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Introduction

Thermal-Hydraulics R&D

Requirements for CFD—grade experiments for TH




01 Introduction (1)

“ Thermal—-Hydraulics R&D of RSSRD

APR+, iPOWER, APR1000 Development

APR1400 NRC-DC Support

RAI (Response to Audit Issues)
* VAPER, MIDAS & ATLAS

* Electrical 4-train Tests

APR1400/0PR1000 Safety
Comprehensive R&D

* |[ET: ATLAS, RCP

* SET: THETA, PURIUS, ICARUS

Basic TH Exps. & Modeling
Multi-physics (Fuel + TH + CTMT)

* Phenomena understanding and
modeling

* Measurement technique

mmmmmmmmmm

v

A

Improved Design Features
* DVI+, FD+, PAFS, PCCS, PECCS
* HSIT, Mixed cooling

Code Development (V&V)
TH Sys. Codes + BEPU Tool

* MARS-KS transferred to KINS
* SPACE licensed in 2017
* PAPIRUS developed &
* Simulator technology
Multi-Scale Code

* CUPID

8afiety and Performence Anallysis Codk for a NPP

SMR & Gen.lIV Safety
SMART Passive Concepts
SFR Validation and SCO, System
i-SMR Safety Validation

* |[ET & SET

Nuclear Safety and Base Technology Laboratory / Reactor System Safety Research Division
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01 Introduction (2) 7

RSSRD

“ Requirements for CFD—grade experiments for TH

= What is a CFD—grade experiment?
« Validate of CFD: give an information on the quality of physical models

* Determine CFD model uncertainty
* Allow BEPU

= Scope
» BIC and physical properties of fluid and solid
° FlOW pa rameter measurement 1: DEFINE OBJECTIVES AND g Eles_lc_;tor issue analysis
* Measurement uncertainty ACCEPTANCE CRITERIA 0 Select CFD model type

O Define acceptance criteria

2: SPECIFY ’EXPERIMENT
AND INSTRUMENTATION O Test section geometry

O Location of inlet and outlet sections
O BIC at solid and fluid boundaries

3: PRELIMINARY
CFD CALCULATIONS (O Optimize inlet/oulet section location |

O Optimize geometry
O Sensitivity to uncertainty

4: EVALUATE VALIDATION = on measured BIC
UNCERTAINTY \ » on measured field variables

- O Evaluate the validation uncertainty
5: BUILD EXPERIMENT of a selected parameter of interest:

PERFORM TESTS i = (Bt Gt

N 6: ARE CRITERIAMET? |

Requirements for CFD-grade experiments for nuclear reactor thermalhydraulics, Ry : _ :
D. Bestion o al.. NEA/GSNI, 2020 Roadmap for designing and performing a CFD—grade experiment

Nuclear Safety and Base Technology Laboratory / Reactor System Safety Research Division 5/39



Natural Convection in a Pool

Local Thermal Mixing Characteristics inside a
PCCT

CUPID Code Analysis

Small-sized Pool Experiment

7



02 Natural Convection in a Pool (1S

RSSRD

% Local Thermal Mixing Characteristics inside a PCCT

PASCAL Test : SS/PL-540-P1
— t=13200 sec

=eslve Condensate
woling Tank
_CCT)

Containment Temperature
Boundary
105.1
104.8
104.5
104.2
103.9
103.6
103.3
103

102.7
102.4
102.1
101.8
101.5
101.2
100.9
100.6

Steam Supply Line

ft L1001
o~
< /_I_ Check Actuation

2 Eyin Valve  Valve
g S MSIV

Steamn Generator 7]
-

Main Steam Line

Return Water Line

'

|
1

[ =
‘I I' Feedwater
b | Line

I
I
I
I
I
1
|
I
I
I
I

6
X(m)

. Fluid temperature distribution inside a PCCT
Schematics of PAFS (PASCAL)
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02 Natural Convection in a Pool oo

