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FSI with application in hemodynamics 

Blood flow interaction with a blood vessel in a carotid bifurcation of a rat

Rigid wall.

3

Elastic wall.









Previous studies
- 유체-구조상호작용해석의중요성

장점 : 1) 혈관의움직임을고려함 2) 다양한파열예측인자를얻을수있음.

단점 : 계산량이많기때문에유동만고려하는해석보다약 20배이상느림. [1]

[1] A.G. Brown et al., “Accuracy vs. computational time : Translating arotic simulations to the clinic”, Journal of 
Biomechanics, Vol. 45, pp. 516-523, 2012.
[2] R. Torii et al., “Fluid-structure interaction analysis of a patient-specific right coronary artery with physiological 
Velocity and pressure waveforms”, Communications in Numerical Methods in Engineering, Vol. 25, pp. 565-580, 2009.

유체-구조 상호작용 해석 결과

유동만 고려한 해석 결과

유체-구조 상호작용 해석 유무에 따른 벽전단응력 결과 비교[1],[2]

유동만 고려한 해석 결과유체-구조 상호작용 해석 결과

유체-구조 상호작용 해석의
경우 WSS가 낮게 측정



Mono vs. Staggered Algorithm

- Staggered algorithm - Monolithic algorithm (Combined formulation)
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Partitioned method solving Fluid-Structure Interaction problems 

Partitioned (staggered) method => Iteration algorithm is used

Denote: 𝐗𝐗𝑘𝑘 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 at kth-(FSI) 
iteration of time level n

The solution vector after solving FSI
�𝐗𝐗𝑘𝑘 = 𝐒𝐒°𝐅𝐅 (𝐗𝐗𝑘𝑘) ;  

FSI Error 𝐫𝐫𝒌𝒌 = �𝐗𝐗𝑘𝑘- 𝐗𝐗𝑘𝑘

If 𝐫𝐫𝒌𝒌 < ε ⇒ 𝑭𝑭𝑭𝑭𝑭𝑭 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⇒ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Otherwise predict 𝐗𝐗𝑘𝑘+1 𝑓𝑓𝑓𝑓𝑓𝑓
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐹𝐹𝐹𝐹𝐹𝐹 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
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 Fluid flow 
(ALE form):

 Elastic structure:

 Constitutive equations
linear elastic structure (small deformation) 
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Governing equations

:σ Cauchy stress tensor

ε: Strain tensor



1T JF σ−= Nonlinear (*) 
(Large deformation)

(*) Peter Wriggers, Nonlinear Finite Element Methods

Right Cauchy deformation tensor C: C=FTF Deformation tensor F =I+∇X𝐮𝐮

Green strain tensor E: 1 ( )
2

E C I= − =
1
2 �∇X𝐮𝐮 T + (∇X𝐮𝐮) + ∇X𝐮𝐮 T� (∇X𝐮𝐮

Non-linear term

2

0 0 2.X
uT b

t
ρ ρ ∂

∇ + =
∂

 Total Lagrangian formulation

All variables corresponding to the initial configuration (t=0)

 Updated Lagrangian formulation

All variables corresponding to the current configuration (t)

is the second Piola-Kirchhoff stress tensorS
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Governing equations



Hyper-elastic material 

(*) S.T. Ha and H.G. Choi, Investigation on the effect of density ratio on the convergence behavior of partitioned method for fluid–structure interaction simulation, JFS 2020.

ψ = µ1
2

�𝐼𝐼1 − 3 + µ2
2

�𝐼𝐼2 − 3 +𝑘𝑘
2
𝐽𝐽 − 1 2

Mooney-Rivlin model 

Stress and material tensors can be calculated from elastic strain energy (ψ):

where �𝐼𝐼1, �𝐼𝐼2, Jare the invariants of C

Or

High-order(*) 

: Non-linear material tensor 

Linear MR:

Governing equations



Main publication lists of FSI algorithm

1. Monolithic method (2012, International journal for numerical methods in engineering)
S. Kang, H. G. Choi, J. Y. Yoo, “Investigation of fluid–structure interactions using a
velocity-linked P2/P1 finite element method and the generalized-α method”

2. Partitioned method (2020, Journal of Fluids and Structures)
S. T. Ha & H. G. Choi, “Investigation on the effect of density ratio on the convergence
behavior of partitioned method for fluid–structure interaction simulation”

3. Semi-implicit method (2023, Journal of Mechanical Science and Technology)
S. T. Ha, H. G. Choi, N. C. Long, S. W. Lee, “A semi-implicit finite element formulation
of the partitioned method for fluid-structure interaction based on a flux boundary condition
of pressure equation”

