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My research overview

• Numerical simulation of severe accident scenarios [1].
• Turbulent gas behavior at pipe rupture accident [2].

2018 2020 20222016

• Identification of the hydrogen flame extinction mechanism with CFD simulation [3, 4].
• Analytical modeling and validation of hydrogen flammability limit model [5, 6].
• Development of hydrogen combustion risk prediction code for containment building

(flammability, flame acceleration, DDT evaluation).

[1] J. Jeon et al., Ann. Nucl. Energy, 2018.
[2] J. Jeon et al., Nucl. Eng. Technol., 2019.
[3] J. Jeon et al., Energies, 2020.
[4] J. Jeon et al., Int. J. Heat Mass. Transf.,2021

“The need for hydrogen-LFL model”

• Development of a new concept of network model by introducing CFD principles [7].
• Validation of the model using non-reacting and reacting flows.
• Physics-informed transfer learning strategy to accelerate unsteady simulations [8].

“Need to accelerate CFD simulations” • Limitation of algebraic (logarithmic)
wall model and TBLE model
• Development of DRL method for
turbulent near-wall region modeling
• Sod2d (spectral element method
code) + TensorFlow (DRL library)

[5] J. Jeon et al., Nucl. Eng. Technol., 2019.
[6] J. Jeon et al., Nucl. Eng. Technol., 2021.
[7] J. Jeon et al., Int. J. Energy Res., 2022.
[8] J. Jeon et al., arXiv preprint arXiv:2206.06817

• Development of nuclear reactor 
severe accident.
• Surrogate model for corium 
heat transfer
• Accident prognosis AI

AI application for nuclear safety

“Turbulent near-wall region modeling”

2023
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Background and objective

• A modern big wave of machine learning has propagated to all industries.
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Background and objective

Where AI can do best & most needed!
① Massive data
② Multi-dimensional data
③ Non-analytical (non-linear) data

Nuclear reactor severe accident

0% 100%LFL UFL

0.207 𝜋𝜋 − 𝜋𝜋𝑟𝑟𝑟𝑟𝑟𝑟 = �
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑛𝑛𝑖𝑖 ∆𝐻𝐻𝑓𝑓,𝑖𝑖
0 + ̅𝑐𝑐𝑝𝑝,𝑖𝑖 𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 −

�
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑛𝑛𝑖𝑖 ∆𝐻𝐻𝑓𝑓,𝑖𝑖
0 + ̅𝑐𝑐𝑝𝑝,𝑖𝑖 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟

Hydrogen LFL model was developed by
elucidation of flame extinction mechanism:

Mechanistic model vs AI regression model
(Jeon et al., 2021)

(Jeon et al., 2021)

now being used by national 
research institute 5/38



Background and objective

• Big wave of machine learning to fluid dynamics community  

“Enhancing computational fluid dynamics with machine learning (2022) 
Nature Computational Science”

Prof. R. Vinuesa Prof. S.L. Brunton

① Increasing the speed of computational fluid dynamics
- Finding spatial derivatives in low-resolution grids
- finite volume discretization scheme neural networks
- solving Poisson equation with deep learning

Δ𝑡𝑡
𝜌𝜌 ∇2𝑝𝑝 = −∇ � 𝑢𝑢∗
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Background and objective

• Big wave of machine learning to fluid dynamics community  

② Turbulent modeling
- DNS quantities  supervised learning to LES simulation
- Sub grid scale (SGS) turbulent modeling with reinforcement learning

③ Reduced order models (ROMs)
- even complex flows often exhibit a few dominant coherent structures.
- to extract flow mode for flow control
- for more efficient data-driven methods.

RANS LES + AI DNS

(S.R. Bukka, 2021)

(Y.E. Kang, 2022)
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Background and objective

Energy safety Energy efficiency

Fluid mechanics...

CFD

...

Digital twin

Missing parts 
(ex. turbulent models, 
computation speed)

System 
Engineering

System 
code

...

State-of-the art AI techniques

Missing parts 
(ex. accident prognosis, 
model accuracy) “CFD= 007, 

AI= Agent 
Q”
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What is CFD?

• How it simulates fluid flow.

① Derivation of mathematical equations

② Numerical method for solving partial differential equations (PDEs)

③ Mesh generation

④ Simulation
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+ 𝜕𝜕(𝜌𝜌𝑢𝑢)
𝜕𝜕𝑥𝑥

+ 𝜕𝜕(𝜌𝜌𝑣𝑣)
𝜕𝜕𝑦𝑦

+ 𝜕𝜕(𝜌𝜌𝑧𝑧)
𝜕𝜕𝑧𝑧

= 0

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑥𝑥 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑥𝑥 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

+ 𝑦𝑦 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑦𝑦 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
+ 𝑧𝑧 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑧𝑧 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

+ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝜌𝜌𝑡𝑡+1−𝜌𝜌𝑡𝑡

𝛿𝛿𝑡𝑡
+

𝜌𝜌𝑢𝑢 𝑖𝑖+1𝑗𝑗𝑗𝑗
𝑡𝑡 − 𝜌𝜌𝑢𝑢 𝑖𝑖𝑖𝑖𝑖𝑖

𝑡𝑡

𝛿𝛿𝑥𝑥
+

𝜌𝜌𝑣𝑣 𝑖𝑖𝑖𝑖+1𝑘𝑘
𝑡𝑡 − 𝜌𝜌𝑣𝑣 𝑖𝑖𝑖𝑖𝑖𝑖

𝑡𝑡

𝛿𝛿𝑦𝑦
+…

mass conservation by finite difference method

mass, momentum, 
energy, species 
equations
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What is CFD?