% Local Thermal Mixing Characteristics inside a PCCT

Droplets - Single phase gas, o _
o S K steam—air mixture = Complexity in physical phenomena
¥o o % * Single- and two—-phase natural circulation
g)oé}\ ; : » Subcooled boiling and condensation
I Natural circulation _
%o * Flashing
RN « Evaporation on the free surface
Flashing, s . . . :
bubbly flow = Difficulty in numerical analysis
: : : « Various flow patterns
Single phase
e * Phase change under low pressure state
- : » Long transient time over 30,000 sec.
S:g%%ﬂ:gnzzugg * Complicated geometry of the heat
0 on X exchanger and its supporting structure
2900 30°6°0%0 WO
(. -----

Numerical Analysis of the Passive Condensation Cooling Tank (PCCT) using
the CUPID Code, S.J. Lee et al., CFD4NRS-4, 2012
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02 Natural Convection in a Pool (2%

RSSRD

% Local Thermal Mixing Characteristics inside a PCCT

b

1

O- @)
_____________ Qo Ot 2909/
O ¢} o - -

Schematics of ATLAS-PAFS PCCT

___-

Steam discharge
outlet

Subcooled boiling
and condensation

Fluid temperature around the PCHX : ~ 82 °C

Nuclear Safety and Base Technology Laboratory / Reactor System Safety Research Division 9/39



b

_________________________________ 6500 — _ﬂj Steam discharge
outlet

O © -
_____________ Qi __O: ___: 3009/
_________________________________ 9900 —1_ P
~ -

o - o - .0 - - ~ Subcooled boiling

- and condensation

—_—

Schematics of ATLAS-PAFS PCCT Fluid temperature around the PCHX : ~ 100 °C
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RSSRD
_________________________________ 6500 j gf/i/ae;n discharge
—
0O 0O . / J— —
— =
— .
— -
_____________ Qf______'____O__'____L_ggggv .
-------------------------------- ————= Flashing,
bubbly flow
Schematics of ATLAS-PAFS PCCT Fluid temperature around the PCHX : ~ 100 °C
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02 Natural Convection in a Pool oo

% Local Thermal Mixing Characteristics inside a PCCT

Droplets - Single phase gas, o _
o S K steam—air mixture = Complexity in physical phenomena
¥o o % * Single- and two—-phase natural circulation
g)oé}\ ; : » Subcooled boiling and condensation
I Natural circulation _
%o * Flashing
RN « Evaporation on the free surface
Flashing, s . . . :
bubbly flow = Difficulty in numerical analysis
: : : « Various flow patterns
Single phase
e * Phase change under low pressure state
- : » Long transient time over 30,000 sec.
S:g%%ﬂ:gnzzugg * Complicated geometry of the heat
0 on X exchanger and its supporting structure
2900 30°6°0%0 WO
(. -----

Numerical Analysis of the Passive Condensation Cooling Tank (PCCT) using
the CUPID Code, S.J. Lee et al., CFD4NRS-4, 2012
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02 Natural Convection in a Pool (3)E3

RSSRD

% Local Thermal Mixing Characteristics inside a PCCT

450900 900 - 900 | 963 - 1033 - 1033 | 516 - - - - - ) T Temperature
§ X x x )i( x x x
600
rrrrrrrrrrr x x x x x x x
1200
X x x x x x x
1200
x x x x x x x
1200
ﬂ' X x x x x x x
[ee]
J 1000
% x x x x x x x
500
,,,,,,,,,,,} ,,,,,,,,,,, L x x x x x x x x x x x X x
851
% x x x x x x x x x x x x x x
701
,,,,,,,,,,, x x x x X x X X x X x x x x
701
,,,,,,,,,,, x x x x x x x x x x x  x x %
701
[ E— x X x x x x x x x x X x X x
443
: xoxoxoxoxoxox o xoxoxox o oxx
443 P I U U A R
‘ S L L L R A
535 P
225450 450 | 450 | 450 450 | 4501450 | 485 | 516 | 516 | 516 | 516 | 516 260
6700
Schematics of PASCAL PCCT Fluid temperature for 540 kW test condition
(133 TC installed)
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02 Natural Convection in a Pool (4]