4. Semi-monolithic method (2023, Computers & Mathematics with Applications)
S. T. Ha & H. G. Choi, “Semi-monolithic formulation based on a projection method for
simulating fluid–structure interaction problems”



Partitioned method solving Fluid-Structure Interaction problems 

Blow-up
(without under-relaxation)

n

𝑑𝑑Γ

Monolithic 𝑑𝑑Γ
𝑆𝑆 = 𝑑𝑑Γ

𝐹𝐹

FSI iteration

0 1 2 … n+1

Predicted value at tn+1
Single-step prediction
(Use a single old-data)

𝑑𝑑Γ

0 1 2 … n+1n

Multi-step prediction
(Use multiple old-data)

FSI iteration



Partitioned method solving Fluid-Structure Interaction problems 
The formulations

1- Fixed relaxation 𝐗𝐗𝑘𝑘+1 = ω ∗ �𝐗𝐗𝑘𝑘 + (1-ω)*𝐗𝐗𝑘𝑘

𝐗𝐗𝑘𝑘 :      predicted value of current iteration 
�𝐗𝐗𝑘𝑘:       Solution of current iteration:  �𝐗𝐗𝑘𝑘 = 𝐒𝐒°𝐅𝐅(𝐗𝐗𝑘𝑘)
𝐗𝐗𝑘𝑘+1: predicted value of next iteration

2- Aitken’s relaxation (adaptive relaxation) [1] 
1 1

1 21

( ) ( )k k k

k k k k
ω ω

− −

+ −

−
= −

−

Tr r r

r r
𝐗𝐗𝑘𝑘+1 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (�𝐗𝐗𝑘𝑘, �𝐗𝐗𝑘𝑘−1,𝐗𝐗𝑘𝑘 ,𝐗𝐗𝑘𝑘−1)

Or  𝐗𝐗𝑘𝑘+1 = 𝐗𝐗𝑘𝑘+ ω*𝐫𝐫𝑘𝑘 Where 𝐫𝐫𝑘𝑘 = �𝐗𝐗𝑘𝑘 − 𝐗𝐗𝑘𝑘

Incremental vector

[1] Ulrich Küttler et al, 2008, Fixed-point fluid–structure interaction solvers with dynamic relaxation.

, 0 < ω<1



Partitioned method solving Fluid-Structure Interaction problems 



Partitioned method solving Fluid-Structure Interaction problems 

𝐗𝐗𝑘𝑘+1 = 𝐗𝐗𝑘𝑘 + ∆𝐗𝐗𝑘𝑘+1 = 𝐗𝐗𝑘𝑘 + ∆�𝐗𝐗𝒌𝒌+𝟏𝟏 − ∆𝐫𝐫𝒌𝒌+𝟏𝟏

𝐫𝐫 = �𝐗𝐗 − 𝐗𝐗 ,∆�𝐗𝐗𝑖𝑖= �𝐗𝐗𝑖𝑖 −�𝐗𝐗𝑘𝑘

∆�𝐗𝐗𝒌𝒌+𝟏𝟏 ≈ ∑𝑖𝑖=1𝑘𝑘−1∆�𝐗𝐗𝑖𝑖 ∗ 𝑐𝑐𝑖𝑖

∆𝐫𝐫𝒌𝒌+𝟏𝟏= 𝐫𝐫𝒌𝒌+𝟏𝟏- 𝐫𝐫𝒌𝒌 ≈ - 𝐫𝐫𝒌𝒌

𝐗𝐗𝑘𝑘+1= 𝐗𝐗𝑘𝑘 + ∑𝑖𝑖=1𝑘𝑘−1∆�𝐗𝐗𝑖𝑖 ∗ 𝑐𝑐𝑖𝑖 + 𝐫𝐫𝒌𝒌

Parameters 𝒄𝒄𝒊𝒊

- 𝐫𝐫𝒌𝒌 ≈ ∆𝐫𝐫𝒌𝒌+𝟏𝟏≈ ∑𝑖𝑖=1𝑘𝑘−1∆𝐫𝐫𝑖𝑖 ∗ 𝑐𝑐𝑖𝑖 = 𝐕𝐕 × 𝐜𝐜

𝐜𝐜 = �(𝐕𝐕𝑻𝑻𝐕𝐕
−1
𝐕𝐕𝑻𝑻(− 𝐫𝐫𝒌𝒌)

∆𝐫𝐫𝑖𝑖 �= 𝐫𝐫𝑖𝑖 − 𝐫𝐫𝑘𝑘(1 ≤ 𝑖𝑖 ≤ 𝑘𝑘 − 1

If only one previous value is 
considered: 