• Turbulent flow is more and more complex…

Adorable laminar flow

Terrible turbulent flow

Laminar:
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

+ 𝑢𝑢𝑗𝑗
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝜈𝜈
𝜕𝜕2𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

= −
1
𝜌𝜌
𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝑔𝑔

𝑢𝑢 𝑥𝑥, 𝑡𝑡 = �𝑢𝑢 𝑥𝑥 + 𝒖𝒖𝒖(𝒙𝒙, 𝒕𝒕)

𝜕𝜕�𝑢𝑢
𝜕𝜕𝑡𝑡

+ �𝑢𝑢𝑗𝑗
𝜕𝜕�𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝜈𝜈
𝜕𝜕2 �𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑗𝑗

= −
1
𝜌𝜌
𝜕𝜕𝑝̅𝑝
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝑔̅𝑔 −
𝜕𝜕𝑢𝑢𝑖𝑖′𝑢𝑢𝑗𝑗′
𝜕𝜕𝑥𝑥𝑗𝑗

Turbulent:
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What is CFD?

• From RANS to DNS

- Reynolds averaged Navier Stokes (RANS)

- Large eddy simulation (LES)

- Direct numerical simulation (DNS)

RANS LES DNS

(G. Staffelbach, 2008)

expensive, accurate

cheep, rough 12/38



① Unrealistic computation costs (especially for turbulent, reacting, multiphase flows)

- my experiences…

- scaling studies for near-wall region

Achilles heel of CFD

Hydrogen explosion simulation (~100h/1s)

(Tolias et al., 2018)

(Jeon et al., 2022)

~𝛰𝛰(𝑅𝑅𝑒𝑒 ⁄13 7) ~𝛰𝛰(𝑅𝑅𝑅𝑅)

Based on LES

“Nuclear reactor severe accident simulation: 72 h”

(S.T. Bose, 2019)
13/38



Achilles heel of CFD

② Turbulent models: a lot of progress, but still hungry
- With the current CPU performance, industrial application of DNS is ‘usually’ impossible.

- Wall-modeled LES (WMLES) is being considered as the next best option.

- However, sub-grid scale Reynolds stress model and turbulent wall model are still highly dependent on 

empirical constants.

𝜈𝜈𝑠𝑠𝑠𝑠𝑠𝑠 = (𝐶𝐶𝑠𝑠Δ)2 2𝑆𝑆𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖

𝑢𝑢+ =
1
𝑘𝑘 ln𝑦𝑦+ + 𝐵𝐵

Turbulent wall model

Sub-grid scale viscosity model

Empirical constants

Unreliable accuracy for 
complex geometry!

“Wall-modeled large-eddy simulation for complex turbulent flows, 
Annual Review of Fluid Mechanics”

Prof. P. Moin

Prof. G.I. Parkturbulent flame model, boiling heat transfer, etc.
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Neural networks
- The deep neural network algorithms were inspired by biological neural network .
- Below figure shows the feed-forward algorithms in two-layer network model.

:𝐼𝐼-dimensional input matrix and 𝐽𝐽 unit number of a hidden layer
- The back-propagation allows to optimize parameter values.

- Eq. (4) shows the representative loss function (mean square error)

𝑌𝑌𝑗𝑗 = ∑𝑖𝑖𝑊𝑊𝑖𝑖,𝑗𝑗
1 𝑋𝑋𝑖𝑖 + 𝑏𝑏𝑗𝑗1 (1)

𝑍𝑍 = ∑𝑗𝑗 𝑊𝑊𝑗𝑗
2 � relu 𝑌𝑌𝑗𝑗 + 𝑏𝑏2 = ∑𝑗𝑗 𝑊𝑊𝑗𝑗

2 � relu ∑𝑖𝑖𝑊𝑊𝑖𝑖,𝑗𝑗
1 𝑋𝑋𝑖𝑖 + 𝑏𝑏𝑗𝑗1 + 𝑏𝑏2 (3)

𝐽𝐽 𝜃𝜃 = 1
𝑛𝑛
∑𝑘𝑘=1𝑛𝑛 𝑍𝑍𝑘𝑘 − 𝑍𝑍𝑘𝑘 𝜃𝜃

2
(4)

𝜕𝜕𝐽𝐽
𝜕𝜕𝑊𝑊1 =

𝜕𝜕𝐽𝐽
𝜕𝜕𝑌𝑌 �

𝜕𝜕𝑌𝑌
𝜕𝜕𝑊𝑊1

⊺

=
𝜕𝜕𝐽𝐽
𝜕𝜕𝑌𝑌 � 𝑋𝑋

⊺
⊺

= 𝑊𝑊2 � 𝑊𝑊2 ⊺ � relu 𝑊𝑊1 ⊺𝑋𝑋 + 𝑏𝑏1 + 𝑏𝑏2 − 𝑍𝑍 � 𝑋𝑋⊺
⊺

(5)

