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Research Definition

3

 Predict failure (ductile, brittle, creep) of large-scale nuclear 

components (piping, vessel) using FE analysis

 Use meso-scale phenomenological damage model (based 

either on inelastic strain or inelastic strain energy)

 Input: Tensile and fracture test data (minimum)

 Output: Fracture prediction of nuclear components under 

harsh loading / aging conditions



Requirements
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 For industrial/practical use, the method should be simple, 

clear and transparent

 Input for the analysis should be readily available

 The method can treat complex problems in nuclear plant 

problems such as multiple cracks, aging and 

embrittlement, seismic loading, severe accident etc



Contents
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1. Monotonic loading - Ductile fracture modeling

2. (Very low) Cyclic loading (Earthquake seismic event) 

– Ductile fracture modeling

3. Thermo-mechanical monotonic loading (Severe accident) 

– Ductile fracture modeling

4. Impact loading (Collison / Penetration)

– Ductile fracture modeling

5. Combined ductile/cleavage fracture modeling for ductile-brittle 

transition temperature (not today) 

Ductile Fracture Simulation



Monotonic Loading –

Ductile Fracture Modeling  Examples
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Input

Output
Crack initiation/growth, maximum load and 

unstable fracture of nuclear components

Model Required data

Constitutive model Monotonic tensile test data

Damage model
Monotonic fracture toughness 

data



Multiple Cracks in Steam Generator Tubes
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[SCC and Rupture of U-4 SG Tube]

[Multiple SCCs in K-1 SG Tube ]

 Due to SCC, multiple cracks often found

 assessment of multiple surface cracks



Test to Determine the Damage Model 

8

di

G.L.= 4di

68.8

68.8

35.0

HolderSnug-fitting 

plug

di=16.9

Lh=35.0

18.0

f=16.7

di=16.9

1.5

2di

<ASTM E8-09>

Snug-fitting 

plug

Unit: mm

Tube tensile 

test

Notched Tube

Fracture test

Fracture strain

1.402exp 1.5
 

  
 

m
f

e








Comparison with Experimental data: 

Single Surface Cracks (KHNP)

99
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Test: Multiple-Cracked SG Tubes (Chosun Univ)
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Collinear
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Non aligned

(9 cases)

Aligned

(3 cases)

Non aligned

(2 cases)

High Temp

Room Temp

80 cases

a/t=0.5

For all cases

Composite

(6 cases)



Comparison with Predictions



On-Going Works
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 Crack growth modeling of cracked pipes under combined 

bending (tension) and torsion



Very Low Cyclic Loading –

Ductile Fracture Modeling  Examples
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Input

Output

Fracture toughness under cyclic loading

Crack initiation/growth, maximum load and unstable 

fracture of nuclear components under cyclic (seismic) 

loading

Model Required data

Constitutive model

• Monotonic tensile test data

• -N data (Code / Report) 

• Cyclic tensile test data (optional)

Damage 

model

Monotonic fracture toughness 

data



Piping System Test under simulated seismic loading (Battelle)
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Piping Integrity under Seismic Loading

Crack location

Surface crack



Energy-based Damage Model
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▪ Monotonic fracture strain energy, (Wf )M
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▪ Cyclic fracture strain energy, (Wf )C
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,  : material constants

R : load ratio (=Pmin /Pmax)

Determined from 

tensile and fracture toughness test

HS Nam, Int J Mech Sci, 2018

JH Hwang., Eng Fract Mech, 2020a, 2020b

Morrow, ASTM Int 1965

Dowling, FFEMS, 2009

JH Hwanr, Int J Mech Sci, 2022



Monotonic/Cyclic Through-Wall Cracked Pipe Test
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Pipe specimen (90o , 250 mm)