𝐗𝐗𝑘𝑘+1= 𝐗𝐗𝑘𝑘 + ∆�𝐗𝐗𝑘𝑘−1 ∗ 𝑐𝑐𝑘𝑘−1+ 𝐫𝐫𝒌𝒌 = 𝐗𝐗𝑘𝑘 + (�𝐗𝐗𝑘𝑘−1- �𝐗𝐗𝑘𝑘) ∗ 𝑐𝑐𝑘𝑘−1 + 𝐫𝐫𝒌𝒌
𝐗𝐗𝑘𝑘

≈ 𝐗𝐗𝑘𝑘 + (𝐗𝐗𝑘𝑘- �𝐗𝐗𝑘𝑘) ∗ 𝑐𝑐𝑘𝑘−1 + 𝐫𝐫𝒌𝒌 = 𝐗𝐗𝑘𝑘 + (1 − 𝑐𝑐𝑘𝑘−1) ∗ 𝐫𝐫𝒌𝒌

ω

3- QN_ILS [2] : Quasi-Newton with Inverse Jacobian from a Least-Squares model 

[2] Joris Degroote et al, 2010 , Performance of partitioned procedures in fluid–structure interaction. Computers and Structures Vol.88, p.446-457.

Least-square method is used to 
minimize R(𝐜𝐜) = 𝐕𝐕 × 𝐜𝐜 + 𝐫𝐫𝒌𝒌

∂R(𝐜𝐜)
∂𝐜𝐜 = 0



Semi-Implicit based on Projection scheme [4]
 Second order extrapolation of the fluid-structure interface:

 Definition of the new domain: 

 Advection-diffusion step (explicit)

[4] Jean-Frederic Gerbeau et al. ‘A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid ’. IJNME 
(2007) 

𝐝̃𝐝𝑛𝑛+1 = 𝐝𝐝𝑛𝑛 + ∆𝑡𝑡(
3
2 𝐝̇𝐝

𝑛𝑛 −
1
2 𝐝̇𝐝

𝑛𝑛−1)
 Mesh moving: 

Ω𝑓𝑓,𝑛𝑛+1 = Ω𝑓𝑓,𝑛𝑛 + ∆𝑡𝑡.𝑤𝑤𝑛𝑛+1

ρ𝑓𝑓 �𝐮𝐮
𝑛𝑛+1−𝐮𝐮𝑛𝑛

∆𝑡𝑡 + ρ𝑓𝑓(�𝐮𝐮𝑛𝑛 − 𝐰𝐰𝑛𝑛+1)⋅∇�𝐮𝐮𝑛𝑛+1 -µ∇⋅[∇�𝐮𝐮𝑛𝑛+1+(∇�𝐮𝐮𝑛𝑛+1)𝑇𝑇] = 0, in Ω𝑓𝑓,𝑛𝑛+1

�𝐮𝐮𝑛𝑛+1 =  𝐰𝐰𝑛𝑛+1,     on  Σ𝑛𝑛+1

𝐰𝐰𝑛𝑛+1 = 𝐝̃𝐝
𝑛𝑛+1 −𝐝𝐝𝑛𝑛

∆𝑡𝑡 ,   on Σ ; 

∇2𝐰𝐰𝑛𝑛+1 = 0, in Ω𝑓𝑓

Semi-Implicit method



Semi-Implicit based on Projection scheme

 Implicit coupling:

ρ𝑓𝑓 𝐮𝐮
𝑛𝑛+1−�𝐮𝐮𝑛𝑛+1

∆𝑡𝑡 +∇𝑝𝑝𝑛𝑛+1 = 0, in Ω𝑓𝑓,𝑛𝑛+1

∇⋅𝐮𝐮𝑛𝑛+1 = 0, in Ω𝑓𝑓,𝑛𝑛+1

𝐮𝐮𝑛𝑛+1⋅𝐧𝐧𝑓𝑓 = 𝐝𝐝𝑛𝑛+1−𝐝𝐝𝑛𝑛

∆𝑡𝑡 ⋅𝐧𝐧𝑓𝑓,      on  Σ𝑛𝑛+1
Fluid domain

ρ𝑠𝑠 𝐝̇𝐝
𝑛𝑛+1−𝐝̇𝐝𝑛𝑛

∆𝑡𝑡 - � σ𝑠𝑠𝑛𝑛+1 = 0, in Ω𝑠𝑠,𝑛𝑛+1

σ𝑠𝑠𝑛𝑛+1⋅𝐧𝐧𝑠𝑠 = σ𝑓𝑓
𝑛𝑛+1(�𝐮𝐮𝑛𝑛+1,𝑝𝑝𝑛𝑛+1)⋅𝐧𝐧𝑠𝑠,    on  Σ𝑛𝑛+1

Solid domain

Semi-Implicit method



Step 4: Strong-coupling partitioned method of pressure variable and solid displacement