𝑍𝑍 = ∑𝑗𝑗𝑊𝑊𝑗𝑗
2𝑌𝑌𝑗𝑗 + 𝑏𝑏2 = ∑𝑗𝑗 𝑊𝑊𝑗𝑗

2 ∑𝑖𝑖𝑊𝑊𝑖𝑖,𝑗𝑗
1 𝑋𝑋𝑖𝑖 + 𝑏𝑏𝑗𝑗1 + 𝑏𝑏2 (2) 
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Neural networks - domain knowledge

(source: Matt Richard’s blog)

(source: OpenAI)

1) Supervised fine tuning (human labeler)

2) Reward modeled (human evaluator)

3) Reinforcement learning with the reward model

“Insert domain knowledge in AI models”

※Reinforcement learning from human feedback (RLHF)

• Paradoxically, the success of ChatGPT highlighted the importance of domain knowledge.

17/38



Neural networks - domain knowledge

Gaussian discriminant analysis (GDA) logistic regression analysis

• In fact, we can see the power of domain knowledge even from machine learning fundamentals

general AIDomain knowledged AI
Commonality

Specialized

If data is rich and general: NLPIf data is expensive and special: CFD

required data amount, 
parameters 

18/38



Neural networks - domain knowledge

• Principles of the finite volume method (FVM)
- It is important to thoroughly understand the principles of CFD simulation.
- General transport equation can be expressed by Eq. (1) with the discretized control volumes.
- The basic idea of the FVM is the divergence terms can be converted to surface integrals (Eq. (3))

: by Gauss’s theorem (Eq. (2)). 
- The quantity of the neighboring grid as well as the main grid determines the next timestep field
- We paid attention to these principles of the FVM, the tier (stencil) /derivative system.

𝜕𝜕
𝜕𝜕𝜕𝜕 ∫𝑉𝑉 𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑 + ∫𝑉𝑉 ∇ � 𝜌𝜌𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑 − ∫𝑉𝑉 ∇ � 𝜌𝜌Γ𝜙𝜙∇𝜙𝜙 𝑑𝑑𝑑𝑑 = ∫𝑉𝑉 𝑆𝑆𝜙𝜙 𝜙𝜙 𝑑𝑑𝑑𝑑 (1)

∫𝑉𝑉 ∇ � 𝑎𝑎 𝑑𝑑𝑑𝑑 = ∮𝐴𝐴 𝑑𝑑𝑑𝑑 � 𝑎𝑎 (2)

𝜕𝜕
𝜕𝜕𝜕𝜕 ∫𝑉𝑉 𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑 + ∮𝐴𝐴 𝜌𝜌𝜌𝜌𝜌𝜌 𝑑𝑑𝑑𝑑 − ∮𝐴𝐴 𝜌𝜌Γ𝜙𝜙∇𝜙𝜙 𝑑𝑑𝑑𝑑 = ∫𝑉𝑉 𝑆𝑆𝜙𝜙 𝜙𝜙 𝑑𝑑𝑑𝑑 (3)

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

+ 𝜕𝜕
𝜕𝜕𝑥𝑥

𝜌𝜌𝑣𝑣𝑥𝑥 + 𝜕𝜕
𝜕𝜕𝑦𝑦

𝜌𝜌𝑣𝑣𝑦𝑦 = 0 (4)

19/38



Can AI improve CFD? - Part 1. acceleration

For best performance, we should develop a CFD fitted-network model! 

- Idea of CNN: image has the stationarity of statistic 

(Jeon, 2022)

Convolutional Neural Network

100,000 images 
vs 10 images

CNN: 1 image = 1 dataset
Our: 1 grid = 1 dataset

CFD acceleration!!
- Idea of our network model: all CFD nodes has the same rules

All nodes must be satisfied with near nodes: 
d 𝐮𝐮

d𝑡𝑡
+ 𝛻𝛻 � 𝐮𝐮⊗ 𝐮𝐮 − 𝛻𝛻 � 𝜈𝜈𝛻𝛻𝐮𝐮 = −𝛻𝛻𝑝𝑝

0 ∆𝒕𝒕 𝟐𝟐∆𝒕𝒕 𝟑𝟑∆𝒕𝒕 𝑻𝑻

training prediction

20/38



Can AI improve CFD? - Part 1. acceleration
• novel concept of network model: FVMN

• In this study, a finite volume method network (FVMN) was
proposed considering the principles of the FVM in the network
input/output system.