% CUPID Code Analysis
= PASCAL test for SS/PL-540-P1 case

Outlet

» Geometry: 6.70mx11.0m x 0.112 m

= Approximated in two dimensions

= Grid = 33xbb

= Porous media: heat exchanger tube

= Open media: pool-side

= Supporting structure: porous media, no heat
= Heat structure: whole area

= Transient: 30,000 sec

» Heat source boundary condition: 540 kW

6.7 m

Numerical Analysis of the Passive Condensation Cooling Tank (PCCT) using
the CUPID Code, S.J. Lee et al., CFD4NRS-4, 2012

Nuclear Safety and Base Technology Laboratory / Reactor System Safety Research Division 14/39



02 Natural Convection in a Pool

“ CUPID Code Analysis

Swelling Boil-off

10,000 sec. I 15,000 sec. 20,000 sec.

Water Level PAS CAL

Temperature
104.4

104 10,000 sec. 15,000 sec. 20,000 sec.

103.6
103.2

PASCAL Test : $8-540-02
t=7500 sec

2 4 6 8

Nuclear Safety and Base Technology Laboratory / Reactor System Safety Research Division



AN

KAERI

RSSRD

120
144
—~ st et bna e
L € A
o T
>
‘5 3 101
g 8
@©
) = g
o 3}
g 2
Position-1 (0.45 m, 9.5 m) 64
o PASCAL 5 PASCAL
= CUPID 4 ——CUPID
30 T T T T T T T
0 5000 10000 15000 20000 25000 30000 10000 15000
Time (sec) Time (sec)
Collapsed water level
120
06
Transition of the natural
—~ i circulation mode
G 05
° w
=] -
= E 04
8
£ £ 0.3
= § '
5 )
T >
= he) 0.2
>
Position-3 (0.225 m, 2.8 m) o
s PASCAL — 014
—— CUPID
30 T T T T T T
0 5000 10000 15000 20000 25000 30000 0.0 T T T T T
Time (sec) 0 5000 10000 . 15000 20000 25000 30000
Time (sec)
Fluid temperature inside a PCCT Liquid velocity
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02 Natural Convection in a Pool ()8

RSSRD
s . .
% Small-sized Pool Experiment
= To obtain the flow velocity information of liquid phase
60.0 () 300.0 ()
1
Size of test rig 300 x 650 x 60 mm3
Water inventory 300 x 400 x 60 mm?
Front Pyrex (3 mm thickness)
Pol b <
olycarbonate -
Back (15 mm thickness) 150.0 100 -
75.0 3
Material of Left Stainless steel ©
test rig (20 mm thickness)
TF*OD177
Right Pyrex (3 mm thickness) S
g <
Bottom Stainless steel 1500 -
(20 mm thickness) TF-02 | :
O gl : Heater ro|d| TF'OOS 37
Heater rod 3/4” diameter, L: 150 mm, 600 W § Fos e m
@ ?

Nuclear Safety and Base Technology Laboratory / Reactor System Safety Research Division 17/39



02 Natural Convection in a Pool (G)

RSSRD

% Small-sized Pool Experiment

= PIV system configuration
* 4M pixels CCD Camera
* 65 mJ two—head Nd:YAG laser
* Pulse generator, 8 frames per second
* Notch filter (=532 nm)
« Long-pass filter (A 550 nm)

 Fluorescent polymer particle (¢~ 20 um) C
(SG=1.02) @ —
= Excitation Light
° Spatlal resolutlon (AX) 3 mm A == Emitted Fluorescence Light (.>550 nm)

=== Emitted Fluorescence Light (.>532 nm)

* 1,000 velocity vector fields per test condition |
are acqu”.ed l_—A_I Long-pass Filter