Sub-step 1: Pressure solver:
∇2pn+1 = 𝜌𝜌

∆𝑡𝑡∇⋅ 𝐮𝐮
∗ in Ω𝑓𝑓

𝐮𝐮𝑛𝑛+1 =
𝐝𝐝𝒏𝒏+1 − 𝐝𝐝𝒏𝒏

𝑡𝑡
on Γ𝑓𝑓𝑓𝑓

Sub-step 2: Solid displacement solver:

Step 5: Update of fluid velocity

𝐮𝐮𝑛𝑛+1 = 𝐮𝐮∗ − ∆𝑡𝑡
𝜌𝜌
𝛻𝛻𝛻𝑛𝑛+1 in Ω𝑓𝑓

�
Ω

∇𝑞𝑞 . ∇pn+1 𝑑𝑑Ω =
𝜌𝜌
∆𝑡𝑡

�
Ω

∇𝑞𝑞 .𝐮𝐮∗𝑑𝑑Ω − �

Γ
𝑞𝑞 𝐮𝐮n+1 .𝐧𝐧𝑑𝑑Γ

Semi-Implicit method

Semi-implicit using pressure Poisson equations

ρ𝑠𝑠 𝐝̇𝐝
𝑛𝑛+1−𝐝̇𝐝𝑛𝑛

∆𝑡𝑡 - � σ𝑠𝑠𝑛𝑛+1 = 0, in Ω𝑠𝑠,𝑛𝑛+1

σ𝑠𝑠𝑛𝑛+1⋅𝐧𝐧𝑠𝑠 = σ𝑓𝑓
𝑛𝑛+1(�𝐮𝐮𝑛𝑛+1,𝑝𝑝𝑛𝑛+1)⋅𝐧𝐧𝑠𝑠,    on  Σ𝑛𝑛+1



Step 4: Strong-coupling method of pressure variable and solid displacement (the other steps are unchanged).

Pressure:
∇2pn+1 = 𝜌𝜌

∆𝑡𝑡∇⋅ 𝐮𝐮
∗ in Ω𝑓𝑓

𝐮𝐮𝑛𝑛+1 =
𝐝𝐝𝒏𝒏+1 − 𝐝𝐝𝒏𝒏

∆𝑡𝑡
on Γ𝑓𝑓𝑓𝑓

Solid displacement:

Semi-monolithic method (version 3 FSI)

Monolithic method for Strong-coupling Pressure and displacement

ρ𝑠𝑠 𝐝̇𝐝
𝑛𝑛+1−𝐝̇𝐝𝑛𝑛

∆𝑡𝑡 - � σ𝑠𝑠𝑛𝑛+1 = 0, in Ω𝑠𝑠,𝑛𝑛+1

σ𝑠𝑠𝑛𝑛+1⋅𝐧𝐧𝑠𝑠 = σ𝑓𝑓
𝑛𝑛+1(�𝐮𝐮𝑛𝑛+1,𝑝𝑝𝑛𝑛+1)⋅𝐧𝐧𝑠𝑠,    on  Σ𝑛𝑛+1

FEM formula:

(∆d = 𝑑𝑑 𝐝𝐝 = 𝒅𝒅𝑛𝑛+1,𝑖𝑖+1 − 𝒅𝒅𝑛𝑛+1,𝑖𝑖 )

�𝐿𝐿p+�Γ∆𝐝𝐝𝑓𝑓𝑓𝑓=Fp

�𝑇𝑇𝑟𝑟p𝑓𝑓𝑓𝑓+ �𝐺𝐺∆𝐝𝐝 =Fd

�𝐿𝐿 �Γ
�𝑇𝑇𝑟𝑟 �𝐺𝐺

p
∆𝐝𝐝 = Fp

Fd



Schematic of the flow 
in a circular channel

Grids of fluid and solid
�ρ = 96

�ρ = 1

Convergence histories 
at time = 1.2 s

�ρ = ⁄ρ𝑠𝑠 ρ𝑓𝑓

�ρ = 96 �ρ = 1Heavy solid Light solid

Application for simulating blood vessel
2D flow in a circular channel (Tc = 0.2 s, dt = 2x10-3 s) 

FSI 

algorithms
ANSYS Aitken’s

method

QN-ILS Semi-implicit

method

Monolithic

method
CPU time (44) (9.6) (3.1) (1) (1.6)

CPU time normalised by that of the semi-implicit method

c
c

LT
E
ρ

=



Application for simulating blood vessel

Dimension of the simulation domain

Dimension Value [m]

Channel Width H 0.41

Channel Length L 2.5

Cylinder Radius r 0.05

Flag Length l 0.35

Flag Width h 0.02

Cylinder Center C (0.2,0.2)

Reference point A (0.6,0.2)

2D flexible beam behind a cylinder  (Tc = 0.01 s, dt = 5x10-4 s)

The schematic of the 2D simulation.