• Although the tier system have been already suggested by previous
studies, we additionally design the derivative system.
𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑖𝑖,𝑗𝑗𝑡𝑡 where 𝑋𝑋𝑡𝑡 ∈ 𝑅𝑅 (1)

𝑍𝑍𝑡𝑡 = 𝑥𝑥𝑖𝑖,𝑗𝑗𝑡𝑡+1 where 𝑋𝑋𝑡𝑡+1 ∈ 𝑅𝑅 (2)
General model

(Jeon, 2022)

21/38

d 𝐮𝐮
d𝑡𝑡

+ 𝛻𝛻 � 𝐮𝐮⊗ 𝐮𝐮 − 𝛻𝛻 � 𝜈𝜈𝛻𝛻𝐮𝐮 = −𝛻𝛻𝑝𝑝

𝑋𝑋𝑡𝑡𝑡𝑡 = 𝑥𝑥𝑖𝑖,𝑗𝑗𝑡𝑡 , 𝑥𝑥𝑖𝑖−1,𝑗𝑗
𝑡𝑡 ,𝑥𝑥𝑖𝑖+1,𝑗𝑗

𝑡𝑡 , 𝑥𝑥𝑖𝑖,𝑗𝑗−1𝑡𝑡 ,𝑥𝑥𝑖𝑖,𝑗𝑗+1𝑡𝑡 ⊺ where 𝑋𝑋𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅5 (3)

𝑍𝑍𝑑𝑑𝑡𝑡 = 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿 𝑖𝑖,𝑗𝑗

𝑡𝑡+1
where 𝑍𝑍𝑑𝑑𝑡𝑡 ∈ 𝑅𝑅 (4)

FVMN model

• 𝐶𝐶𝐶𝐶𝐶𝐶: # 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = # 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (image-based)

• 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹: # 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = # 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (grid based)



Can AI improve CFD? - Part 1. acceleration

TensorFlow –GradientTape API

<Training loss>
(previous): 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 1

𝑛𝑛
∑𝑘𝑘=1𝑛𝑛 �𝑢𝑢𝑘𝑘 − 𝑢𝑢𝑘𝑘(𝜃𝜃

2

(a): 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑛𝑛
∑𝑘𝑘=1𝑛𝑛 �𝛿𝛿𝑢𝑢

𝛿𝛿𝑡𝑡

𝑘𝑘
− 𝛿𝛿𝑢𝑢

𝛿𝛿𝑡𝑡
(𝜃𝜃)

𝑘𝑘 2

(b): 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑤𝑤1 �
1
𝑛𝑛
∑𝑘𝑘=1𝑛𝑛 �𝛿𝛿𝑢𝑢

𝛿𝛿𝑡𝑡

𝑘𝑘
− 𝛿𝛿𝑢𝑢

𝛿𝛿𝑡𝑡
(𝜃𝜃)

𝑘𝑘 2

+ 𝑤𝑤2 �
1
𝑛𝑛
∑𝑗𝑗=12 ∑𝑘𝑘=1𝑛𝑛 𝜀𝜀𝑗𝑗𝑘𝑘

2

*εc: continuity residual, εm: Navier− Stokes residual

1. Improve synchronization of FVM method and NNs

2. Prevention “non-physical overfitting”(Jeon, 2022)

(Praditia, 2021)

NNs

PINNs

1번 O, 
2번 X,
3번 O

1번 답은 a, 
2번 답은 c,
3번 답은 d

1번 O, 풀이과정은…
2번 X, 풀이과정은… 

1번 답은 a + 풀이과정
2번 답은 c + 풀이과정
3번 답은 d + 풀이과정

What is PINNs?
Physics-informed neural networks (PINNs)

d 𝐮𝐮
d𝑡𝑡

+ 𝛻𝛻 � 𝐮𝐮⊗ 𝐮𝐮 − 𝛻𝛻 � 𝜈𝜈𝛻𝛻𝐮𝐮 + 𝛻𝛻𝑝𝑝 = 𝜀𝜀
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Can AI improve CFD? - Part 1. acceleration
• Improved performance of FVMN

• Improved network performance

• Reduced residuals in prediction time series

• Still error growing…

1) by FVM architecture

2) by PINNs
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Can AI improve CFD? - Part 1. acceleration

• Physics-informed transfer learning

Car: AI
Repairman: CFD

CFD: OpenFoam
AI: TensorFlow

(Jeon, 2022)d 𝐮𝐮
d𝑡𝑡

+ 𝛻𝛻 � 𝐮𝐮⊗ 𝐮𝐮 − 𝛻𝛻 � 𝜈𝜈𝛻𝛻𝐮𝐮 + 𝛻𝛻𝑝𝑝 = 𝜺𝜺

Mr. J. Lee (HYU)
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Can AI improve CFD? - Part 1. acceleration

• The boundary layer issue is also the reason why the transfer strategy is needed.

Why?

2D error contour

3D pressure contour

25/38

Two solutions

1) Large AI model (~175 billion parameter numbers, now x 107)

2) Physics-informed transfer learning 



Can AI improve CFD? - Part 1. acceleration

• Feasibility study of the physics-informed transfer learning strategy

Single learning ML-CFD strategy

• Error recovery was observed in the CFD zone.

• Effect by correction of flux balances (residuals)

(Jeon, 2022)

26/38

Multiphase flow (ongoing)
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Can AI improve CFD? - Part 2. accuracy

~𝛰𝛰(𝑅𝑅𝑒𝑒 ⁄13 7) ~𝛰𝛰(𝑅𝑅𝑅𝑅)

𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡

𝝁𝝁
𝝏𝝏𝒖𝒖
𝝏𝝏𝒚𝒚

• Why we need Large eddy simulation (LES)?
- The NASA 2030 CFD Vision Report demonstrated deficiency of lower fidelity (RANS-based) solution approaches and 

suggests that unsteady simulation techniques such as LES may provide sufficient accuracy.