* Ensemble average: mean, fluctuation,
turbulence intensity

Notch Filter or

T Band-pass Filter
I Li%ht Source
Flow Field Optics for .Sheet
Generation

Nuclear Safety and Base Technology Laboratory / Reactor System Safety Research Division 18/39




02 Natural Convection in a Pool (2]

RSSRD
% Small-sized Pool Experiment
= Featured mean velocity vector field (with varying pool temperatures )
m/s Speed (m/s) - Speed (m/s) - Speed (m/s)

0.1 m/s

0.10 0.10

400 0.09 . 0.09

0.08 0.08

0.07 0.07

0.06 0.06

0.05 0.05

0.04 0.04

300 0.03 0.03

—_ 0.02 0.02

S 0.01 0.01

E 0.00 0.00
=
(o))
D

T 200

[0}
[o]
o

100

00 100 200 300 0 100 200 300 0 100 200 300
Pool Width (mm) Pool Width (mm) Pool Width (mm)
TO70H400 TO90H400 T100H400
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02 Natural Convection in a Pool (2]

RSSRD

% Small-sized Pool Experiment

= Featured mean velocity vector field (with varying pool temperatures )

Speed (m/s) 04 mis Speed (m/s) 04 mis Speed (m/s)
0.10 ' 0.10 0.10

0.1 m/s

400 009 | 009 | 0.09
0.08 0.08 0.08
0.07 0.07 0.07
0.06 0.06 0.06
0.05 0.05 0.05
0.04 0.04 0.04
300 0.03 003 | 0.03
—_ 0.02 0.02 0.02
E 0.01 0.01 0.01
£ 0.00 0.00 0.00
<
o !
2 ‘
T 200 Hi
S |
o it

A

h-_---.-.--“\\\ 4‘ ..-‘.‘.I‘l:..--"

100

0 100 200 300 0 100 200 300 0 100 200 300
Pool Width (mm) Pool Width (mm) Pool Width (mm)
T100H400 T100H300 T100H200
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02 Natural Convection in a Pool (23

RSSRD

% Small-sized Pool Experiment

= CUPID code analysis to verify the performance of turbulence model

@ y=350 mm
0.06 =

------ Exp.
CUPID: (Fritz)

Single—phase r——————— — — —

Thermal Stratification

0.06

v-velocity (m/s) v

@ x=150 mm

------ Exp.
CUPID {Fritz)

0.04 |~

Q I I
£ -0.03
R 0 100 200 300
2 .
2 Pool Width (mm)
°
i @y =250 mm
3 y
0.06 |-
...... Exp.
CUPID (Fritz)

-0.02 =

0 100 200 300 400 500
Natural Convection Pool Height (mm)

v-velocity (m/s)

———————— — — 003 l L
0 100 200 300

Numerical Analysis of the Passive Condensation Cooling Tank (PCCT) using Pool Width (mm)
the CUPID Code, S.J. Lee et al., CFD4NRS-4, 2012
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02 Natural Convection in a Pool (23

RSSRD

% Small-sized Pool Experiment

= CUPID code analysis to verify the performance of turbulence model

@ y=350 mm

Two—Phase r————— —— — — p  ozf

v-velocity (m/s)

@ x=150 mm

------ Exp.
02 CUPID.(Cole & Rosenhow)
== == = CUPID (Fritz)

o CUPID (Kocamustafaogullari)

L I L I L
0 100 200 300

Pool Width (mm)

u-velocity (m/s)

@ y=250 mm

------ Exp

CUPID (Cole & Rosenhow)

02 = i m CUPID (Fritz)

o CUPID (Kocamustafaogullari)
‘ I ‘ I Q
0 200 400 E
. 2
Natural Convection Pool Height (mm) g
E
>

------ Exp. “© ¢
— — — — 02— CUPID (Cole & Rosenhow)
= == = CUPID (Fritz)
o CUPID (Kocamustafaogullari)