FSI algorithms Semi-implicit partitioned Implicit partitioned Monolithic method

CPU time 1.0 3.1 1.6

CPU time normalised by that of the semi-implicit method in 2D problem 






Application for simulating blood vessel

Flexible pipe configuration

Geometry

L = 0.1 m D = 0.02 m t = 0.002 m

Material properties

Fluid ρf = 1000 kg/m3 µ = 0.004 Pa.s

Solid ρs = 1000 kg/m3 E = 1.0e6 
Pa

ν = 0.3 

CPU time for 80 time-steps

Solvers ANSYS Aitken’s method QN-ILS Semi-implicit method Monolithic method

CPU Time (hours) 12.28 (52) 3.52 (14) 0.85 (3.6) 0.24 (1) 0.41 (1.7)

Tc = 2x10-2 s; dt = 1x10-4 s



Application for simulating blood vessel

The history of convergence a) �ρ = 10, b) �ρ = 1.2, c) �ρ = 0.5

The number of FSI coupling versus time; 
a) small displacement, b) large displacement

a) b)

a) b) c)

 The QN-ILS is much faster than others
 In large displacement case: fixed under-

relaxation and Aitken’s were divergence.

 With a heavy solid (�ρ = 10) there are not big 
different of partitioned methods in terms of 
convergence behaviour

 With same density case( �ρ = 1.2): QN-ILS is 
much faster than others methods

 With slight solid ( �ρ = 0.5): Fixed-relaxation 
very poor.

 QN_ILS is comparable with monolithic 
method [3] 

[3] S. Kang et al, 2012 , Investigation of fluid–structure interactions using a velocity-linked P2/P1 finite element method and the generalized- a
method, International Journal for Numerical Methods in Engineering. vol. 90. pp:1539-1547.

Blow-Up!

Flow in 3D straight flexible tube



Semi-monolithic method (version 3 FSI)
Performance of Semi-monolithic versus the full Monolithic method
A 2D flexible beam behind a cylinder

Case Full monolithic Semi-monolithic

�ρ = 1 1.32

(4.23)

0.312

(1.0)

�ρ = 10 1.179

(4.17)

0.283

(1.0)

CPU times (s) for one time-step (2D).  

3D benchmark problem

Case Full monolithic Semi-monolithic

�ρ = 1 159.68

(2.82)

56.58

(1.0)

�ρ = 10 151.58

(2.84)

53.31

(1.0)

t = 0.008 s

t = 14.98 s

CPU times (s) for one time-step (3D).  



• 1. FSI Simulation for Carotid Flow
• 2. FSI Simulation for Flow-Regulator
• 3. FSI Simulation for Artificial aortic valve 

Applications 



Blood flow interaction with a vessel in a carotid bifurcation of a rat

Comparison the vessel wall deformation obtained by
numerical solution and the experimental data [17]

[17] Yeom et al. 3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images, Ultrasonics 54.8 
(2014): 2184-2192. 25

WSS of a point A at branch

Point A

Elastic wall

Rigid wall
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VMS of a point M at branch

Point M

Blood flow interaction with a vessel in a carotid bifurcation of a rat






Simulation for Flow-Regulator

Unstructured mesh (half domain)

Schematics of Flow-Regulator

Geometry and mesh for simulation of Flow-Regulator



Simulation for Flow-Regulator

Comparison of numerical and 
the experimental result

Cross sectional area at the symm
etry plane of the channel for diff
erent inlet pressures (w = 250 µ

m, h = 50 µm) 

(x* = X/100)



Simulation for Artificial aortic valve 

Flow rate at the inlet

1 2 3

4 5 6

(2 1);    (2 1);    (2 1);  
4 ;    4 ;    4 ;  

a a b b c c

a b b c c a

N N N N N N N N N
N N N N N N N N N

= − = − = −
= = =

Interpolation for 
pressure (P1 element)

Interpolation for 
velocity (P2 element)Unstructered grid
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Simulation for Artificial aortic valve 

Animation of WSS Animation of VMS
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[1] Merzari et al., High-Fidelity Simulation of Flow-Induced Vibrations in Helical Steam Generators for Small Modular Reactors, nuclear technology, 2019. 
[2] Merzari et al., A high-fidelity approach for the simulation of flow-induced vibration , Proceedings of the ASME 2016 Fluids Engineering meeting, USA.