- Especially, in nuclear field, RANS-based solution is not suitable for analyzing complex flow in accident conditions.

• Why we need wall modeled LES (WMLES)?
- In high Reynolds numbers, the grid requirements for wall resolved large eddy simulations are not feasible.

- Grid requirement = computational cost

• Background

28/38



Can AI improve CFD? - Part 2. accuracy

• Historical attempts in WMLES

(1) Algebraic wall model: effective in the absence of pressure gradient conditions.

𝑢𝑢+ =
1
𝜅𝜅

log𝑦𝑦+ + 𝐵𝐵

𝑢𝑢+ =
1

0.41 log 1 + 0.4𝑦𝑦+ + 7.8 1 − 𝑒𝑒−
𝑦𝑦+
11 −

𝑦𝑦+

11 𝑒𝑒
−0.33𝑦𝑦+

(2) Thin boundary-layer equation (TBLE)
𝜕𝜕 �𝑢𝑢𝑖𝑖
𝜕𝜕𝑡𝑡 +

𝜕𝜕 �𝑢𝑢𝑖𝑖 �𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑗𝑗

+
1
𝜌𝜌
𝜕𝜕 �𝑝𝑝
𝜕𝜕𝑥𝑥𝑖𝑖

=
𝜕𝜕
𝜕𝜕𝑦𝑦 (𝑣𝑣 + �𝑣𝑣𝑡𝑡)

𝜕𝜕 �𝑢𝑢𝑖𝑖
𝜕𝜕𝑦𝑦

𝑑𝑑𝜏𝜏
𝑑𝑑𝑑𝑑 =

𝑑𝑑
𝑑𝑑𝑑𝑑 𝜇𝜇

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 − 𝜌𝜌𝑢𝑢′𝑣𝑣′ with equilibrium assumption*:

* assuming a local balance between the pressure gradient/streamwise convection and that the spatiotemporal resolution of 
the LES is large compared with viscous length and time scales such that the near-wall cell

Many studies on the non-equilibrium wall model 
are still in progress!

log-layer mismatch
 data-driven method

• Background
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Can AI improve CFD? - Part 2. accuracy

• Reinforcement learning 

What is reinforcement learning? 
by mathworks.com

“Reinforcement learning differs from supervised learning in a way that in supervised 

learning the training data has the answer key with it so the model is trained with the 

correct answer itself whereas in reinforcement learning, there is no answer but the 

reinforcement agent decides what to do to perform the given task.”

𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 ← 𝑄𝑄 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 + 𝛼𝛼 𝑟𝑟𝑡𝑡 + 𝛾𝛾max𝑄𝑄 𝑠𝑠𝑡𝑡+1 ,𝑎𝑎 − 𝑄𝑄(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)

𝐽𝐽 𝜃𝜃 = 1
𝑛𝑛
∑𝑘𝑘=1𝑛𝑛 𝑍𝑍𝑘𝑘 − 𝑍𝑍𝑘𝑘 𝜃𝜃

2
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Can AI improve CFD? - Part 2. accuracy

• Overview
𝑢𝑢+ =

1
𝑘𝑘

ln𝑦𝑦+ + 𝐵𝐵

Wall resolved Wall modeled

~𝛰𝛰(𝑅𝑅𝑒𝑒 ⁄13 7) ~𝛰𝛰(𝑅𝑅𝑅𝑅)
Algebraic wall model

Significant error in 
complex geometries

Idea: There is no ground truth for 𝑓𝑓𝑤𝑤𝑤𝑤, But we know 𝝁𝝁 𝝏𝝏𝒖𝒖
𝝏𝝏𝒚𝒚

!

𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡

𝝁𝝁
𝝏𝝏𝒖𝒖
𝝏𝝏𝒚𝒚

: AI

: CFD

d u
d𝑡𝑡

+ 𝛻𝛻 � u ⊗ u − 𝛻𝛻 � 𝜈𝜈𝜈𝜈𝜈 = −𝛻𝛻𝛻𝛻 + 𝒇𝒇𝒘𝒘𝒘𝒘

State: flow variables: 𝑢𝑢 𝑥𝑥, 𝑧𝑧, 𝑡𝑡𝑛𝑛 , 𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

(𝑥𝑥, 𝑧𝑧, 𝑡𝑡𝑛𝑛)

Action: volumetric force term: 𝒇𝒇𝒘𝒘𝒘𝒘(𝒙𝒙, 𝒛𝒛, 𝒕𝒕𝒏𝒏)

Reward: shear stress: 𝝁𝝁𝝏𝝏𝒖𝒖
𝝏𝝏𝒚𝒚

(𝒙𝒙, 𝒛𝒛, 𝒕𝒕𝒏𝒏)

Environment
(CFD) Agent

Action

Reward

State
“Reinforcement learning”
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Can AI improve CFD? - Part 2. accuracy

Environment
(CFD) Agent

Action: LES scale

Reward: 
DNS scale

State
“Reinforcement learning”

• Why not supervised learning?
- For implicitly filtered large eddy simulation (LES), this approach is infeasible,... As a consequence, the closure terms for 

implicitly filtered LES cannot be computed from high-fidelity DNS data, since the filter that would have to be applied 

is unknown (A. Beck, Int. J. Hear Fluid Flow, 2023)

• How about reinforcement learning?
- Can avoid inconsistency by training not on a previously obtained training dataset, 

but by deterministic reward function.