I I B S S SIS S S — L I L I L
2 ; . . . . > 0 100 200 300

Numerical Analysis of the Passive Condensation Cooling Tank (PCCT) using

the CUPID Code, S.J. Lee et al., CFD4NRS-4, 2012 Pool Width (mm)
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= = =L
02 Natural Convection in a Pool (8)%=
RSSRD
% Small-sized Pool Experiment
= Assessment using CFD and 3D thermal—hydraulic system code

Parameter Experiment FLUENT CATHARE-2

Presence of bottom stratification Yes Yes Yes

Recirculation zone(s) Yes Yes Yes

Stratification break-up 9600 s 4400 s 5600 s

Number of nodes - 313964 3600

Turbulence model - Yes No

Calculation time CPU - 504 h 52h

90

[;]' 70
Experiment Fluent 2
Velocity contour at water temperature 91.3 °C g |
3 xExp.
[E f —FLUENT
a0 ~CATHARE
10 - k
o 3600 T200 10800
Time, s
1o
¥
¢
1
: g3
Experiment Flucnt CATHARE E
Velocity contour at water temperature 98.1 °C
Comparative study of CFD and 3D thermal-hydraulic system codes in predicting natural convection and W e
thermal stratification phenomena in an experimental facility, Audrius Grazevicius et al., NET, 2023 ? 200 T e

Nuclear Safety and Base Technology Laboratory / Reactor System Safety Research Division 23/39



Rod Bundle Flow Behavior

Chimney Effect
PRIUS Test Program
Macroscopic Turbulence Model

CFD code Analysis

7



% Chimney Effect

= |BLOCA encounter significant 3D effects in core due to the radial power
profile, with cross flows and diffusion—dispersion.

* There are many complicated phenomena during a transient accidents such as
chimney effect.

Energy Dispersion—Diffusion

Turbulence dispersion- Turbulence dispersion— y—’—l—\
diffusion model (X) diffusion model (O) :
2 i | high p N low p |
Bl
: - : / < Dry zone
! mEE o = Crossflows from cold to hot
1 | 1 ﬂ ﬁ
‘E . | /r -
- CoLD :EH: : m DPr,< Py, Swell level
AR NEe aEes w4 | — | Homogenized by gravity
e =L Hnt sccam hliae : = Dy
- o ? oo L=
Max. steam flow temperature o _f o
(CEA, CATHARE-3D Analysis) o ©| % | 2-phase zone
. \Q‘ BB=DPy, _Z; Void mixing
Important radial transfers may have a ° T o o Hoﬂﬁgﬁgiﬁ‘”ijﬁam
significant impact on PCT in SB/IBLOCA Low G, High P
SB/IBLOCA
No measurements available of radial transfers! Core Uncovery

(CEA-KAERI, Core Mixing, WGAMA mtg., 2019)

Nuclear Safety and Base Technology Laboratory / Reactor System Safety Research Division 25/39



03 Rod Bundle Flow Behavior (2) S

% PRIUS Test Program

in—-PWR Rod-bundle, Investigation of Undeveloped mixing flow between Sub—channels.

= PRIUS experimental campaign has launched to construct a database and
improve the turbulence model for crossflow between subchannels.

= |nt'l cooperative research work with CEA (METERO)

PRIUS-I PRIUS-II PRIUS-III
(15-°17) (18-'21) (22-"29)

. * 6x12 Rod Array (Acryl) * 4x6 Heater Rod Array
4_X6 Rod Array (Acryl) _ (Bare/Spacer grid w mixing vane) (SG wo mixing vane)
* Single—phase flow (Atmospheric P.) / « Single—phase flow (Atmospheric P.) / « Two-phase flow / ~ 5 MPa /

* Inhomogeneous inlet T, Q /

* Non-uniform/uniform inlet velocity asymmetric Power

S s e e / * Velocity field database / « Void size and fraction (WMS) /

 Non—uniform/uniform inlet velocity

* Pressure drop « Pressure drop / heat transfer

e B * Improvement of macroscopic * Development of 3D k-e turbulence
Verification of MIR-PIV method / turbulence model / model, turbulence mixing model /

Nuclear Safety and Base Technology Laboratory / Reactor System Safety Research Division 26/39



% PRIUS Test Program

= To construct high—resolution experimental database to verify the multi-scale
safety analysis code on various analysis platforms.