Recently development of FIV for nuclear reactor [1,2]

Numerical methods 

 One-way coupled method is used for SG problem:
(Nek5000 code -> Fluid load -> Diablo codes). 

 Two-way coupled method for a high velocity problem:

 Nek5000 code based on spectral element method (using LES
model of fluid flow in a Helical Steam Generators (SG))

Schematic representation of the exchange 
of information on the two codes 

 Mesh: 407,364 hexahedral elements, ~137 million DOFs (7’th-
order polynomial order). Re~ 8000.

 AMG method is used to precondition the pressure step solver.

 Diablo code is used for structural model.
 The tubes are modeled by using four-node quadrilateral elements of

two-dimensional shell. Support structures are modeled by using
eight-node hexahedral elements (3,691,464 nodes and 3,595,200
elements).

 Matric is ill condition -> Direct solver is employed.
 Linear material for structure model (E =203 Gpa, ν=0.275, ρ=8060

kg/m3), Δt = 5x10-5 ( Tc~ 2x10-4 )

Computational model of the helical SG 
Fictitious mass and damping [2] are employed to improve the
performance of the fixed under-relaxation scheme.



Limitations of the method

 One-way coupling:

Recently development of FIV for nuclear reactor

“At high flow condition, when deformations become significant, the one-way coupled approach is no longer
adequate, and tight coupling is required”.

 Two-way coupling method:

 Using the fixed under-relaxation scheme. The convergence is improved by employing the fictitious mass and
damping technique. However, it is sill slow compared to the Newton based of strong-coupling method or a
semi-implicit scheme.

 Using fictitious mass and damping -> two parameters tuning.

 One of the biggest limitations of Nek5000 is that it can use only hexahedral meshes.
Generating full hexahedral meshes for a grid spacer geometry can be extremely challenging and time
consuming since each block typically needs to be laid out manually

In case of unstructured mesh, tet-to-hex conversion is necessary.
A tetrahedral mesh was created first to describe the geometry, and
then this mesh was converted to a hexahedral mesh. In this way,
one tetrahedral element is divided into four hexahedral elements.

 Diablo code: solid simulation is based on  (small 
deform) linear-elastic.



A new FIV code for nuclear reactor

 A Discontinuous Galerkin (DG) method is developed for
high-order computation with tetra element for unstructured grid
to avoid the limitation of the Nek5000 code.

-HDG is a highly scalable method(Fully explicit scheme for
momentum Eq.)

 Improvement of FSI coupling by employing a new semi-
implicit scheme. The simulation cost will be much cheaper.

Results for 3D elliptic equation [4]

[4] S.T. Ha, H.G. Choi, A meshless geometric multigrid method based on a node-coarsening algorithm for the linear finite element discretization, Computers 
& Mathematics with Applications, 2021

 A new Geometric multi-grid method is used to solve the
pressure equation. We have been developed a MG method for
elliptic equations with a nearly optimal convergence. With 7
levels of MG, we can efficiently solve a problem of 100
million nodes (~ 50 nodes on the coarsest level)

 In case of ~100 million DOFs, -> MG is more than 50 times
faster than CG -> Must use MG.



• 밀도비(고체밀도/유체 밀도)가 크지 않은 경우에는 부가질량의
영향이크므로, 분리기법(Partitioned method)의사용할때는효과적인
알고리즘을선택해야함.

• 반일체 (semi-monolithic)공식화는 분리기법 (partitioned method)과
일체화(monolithic) 기법의 특성을 혼용한 방법으로, 제안된 기법들
중에서안정성과속도면(mono의 3~4배)에서최고의성능을보여줌.

• 다만, 반일체(semi-monolithic)공식화는유체의 압력과 고체변수들이
연성된 식을 풀어야 하므로 , scalable한 병렬화 기법의 구현에
복잡성이존재하므로,이에대한후속연구가요구됨.