Dout=72.5 mm, t=8.5 mm

430 mm

1630 mm

Load [kN]
Load ratio 

R
Pmax /PM Failure cycle

±25.8
-1

0.85 21

±22.8 0.75 76

25.8/-12.9 -0.5 0.75 74

Maximum load in monotonic pipe test data (PM =30.kN)

▪ Load-controlled very low cycle fatigue loading



Cyclic FE Pipe Fracture Analysis Model
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 Load controlled VLCF  Cload in ABAQUS option

 Same as monotonic FE pipe mesh

 Crack closure effect

y

x

z

Crack closure

(*Contact pair)

Cyclic loading

(*Cload option)

Element size=0.6 mm

CMOD
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Pmax /PM Load ratio R Failure cycle (Exp.) Failure cycle (FE)

0.85
-1

21 21

0.75 76 77

0.75 -0.5 74 70

Pipe Crack Growth and Fracture Prediction



• FE analysis model

Crack location

Crack 

plane

Loading point

Surface 

crack

Element size=0.6mm

FE Mesh (Solid + Beam Hybrid FE Model)
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Crack location



• Comparison of FE results with experiment results (Moment at crack plane)

FE Results
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On-Going Works
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 Application to fracture assessment of un-cracked elbows under 

quasi-static and dynamic cyclic loading



Thermo-Mechanical Mechanical Loading –

Ductile Fracture Modeling  Examples

(Severe Accident)

22

Input

Output
Under severe accident condition,

Deformation, failure time and size of vessel 

components 

Model Required data

Constitutive 

model

Temperature-dependent 

monotonic tensile test data 

Damage 

model

Temperature-dependent uni-

axial fracture strain data
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IVR-ERVC (In-Vessel Corium Retention –

External Reactor Vessel Cooling)

Liquid metal

Molten 

oxides

Vessel

Water

 Severe Accident Management strategy

About 1500oC

About 100oC

Harsh temperature and pressure 

transient conditions

 Prediction of vessel failure

time and location important

 Understanding of temperature-

dependent deformation and 

fracture behavior



24

Visco-plastic constitutive law
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 Plastic deformation model[Ref1]

 Creep model  
( )( ) n TK T 

[Ref1] Y. Takahashi. Unified constitutive modeling of three alloys under a wide range of temperature, IJPVP, 2019.

[Ref2] J.L. Rempe et al. Light Water Reactor Lower Head Failure Analysis, NUREG/CR-5642, 1993

[Ref2]

• y : yielding strength

• 0 : strain hardening parameter dependent on Temperature & Strain rate 

• r : strain softening parameter dependent on Temperature & Strain rate

• m, p, A : material constant
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OLHF (OECD Lower Head Failure)
Vessel Material : SA533B1

OLHF-1 OLHF-2 OLHF-3

12MPa 5MPa 125MPa

Induction 

Coil

[Ref] L.L. Humphries et al. OECD Lower Head Failure Project Final Report, Sandia National Laboratories, 2002.



OLHF Simulation

q =71o
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Overlapping image of 

original and failure

q =75o

Cross-section map 

of Test

[Ref] L.L. Humphries et al. OECD Lower Head Failure Project Final Report, Sandia National Laboratories, 2002.



On-Going Works
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 Development of temperature-dependent visco-plastic 

deformation and fracture strain models for Alloy 600 / SUS 

316 / Alloy 82/182

[Ref1] L.L. Humphries et al. OECD Lower Head Failure Project Final Report, Sandia National Laboratories, 2002.

[Ref2] Y. Takahashi. Unified constitutive modeling of three alloys under a wide range of temperature, IJPVP, 2019.