• Method: deep reinforcement learning
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Can AI improve CFD? - Part 2. accuracy

• A. Beck, University of Stuttgart, 2023
- DRL for dynamic Smagorinsky’s model parameter (PPO)

- 𝜇𝜇𝑡𝑡 = 𝜌𝜌 𝑪𝑪𝒔𝒔Δ 2 2𝑆̃𝑆𝑖𝑖𝑖𝑖𝑆̃𝑆𝑖𝑖𝑖𝑖 , 𝑆̃𝑆𝑖𝑖𝑖𝑖 = 1
2

𝜕𝜕�𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕�𝑣𝑣𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

• If a similar method is used for turbulent wall modeling,

Content Function
Action Smagorinsky’s model parameter within 𝐶𝐶𝑠𝑠 ∈ [0, 0.5]

Reward 𝑅𝑅 𝑠𝑠 = 2 exp −
1

𝛼𝛼𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
�
𝑘𝑘=1

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 �𝑬𝑬𝑫𝑫𝑫𝑫𝑫𝑫 𝒌𝒌 − 𝑬𝑬𝑳𝑳𝑳𝑳𝑳𝑳 𝒌𝒌
�𝑬𝑬𝑫𝑫𝑫𝑫𝑫𝑫 𝒌𝒌

2

− 1

Content Function

Action Wall model parameter: 𝑢𝑢+= 1
𝑘𝑘

ln 𝑦𝑦+ + 𝐵𝐵

Reward Turbulent energy spectrum, wall shear stress, etc.

• Method: deep reinforcement learning
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Can AI improve CFD? - Part 2. accuracy

• H. Jane Bae, California Institute of Technology 2022

- DRL for multiplication factor of wall shear stress

- τ𝑤𝑤𝑚𝑚 𝑥𝑥, 𝑧𝑧, 𝑡𝑡𝑛𝑛+1 = 𝑎𝑎𝑛𝑛 𝑥𝑥, 𝑧𝑧 τ𝑤𝑤𝑚𝑚 𝑥𝑥, 𝑧𝑧, 𝑡𝑡𝑛𝑛
- The initial wall-shear stress is set to ± 20% of correct wall-shear stress

Content Function
Action Multiplication factor of wall shear stress 𝑎𝑎𝑛𝑛(𝑥𝑥, 𝑧𝑧) ∈ [0.9, 1.1]

State 𝑢𝑢∗ 𝑥𝑥,ℎ𝑚𝑚 , 𝑧𝑧, 𝑡𝑡𝑛𝑛 ,
𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑦𝑦∗
𝑥𝑥,ℎ𝑚𝑚 , 𝑧𝑧, 𝑡𝑡𝑛𝑛 , 𝑦𝑦∗ = ℎ𝑚𝑚 ∗

Reward

r𝑛𝑛 𝑥𝑥, 𝑧𝑧

=
𝜏𝜏𝑤𝑤 − 𝜏𝜏𝑤𝑤𝑚𝑚 𝑥𝑥, 𝑧𝑧, 𝑡𝑡𝑛𝑛 − 𝜏𝜏𝑤𝑤 − 𝜏𝜏𝑤𝑤𝑚𝑚 𝑥𝑥, 𝑧𝑧, 𝑡𝑡𝑛𝑛−1

𝜏𝜏𝑤𝑤

+ 𝕝𝕝
𝜏𝜏𝑤𝑤 − 𝜏𝜏𝑤𝑤𝑚𝑚 𝑥𝑥, 𝑧𝑧, 𝑡𝑡𝑛𝑛

𝜏𝜏𝑤𝑤
< 0.01

𝑢𝑢𝑢

𝜏𝜏𝑤𝑤𝑚𝑚

𝜏𝜏𝑤𝑤

• Method: deep reinforcement learning
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Can AI improve CFD? - Part 2. accuracy

• Limitations of recent studies by A. Beck and H. Jane Bae

(1) Dependence on empirical formula

(2) Non-physical meaning of action variable: multiplication, parameter sensitivity