Conclusions



Extra slides



Hybridized Discontinuous Galerkin Method

𝜕𝜕𝐮𝐮
𝜕𝜕𝑡𝑡 + 𝛻𝛻 � 𝐮𝐮⊗ 𝐮𝐮 − ν𝛻𝛻 � 𝐋𝐋 + 𝛻𝛻𝛻𝛻 = 𝐟𝐟, in Ω

𝛻𝛻 � 𝐮𝐮 = 0, in Ω
𝐮𝐮 = 𝐠𝐠, on 𝜕𝜕Ω

𝐋𝐋 = 𝛻𝛻𝐮𝐮, in Ω

By introducing gradient tensor: 𝐋𝐋 = 𝛻𝛻𝐮𝐮

We seek an approximation (𝐋𝐋ℎ𝑛𝑛 ,𝐮𝐮ℎ𝑛𝑛,𝑝𝑝ℎ𝑛𝑛, �𝐮𝐮ℎ𝑛𝑛) ∈ 𝐆𝐆ℎ × 𝐕𝐕ℎ × 𝐏𝐏ℎ × 𝐌𝐌ℎ(𝐠𝐠) such that

𝐋𝐋ℎ𝑛𝑛 ,𝐆𝐆 Ωℎ + 𝐮𝐮ℎ𝑛𝑛,𝐆𝐆 Ωℎ − �𝐮𝐮ℎ𝑛𝑛,𝐆𝐆𝐆𝐆 𝜕𝜕Ωℎ = 0

𝜕𝜕𝐮𝐮ℎ𝑛𝑛

𝜕𝜕𝑡𝑡 , 𝐯𝐯
Ωℎ

+ ν𝐋𝐋ℎ𝑛𝑛 − 𝑝𝑝ℎ𝑛𝑛𝐈𝐈 − 𝐮𝐮ℎ𝑛𝑛 ⊗ 𝐮𝐮ℎ𝑛𝑛,𝛻𝛻𝐯𝐯 Ωℎ + −ν𝐋̂𝐋ℎ𝑛𝑛 + 𝑝̂𝑝ℎ𝑛𝑛𝐈𝐈 + �𝐮𝐮ℎ𝑛𝑛 ⊗ �𝐮𝐮ℎ𝑛𝑛 𝐧𝐧,𝐯𝐯 𝜕𝜕Ωℎ
= 𝐟𝐟, 𝐯𝐯 Ωℎ

− 𝐮𝐮ℎ𝑛𝑛,𝛻𝛻𝛻𝛻 Ωℎ + �𝐮𝐮ℎ𝑛𝑛 � 𝐧𝐧, 𝑞𝑞 𝜕𝜕Ωℎ = 0

−ν𝐋̂𝐋ℎ𝑛𝑛 + 𝑝̂𝑝ℎ𝑛𝑛𝐈𝐈 + �𝐮𝐮ℎ𝑛𝑛 ⊗ �𝐮𝐮ℎ𝑛𝑛 𝐧𝐧,𝛍𝛍 𝜕𝜕Ωℎ
= 0

𝑝𝑝ℎ𝑛𝑛,𝟏𝟏 Ωℎ = 0

for all (𝐆𝐆, 𝐯𝐯, 𝑞𝑞,𝛍𝛍) ∈ 𝐆𝐆ℎ × 𝐕𝐕ℎ × 𝐏𝐏ℎ × 𝐌𝐌ℎ(𝟎𝟎) where the numerical trace is defined as

−ν𝐋̂𝐋ℎ𝑛𝑛 + 𝑝̂𝑝ℎ𝑛𝑛𝐈𝐈 + �𝐮𝐮ℎ𝑛𝑛 ⊗ �𝐮𝐮ℎ𝑛𝑛 = −ν𝐋𝐋ℎ𝑛𝑛 + 𝑝𝑝ℎ𝑛𝑛𝐈𝐈 + �𝐮𝐮ℎ𝑛𝑛 ⊗ �𝐮𝐮ℎ𝑛𝑛 + 𝐬𝐬ℎ 𝐮𝐮ℎ𝑛𝑛, �𝐮𝐮ℎ𝑛𝑛

The incompressible Navier-Stokes equations:

Global unknownsLocal unknowns



Hybridized Discontinuous Galerkin Method

𝐀𝐀𝑢𝑢𝑢𝑢 𝐀𝐀𝑢𝑢𝑢𝑢 𝐀𝐀𝑢𝑢𝑢𝑢 0 𝐀𝐀𝑢𝑢�𝑢𝑢 𝐀𝐀𝑢𝑢𝜌𝜌
𝐀𝐀𝐿𝐿𝐿𝐿 𝐀𝐀𝐿𝐿𝐿𝐿 0 0 𝐀𝐀𝐿𝐿�𝑢𝑢 𝐀𝐀𝐿𝐿𝜌𝜌
𝐀𝐀𝑝𝑝𝑝𝑝 0 0 𝐀𝐀𝜌𝜌𝑝𝑝T 𝐀𝐀𝑝𝑝�𝑢𝑢 0