[Ref3] J.L. Rempe et al. Light Water Reactor Lower Head Failure Analysis, NUREG/CR-5642, 1993

Alloy182

Alloy600

[Ref1]

OLHF-4 

[Ref2] [Ref3]



Impact Loading (Collision/Penetration) –

Ductile Fracture Modeling  Examples
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Input

Output
Under collision/drop accident condition,

Deformation, fracture or penetration

Model Required data

Constitutive 

model

Temperature dependent monotonic 

tensile test data 

Strain rate dependent monotonic tensile 

test data 

Damage 

model

Temperature dependent uni-axial 

fracture strain data

Strain rate dependent uni-axial fracture 

strain data
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Impact Loading (Collision/Penetration) –

Problems in Nuclear Power Plant

 Spent-fuel storage cask, Small modular reactors

 Risk assessment against drop, crash and attack

Drop test

[X] K.S. Kim, Dynamic impact characteristics of KN-18 SNF transport cask–Part 1: An advanced numerical simulation and validation
technique, Ann Nucl Energy, 2010.

[X] Z.R. Li, Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part II: Numerical simulations. Nucl Eng
Technol, 2021.

[x] Y Wang, Effect of Lode angle incorporation into a fracture criterion in predicting the ballistic resistance of 2024-T351 aluminum alloy 
plates struck by cylindrical projectiles with different nose shapes. Int J Impact Eng, 2020.

Aircraft Ballistic

 High strain rate and temperature, mixed stress state
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Deformation Properties for Impact Loading

Strain rate / Temperature

[x] JM Seo, Modification of the Johnson–Cook model for the strain rate effect on tensile properties of 304/316 Austenitic stainless steels, 
J Press Vessel Technol, 2022

▪ Temperature: RT, 150 oC, 300 oC

▪ Strain rate: Quasi-static, dynamic, high speed

* *

11 ln 1n m

eq eqA B C T               
Johns-Cook (J-C) 

constitutive model:

Split-Hopkinson Bar

(High speed: >1000/s )

Tensile test

(Quasi-static, dynamic)
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Fracture Properties for Impact Loading

Strain rate / Temperature

[x] JM Seo, Modification of the Johnson–Cook model for the strain rate effect on tensile properties of 304/316 Austenitic stainless steels, 
J Press Vessel Technol, 2022

▪ Temperature: RT, 310 oC

▪ Strain rate: Quasi-static, dynamic, high speed

▪ Stress state: Smooth bar, notched bare

Temperature Strain rate, stress state

Johns-Cook (J-C) 

damage model:
 

4* *

1 2 3 5exp 1 1
D

f D D D D T              

Smooth bar

Notched bar

(R=0.5, 1, 1.5 mm)
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Penetration Test for SUS316L (CRIEPI, Japan)

▪ Bullet (D=40 mm)

▪ Thin plate (t=1.2 mm)

▪ Impact velocity:

33 ~ 50 m/s

▪ Ballistic limit:

~ 45 m/s

No penetration / Crack

(44 m/s)

Penetration

(47 m/s)



Penetration Simulation (Penetration: 47 m/s)

Bullet

(Rigid body)

ABAQUS, Explicit

Le=0.2 mm

Impact velocity: 47 m/s

Residual velocity: 10 m/s

Exp. FE

V0=47 m/s

Penetration

Penetration

(clear)

Front Back surface



Penetration Simulation (No penetration: 43 m/s)

Impact velocity: 43 m/s

Residual velocity: - 5 m/s

Reflection

Exp. FE

Crack

Crack

V0=43 m/s

Front Back surface



Penetration Simulation Results (RI model)

▪ Recht and Ipson (RI) model

 Proven model to 

predict residual velocity

 
1

0

p
p p

r blV a V V  1
p

p pl

m
a

m m
 



- Vbl: ballistic limit (Vr=0, max. V0)

- p: material constant

Experimental ballistic limit is expected to be about 44~46 m/s

Residual velocity can be well predicted 

using FE penetration simulation



On-Going Works
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 Penetration experiments : Effects of the thickness and nose 

shape for carbon steel / SUS304 / SUS304L / SUS316L

 Further development of temperature, strain-dependent visco-

plastic deformation and fracture strain damage model for 

penetration simulation



Thank you

Very much
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