• Our idea: DRL for volumetric momentum source

• Method: deep reinforcement learning

Content Function

Action (example) d u
d𝑡𝑡

+ 𝛻𝛻 � u ⊗ u − 𝛻𝛻 � 𝜈𝜈𝜈𝜈𝜈 = −𝛻𝛻𝛻𝛻 + 𝒇𝒇𝒘𝒘𝒘𝒘

State (example) 𝑢𝑢∗ 𝑥𝑥,ℎ𝑚𝑚 , 𝑧𝑧, 𝑡𝑡𝑛𝑛 ,
𝜕𝜕𝑢𝑢∗

𝜕𝜕𝑦𝑦∗
𝑥𝑥,ℎ𝑚𝑚 , 𝑧𝑧, 𝑡𝑡𝑛𝑛 , 𝑦𝑦∗ = ℎ𝑚𝑚 ∗

Reward (example)
(1) 𝑅𝑅 = 𝑅𝑅 ∑ℎ=1𝐻𝐻 𝒖𝒖𝑳𝑳𝑳𝑳𝑳𝑳

+ 𝑥𝑥,𝑧𝑧,𝑡𝑡𝑛𝑛 −𝒖𝒖𝒓𝒓𝒓𝒓𝒓𝒓
+ 𝑥𝑥,𝑧𝑧,𝑡𝑡𝑛𝑛

𝒖𝒖𝒓𝒓𝒓𝒓𝒓𝒓
+ 𝑥𝑥,𝑧𝑧,𝑡𝑡𝑛𝑛

2

(2) 𝑅𝑅 = 𝑅𝑅 𝜏𝜏𝑤𝑤𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥,𝑧𝑧,𝑡𝑡𝑛𝑛 −𝜏𝜏𝑤𝑤𝐷𝐷𝐷𝐷𝐷𝐷 𝑥𝑥,𝑧𝑧,𝑡𝑡𝑛𝑛
𝜏𝜏𝑤𝑤𝐷𝐷𝐷𝐷𝐷𝐷 𝑥𝑥,𝑧𝑧,𝑡𝑡𝑛𝑛
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Can AI improve CFD? - Part 2. accuracy

x

Parameter Value

Geometry 2×3×6

Friction Reynolds number (𝑅𝑅𝑒𝑒𝜏𝜏) 100 (diverged at 950)

Average mesh size 18 × 18 × 18 cm

Wall model Reichardt's wall model

Number of mesh 6,656

Initial timestep ~1e-4 (adaptive with Coruant)

LES model Vreman SGS model

• Now developing DRL framework

: Reference DRL code

: CFD source code

: DRL-WMLES project
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Summary and conclusion

Energy safety Energy efficiency

Fluid mechanics...

CFD

...

Energy innovation

(Kang, 2022)
Accident analysis

new reactor design
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jgjeon41@jbnu.ac.kr

Thank you for listening!
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Appendix – why we need to accelerate the CFD

• Overview
- To develop a novel concept of network model by understanding CFD and ML principles.
- To evaluate the performance of the developed network model
- To suggest a computational framework of the AI aided CFD simulation.
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Appendix – hydrogen combustion dataset

- In this study, we produced datasets by the stabilized flame simulation.
* 5% H2-air flame simulation to investigate the flammability of the hydrogen flames.

- The need for DNN to deal with the non-linearity was highlighted by the governing equations.
- Right figure shows the entire timeline of the stabilized flame generation process. 

* 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1000 𝑚𝑚𝑚𝑚,∆𝑡𝑡 = 1 𝑚𝑚𝑚𝑚
* The flame continues to expand until 0.5 s when the ignition energy is in effect. 
* After 0.5 s, the flame begins to stabilize through the balance of heat loss mechanisms and combustion heat.

- This flame stabilizing period was selected as the subject of this study (0.600-0.611 s)

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜌𝜌𝑣⃗𝑣 + ∇ � 𝜌𝜌𝑣⃗𝑣𝑣⃗𝑣 = −∇𝑝𝑝 + ∇ � ̿𝜏𝜏 + 𝜌𝜌𝑔⃗𝑔 (1)

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜌𝜌𝑌𝑌𝑖𝑖 + ∇ � 𝜌𝜌𝑣⃗𝑣𝑌𝑌𝑖𝑖 = −∇ � 𝐽𝐽𝑖𝑖 + 𝑅𝑅𝑖𝑖 (2)

𝐾𝐾 = 𝐴𝐴𝑇𝑇𝑏𝑏exp(− 𝐸𝐸𝑎𝑎
𝑅𝑅𝑅𝑅

) (4)

𝐽𝐽𝑖𝑖 = −𝜌𝜌𝐷𝐷𝑖𝑖,𝑚𝑚∇𝑌𝑌𝑖𝑖 (3)

(Jeon, 2022) 

• Unsteady CFD simulation datasets
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Appendix – hyperparameters
• Optimization of hyperparameters

- The number of training examples is 𝑛𝑛 = 𝑀𝑀 × 𝑁𝑁
(100,926).

- The network models were trained with 80% of
0.600-0.601s data (loss function: MSE for 20%
validation dataset).

- After training, the trained networks predicted all
0.601 time series data by 0.600 data.

- Right figure shows the error distribution between
the ground truth data (CFD) and the predicted value.

- Overfitted networks caused soar of errors in the
stiff region

Based on 0.601 s predicted temperature field

Case Hidden layers Number of 
parameters

Activation 
function

Learning 
rate

Loss 
function

a 64 2,049 ReLU 0.001 MSE
b 64, 64 6,209 ReLU 0.001 MSE
c 64, 64, 64 10,369 ReLU 0.001 MSE
d 64, 64, 64, 64 14,529 ReLU 0.001 MSE
e 64, 64, 64 10,369 Sigmoid 0.001 MSE
f 128, 128, 128 37,121 ReLU 0.001 MSE
g 256, 256, 256 139,777 ReLU 0.001 MSE
h 64, 32, 16 4,609 ReLU 0.001 MSE

Test matrix for optimization of FVMN

0 ∆𝒕𝒕 𝟐𝟐∆𝒕𝒕 𝟑𝟑∆𝒕𝒕 𝑻𝑻

training prediction
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Appendix – tier/derivative systems

• Performance evaluation of the FVMN: (1) training/validation dataset
- Below figure shows the effect of the tier and derivative system application on the error reduction.
- The only difference in case (1-4) is the form of input and output variables during training/prediction process.
- The efficacy of the derivative system is much more noticeable- scale separation effect:
- Although the maximum relative error is similar between cases (1) and (4), the local error at the wall boundary region 

is more pronounced in case (4).