0 0 𝐀𝐀𝜌𝜌𝜌𝜌 0 0 −𝟏𝟏
𝐀𝐀�𝑢𝑢𝑢𝑢 𝐀𝐀�𝑢𝑢𝐿𝐿 𝐀𝐀�𝑢𝑢𝑝𝑝 0 𝐀𝐀�𝑢𝑢�𝑢𝑢 0

0 0 0 0 𝐀𝐀𝜌𝜌�𝑢𝑢 0

𝐮𝐮
𝐋𝐋
𝑝𝑝

𝜌𝜌
�𝐮𝐮
λ

𝐟𝐟
0
0
0

0
𝐭𝐭

=

𝐀𝐀 𝐁𝐁T
𝐁𝐁 0

�𝑢𝑢
𝜌𝜌 = 𝐫𝐫𝑒𝑒

0

Static condensation

Local solver Global solver involves only:
+) �𝐮𝐮 : velocity trace (defined on face of element)
+) 𝜌𝜌 : mean of the pressure in each element

Local solver: element solution
+) computed in element-by-element fashion

Example:  Kovasznay flow

Convergence of velocity O(p+2) Convergence of pressure O(p+1)

Velocity magnitude Pressure

𝐀𝐀 𝐁𝐁
𝐂𝐂 𝐃𝐃

𝐳𝐳1
𝐳𝐳2 =

𝐫𝐫1
𝐫𝐫𝟐𝟐

𝐳𝐳1 = −𝐀𝐀−1𝐁𝐁𝐳𝐳2 + 𝐀𝐀−1𝐫𝐫1
(−𝐂𝐂𝐂𝐂−1𝐁𝐁 + 𝐃𝐃)𝐳𝐳2 = 𝐫𝐫2 − 𝐂𝐂𝐀𝐀−1𝐫𝐫1

Elemental system

𝐄𝐄 𝐇𝐇
𝐆𝐆 0

�𝑢𝑢
𝜌𝜌 = 𝐫𝐫

0

Assembly

Global system

Solve Global system for: �𝐮𝐮, 𝜌𝜌

Saddle-point system 𝐆𝐆𝐄𝐄−1𝐇𝐇𝛒𝛒 = 𝐄𝐄−1𝐫𝐫



High-order DG method for turbulent flows

[1] N. Fehn et al., JCP 372 (2018) 667-693; [2] C. C. de Wiart et al., IJNMF 78 (2015) 335-354; [3]G. Noventa et al., C&F139 (2016) 248-260; [4] A. Crivellini, C&F
81 (2013) 122-133; [5] B. Krank et al., JCP 348 (2017) 634-659; [6] F. Bassi et al., European J. of Mechanics B/Fluids 55 (2016) 367-379; [7] F. Bassi et al.,
Computers and Fluids 98 (2014) 54-68; [8] B. Landmann et al., C&F 37 (2008) 427-438; [9] P. Fernandez et al., JCP 336 (2017) 308-329.

References Model

N. Fehn et al., [1], C. C. de Wiart et al., [2] LES

G. Noventa et al., [3], A. Crivellini et al. [4] RANS

B. Krank et al., [5], F. Bassi et al., [6] DNS and LES

F. Bassi et al. [7], B. Landmann et al. [8] RANS and k-ω

Discontinuous Galerkin method for incompressible turbulent flows

Hybridized Discontinuous Galerkin method for compressible turbulent flows
References Model

P. Fernandez et al. [9] LES

Example:  Turbulent channel flows with DG method [5]

Velocity magnitude and eddies for 𝑅𝑅𝑅𝑅𝜏𝜏 = 590 DNS with DG method LES with DG method



“When added-mass effects are prominent, under-relaxations schemes such as that used here
may require small values of ω and large number of iterations to converge. In order to
improve the convergence behavior, fictitious mass and damping are employed as in.
Additional traction terms are added to the solid solver, based on a fictitious surface mass
density fm and fictitious surface damping density fd, such that the total surface traction is
evaluated by using the surface accelerations and velocities evaluated between consecutive
iterations 𝐮𝐮𝑖𝑖𝑛𝑛+1, 𝐮𝐮𝑖𝑖−1𝑛𝑛+1”

Fictitious mass and damping [2]

“The added mass terms affect only the convergence of the iterative scheme, at convergence 
they evaluate to zero. The fictitious terms fm and fd are tuning parameters” 

Recently development of FIV for nuclear reactor



Total Lagrangian and Updated Lagrangian formulations

Total Lagrangian ->  

Updated Lagrangian-> 
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