized Discontinuous Galerkin method for compressible turbulent flows

References Model

P. Fernandez et al. [9] LES
N H Case Ne,i X Ne2 X Nej3 k nDoFs
Example: Turbulent channel flows with DG method [5] e INEAETT N -
ch590_N643_k4_V3L‘_dns 64 x 64 x 64 4 131e6
chlBO_N83_k3_V31:_Ies 8x8x8 3 0.13e6
ch180_N163_k3_V{3c,4}_les 16 x 16 x 16 3 1.0e6
ch180_N323_k3_V3c_les 32x32x32 3 8.4e6
[h590_N16°_k4_V {3c, 4} _les 16 x 16 x 16 4 2.0e6 |
Ch590_N323_k4_V3c_les 32x32x32 4 16e6

—— ch180.N32" k5.V3c.dns 4|
—— ch590_N64° k4 V3c.dns
- DNSMKM99

Yy y* y* yt
’ 2N LM ‘ {\~\\ ;0.5
3 N k] 3
% ¢ : : ‘f\ V,n.s\/ (\ ‘:o_s\/
2 =2 7 ° ' ? (] 00 40 60 0 05 1 ° ' ? 0 200 400 0 0 05 1
| ] ] d d dd f 5 10f 10 . 10° " o5t 10 10 . 10 4 i
Velocity magnitude and eddies for Re; = 590 DNS with DG method LES with DG method

[1] N. Fehn et al., JCP 372 (2018) 667-693; [2] C. C. de Wiart et al., INMF 78 (2015) 335-354; [3]G. Noventa et al., C&F139 (2016) 248-260; [4] A. Crivellini, C&F
81 (2013) 122-133; [5] B. Krank et al., JCP 348 (2017) 634-659; [6] F. Bassi et al., European J. of Mechanics B/Fluids 55 (2016) 367-379; [7] F. Bassi et al.,
Computers and Fluids 98 (2014) 54-68; [8] B. Landmann et al., C&F 37 (2008) 427-438; [9] P. Fernandez et al., JCP 336 (2017) 308-329.



Recently development of FIV for nuclear reactor

—

Fictitious mass and damping [2]

“When added-mass effects are prominent, under-relaxations schemes such as that used here
may require small values of ® and large number of iterations to converge. In order to
improve the convergence behavior, fictitious mass and damping are employed as in.
Additional traction terms are added to the solid solver, based on a fictitious surface mass
density f,, and fictitious surface damping density f, such that the total surface traction is
evaluated by using the surface accelerations and velocities evaluated between consecutive

iterations u'*1,

n+l n+l n+l n+l n+l n+l
t =1ty _nf;n [(“f —u, )'“] _nfd [(uf -u, ).n]

ti::;} _ —p"+1n + U(VSVFHI ) °n

“The added mass terms affect only the convergence of the iterative scheme, at convergence
they evaluate to zero. The fictitious terms f, and f,; are tuning parameters”



Total Lagrangian and Updated Lagrangian formulations

current placement %

total Lagrangian
formulation

initial placement % current placement #

updated Lagrangian
formulation

initial placement # reference placements

Total Lagrangian -> 5 ij & +ﬁF{j dﬂ/ = A

OV all variables being referred corresponding to the
initial configuration at time t=0

Updated Lagrangian-> :"*‘EIS,-,- & +ﬁﬁj aﬂV = +Aagp

ty

all variables being referred corresponding to the last
calculated configuration.
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