» To validate and improve the turbulence model using the CFD and TH analysis
codes.

SYSTEM SCALE A 4

Typical mesh size: 1 assembly
3 = 220mm

METERO

SUB-CHANNEL SCALE A

Typical mesh size:
d~12,5 mm : o

CFD in OPEN MEDIUM i v
Typical mesh size:
3~0,3mm

(CEA-KAERI, Core Mixing, WGAMA mtg., 2019)
Nuclear Safety and Base Technology Laboratory / Reactor System Safety Research Division 27/39




% PRIUS-II Test Section Geometry
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03 Rod Bundle Flow Behavior (4)

+»» Featured streamwise flow behavior
" Rep,=9,000, 8:2/6.5:3.5

y 7

A — =
000000000000 i =
L7 o 1004 A 7/ 100A 7
PR2-H1-T01 000000060 =
L X0 —
L < o L4
L5 o
—— H3(51D,)
—— H2(15D,)
—— H1(10D,)
. 107.57
E 93.3133
> 79.0567
64.8
-B0.2
H | H
x (mm) 80.2 33.375 B
E%
{Mean streamwise velocity) (Streamwise turbulence intensity)

{Measurement plane)
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03 Rod Bundle Flow Behavior (4)

RSSRD

% Featured spanwise flow behavior
= Rep,=9,000, 8:2 /6.5:3.5 /55

y o

A = =
000000000000 E ﬁ
L7 = 00A i ) 1004 7|
olole]elele elelele) { 4%
— 5.5 L1 T " % tg T
’ L3 e —
— 6.5:3.5 L5 o L4
— 8:2
H3 .
52 | X =0 ——T04-L0 52 £ X =0 ——T04-L0
- H3 ——T05-L0 . -~ T05-LO
50 | —— T06-L0O 50 —— T06-L0 H2
482 X ' 48.= L H1
17 17 | g

-
)]
—

e {0

-
w
1

Channel height, /D, (-)
o
T

Channel height, z/D, (-)
o
T
o~
’—MM
8

© =
1 1
T
=
M
T Y
M\
© =
T T

=}
o

G ¢ i

Spanwise mean velocity, g, (m/s) Spanwise turbulence intensity, u, ,./U, (-)

{Mean spanwise velocity) {Spanwise turbulence intensity)
{Measurement plane)
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“* Macroscopic Two—equation Turbulence Model

= Several source term models have been developed for various geometry
conditions.

= Chandesris et al. (2001) and Nakayama and Kuwahara (2008) developed
source term models for rod—bundle geometry condition.

p 2 (A, (), ) =200 ), 1), +aﬂ([v+i] a¢<k>f}¢<e>f {ss,

o, ) Ox,

o2 L ofs) 12 %[(Hijwa(jf}w(zq“ SRV <8>’")§2i i

o
&

S/; Sé‘

3
Sk =¢2b|<ﬁ>f‘ , Sg =C2€¢2b ’%

0.3164 P
= _ 2
2D, Re)” K=370

Nakayama and
Kuwahara
(2008)

Chandesris
(2006)

Sk =87;I

Dh

—\3
g, =2C <u>f{1—y§m

¢

2

g

{Source term models for the longitudinal flow condition)
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% Prediction Performance of Existing Models

= Chandesris (2006) model and Nakayama and Kuwahara (2008) model

predicted the mean velocity distribution well.

= Both models gave the TKE to be greater than the experimental values.