𝑋𝑋𝑡𝑡𝑡𝑡 = 𝑥𝑥1𝑖𝑖,𝑗𝑗
𝑡𝑡 , 𝑥𝑥1𝑖𝑖−1,𝑗𝑗

𝑡𝑡 , 𝑥𝑥1𝑖𝑖+1,𝑗𝑗
𝑡𝑡 , 𝑥𝑥1𝑖𝑖,𝑗𝑗−1

𝑡𝑡 , 𝑥𝑥1𝑖𝑖,𝑗𝑗+1
𝑡𝑡 ,⋯𝑥𝑥𝐼𝐼𝑖𝑖,𝑗𝑗

𝑡𝑡 , 𝑥𝑥𝐼𝐼𝑖𝑖−1,𝑗𝑗
𝑡𝑡 , 𝑥𝑥𝐼𝐼𝑖𝑖+1,𝑗𝑗

𝑡𝑡 , 𝑥𝑥𝐼𝐼𝑖𝑖,𝑗𝑗−1
𝑡𝑡 , 𝑥𝑥𝐼𝐼𝑖𝑖,𝑗𝑗+1

𝑡𝑡
⊺

,𝑋𝑋𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅(5×𝐼𝐼) (1)

𝑍𝑍𝑑𝑑𝑡𝑡 = 𝛿𝛿𝑥𝑥1
𝛿𝛿𝛿𝛿 𝑖𝑖,𝑗𝑗

𝑡𝑡+1
where 𝑍𝑍𝑑𝑑𝑡𝑡+1 ∈ 𝑅𝑅 (2)

𝑋𝑋𝑡𝑡 = 𝑥𝑥1𝑖𝑖,𝑗𝑗
𝑡𝑡 ,⋯𝑥𝑥𝐼𝐼𝑖𝑖,𝑗𝑗

𝑡𝑡
⊺

,𝑋𝑋𝑡𝑡 ∈ 𝑅𝑅(𝐼𝐼) (3)

𝑍𝑍𝑡𝑡 = 𝑥𝑥1𝑖𝑖,𝑗𝑗
𝑡𝑡+1 where 𝑍𝑍𝑡𝑡 ∈ 𝑅𝑅 (4)

𝐼𝐼 = 6 (𝑇𝑇,𝑣𝑣𝑥𝑥,𝑣𝑣𝑟𝑟 ,𝑋𝑋𝐻𝐻2𝑂𝑂,𝑋𝑋𝐻𝐻2 ,𝑋𝑋𝑂𝑂2)
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Appendix – FVMN performance
• Performance evaluation of the FVMN: (2) test dataset

- We evaluated the performance of the FVMN in multi-step prediction (0.601 – 0.611 s).

Training dataset Test dataset

CNN: >10,000 snapshots
FVMN: only 2 snapshots

In CFD, each grid has a
unified relationship with the
neighboring grid (governing
equations).
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Appendix – PINNs dataset

• Physics-informed ML strategy

1. Development of physics-informed neural networks

2. ML-CFD cross-coupling computation strategy (transfer learning)

Summary of CFD dataset: counterflow simulation: time 4 s, timestep 0.01 s

(Jeon, 2022)

45/38



Appendix – OpenFOAM-TensorFlow

• (2) Cross-coupling strategy

• Computational framework: OpenFOAM (CFD) – TensorFlow (ML)

• OpenFOAM solver: icoFOAM (𝜙𝜙-calculation algorithm)

)𝜙𝜙 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑢𝑢 � 𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 𝑆𝑆𝑆𝑆(

𝜙𝜙 = 𝑢𝑢𝑓𝑓 � 𝑆𝑆𝑓𝑓 =
𝐻𝐻
𝐴𝐴 𝑓𝑓

� 𝑆𝑆𝑓𝑓 −
1
𝐴𝐴 𝑓𝑓

𝑆𝑆𝑓𝑓 � 𝛻𝛻𝑓𝑓⊥𝑝𝑝

Mr. J. Lee (HYU)
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Appendix – Performance comparison

• (2) Cross-coupling strategy

𝜓𝜓 =
𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶

𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑡𝑡𝑢𝑢𝑢𝑢 + 𝑛𝑛𝑀𝑀𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀
= 1.8

Computational timeline

Acceleration performance: 

• Required time: 𝒕𝒕𝑴𝑴𝑴𝑴, 𝒕𝒕𝑪𝑪𝑪𝑪𝑪𝑪,𝒕𝒕𝒕𝒕𝒕𝒕, 𝒕𝒕𝒖𝒖𝒖𝒖
• About 1.8 times acceleration performance

(Jeon, 2022)
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