Rep, =9,000, 8:2

T04(8:2) - H3L0
——Exp. data
—sa— Chandesris 2§06) |
—e— Nakayama (2008)

Wz (mfs)

. . .
-100 -50 0 50 100
X (mm)

T04(8:2) - H1LO
——Exp. data
—sa— Chandesris 2§06) |
—e— Nakayama (2008)

Wz (mfs)

. . .
-100 -50 0 50 100
X (mm)

{Mean streamwise velocity)

TKE(m/s")

TKE(m/s")

. .
T04(8:2)- H3LO
. aata

X (mm)

T T
TO4(8:2)-HILO
——Exp. data
—m— Chandesris 2008)
—a—Nakayama (2008}

-100

—SID DI 5‘0
X (mm)

(TKE distribution)

! ra,ﬁ] _
{Measurement plane)
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" /kaeRi-
RSSRD
< Modification of the Experimental Constant ¢,
= The experimental constant of Chandesris (2006) model was obtained using
the data measured in the fully developed region.
k.,
CcC =
p —\2 -1/6
uy Re
< )f D, ReDh=9,OOO, 8:2
0.05 : ' " T04(82)- HALO
—C,- H3LO0 :E;pd.g?a
E‘l 0.02 n E
0ot \/\r\/\ /\/\/\/\I
UR'AVAVIVAVAVAYAL \/\/ 100 = 0 50
) ) ) ) ) ) ) ) X (mm)
Chandesris (2006): 0.0367 for the pipe - o
PRIUS-I11 (2021): 0.01 ;é,
_ _ X (mm) 1 A5 :
(TKE distribution) {Measurement plane)
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03 Rod Bundle Flow Behavior (6) S

< Experimental constant ¢, modeling

» Based on the assumption that the velocity gradient affects the turbulence
dissipation, a new type of ¢, was proposed.

.| Ou,
c,=0.01+c¢ Re; (

Ox

T

% S modeling

= Term including the velocity gradient was added to the source term of the TKE

transport equation.

2
- _ . M| ou, _
Sk _800 +Sa Sa _cic; ax Ck _0225Re]

S, S,

S, =¢,, &

. S, =c,—,
Chandesris <LT>3 C y kw
(2006) &, =2C, AR - v X \2 5 16
s 2 » :cp<u>fReD:?
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03 Rod Bundle Flow Behavior (6)

RSSRD

“ Prediction Performance of the Improved Models
* |Improved source term model predicted the TKE under asymmetric flow conditions

better than the previous model.
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03 Rod Bundle Flow Behavior (7) s

¢ CFD Code Analysis

= STAR-CCM+ 15.06.008

= Models
« Steady
 Turbulence Model (k-&, k-w, RST
* Constant Density

« Trimmed Mesh
* Base Size: 0.5mm
» Number of Layer: 127
« Layer Thickness: 2mm
« Total Volume Mesh: 39,460,415

Nuclear Safety and Base Technology Laboratory / Reactor System Safety Research Division 36/39



03 Rod Bundle Flow Behavior (7)

RSSRD
% CFD Code Analysis
= k-& / EB(Elliptic Blending) RSM models showed similar velocity profiles.
= TKE was over—predicted.
3.0 0.10
—STDK-E A —STDK-E
0.09 1
2.5 :'l ——EB RSM
0.08 o ---Test
20 . ﬁ 0.07 I'H: ---0Open
S oo -
2 £ B
é 15 E 0.05 L
! 0.04
> 10 —
0.03
0.02
0.5
0.01
0.0 0.00
-80 -60 40 -20 0 20 40 60 80 -80 60 -40 -20 0 20 40 60 80

Nuclear Safety and Base Technology Laboratory / Reactor System Safety Research Division 37/39



Summary
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RSSRD

“* CFD-grade Experiment

» To validate the physical model used in CFD simulations.

* Experiment provides a relatively low uncertainty of validation and allows a good
determination of the model uncertainty.

“* Application of passive system and core mixing problems

» |dentification of lacking data for code validation of some passive systems
and core multi—-dimensional flow phenomena
» Collect experimental data with mixing in presence of buoyancy effects
* Core TH
— Upscaling of models from CFD to sub—channel and to porous 3D
— CUPID code for validation of sub—channel model + validation of CFD
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