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Solving (Some) Formal Math Olympiad Problems

We built a neural theorem prover for Lean that learned to solve a variety of
challenging high-school olympiad problems, including problems from the
AMC12 and AIME competitions, as well as two problems adapted from the
IMO.M The prover uses a language model to find proofs of formal statements.
Each time we find a new proof, we use it as new training data, which improves
the neural network and enables it to iteratively find solutions to harder and
harder statements.

PROBLEM 3 OBLEM 5

Let f(z) = Az + B and g(z) = Bz + A, where 4= B. If f(g(z)) — g(f(z)) = B —
A, provethat A+ B = 0.

or frormm A TME 1097/ Drohlarm 1
ed from AIM 1984 Problem 1

ove thata2 + a4 + a6 + a8 + ... + a98 = 93 if al, a2, a3... is an arithmetic
ogression with common difference 1, and al + a2 + a3 + ... + a98 = 137.

INFORMAL
<> FORMAL INFORMAL

First we find that:

flg(z)) = A(Bz+ A)+ B=ABz+ A’ + B
(u: N> Q)
a(f(z)) =B(Az+B)+ A= ABz+ B2+ A (he : Vn, u(n+1) =un+1)
(h1 : Y k in finset.range 98, u k.succ
Now we plug this back in f(g(z)) — ¢(f(z)) = B — A and get: y k in finset.range 49, u (2 * k.succ)
(ABz + A+ B) — (ABz + B+ A)=B - A rw finset.sum_eq_multiset_sum,
dsimp [finset.rangel at hi,
simp [hol,
ring,
norm_num at hi,
norm_num,
apply eq_of_sub_eq_zero,
A2_B’—(A-B)(A+B)=0 { simp only [*, abs_of_pos, add_zerol at *, linarith },

Thatis:

A’ B’+B-A—-B- A

Since we are given that 4= B, necessarily, A+ B = 0.
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1553_D. Backspace

python p333v\ Layer 18\'\

GHead2 || IHead3 [CTEVY [CHESES) [ Head® (Head7 (1Head8 [IHead (| IHeadi0| || Head

Problem Description

// RATING: 12608

// TAGS: *special,implementation

// LANGUAGE IS python3

// CORRECT SOLUTION

// You are given two strings s and t, both consisting of lowercase English

// letters. You are going to type the string s character by character, from the
// first character to the last one.

// When typing a character, instead of pressing the button corresponding to it
// you can press the "Backspace” button. It deletes the last character you have
// typed among those that aren’'t deleted yet (or does nothing if there are no

// characters in the current string). For example, if s is “abcbd" and you press
// Backspace instead of typing the first and the fourth characters, you will get

// the string "bd" (the first press of Backspace deletes no character, and the

// second press deletes the character ‘c’). Another example, if s is “abcaa" and

// you press Backspace instead of the last two letters, then the resulting text
// is "a".

// Your task is to determine whether you can obtain the string t, if you type
// the string s and press “Backspace” instead of typing several (maybe zero)

// characters of s.

// Input

// The first line contains a single integer q (1 = q < 18%5) - the number of
// test cases.

// The first line of each test case contains the string s (1 < |s| < 18%5). Each

/! character of s is a lowercase English letter.

// The second line of each test case contains the string t (1 = |t| = 18%5).
/! Each character of t is a lowercase English letter.

Solution

t=int(input())
for i in range(t):

s=1input()

t=input()

a=(]

oSl
Token Prob

<newline> 100.0%

10
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Kepler was a Data Scientist
{83’5 Nikhil Verma Dec 9, 2020 - 4 min read (wX ¢ XinX o N

*GitHub Desktop *
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minimize  F = F(u(p), ) = /“ f(ulp), p)dV

°?

subject to Golp) = / pdV — Vy <0
0
Gi(u(p),p) <0withj=1,...,m

19
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4. Physics Informed Machine Learning
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* Fast flow field prediction over airfoils using deep learning

https://aip.scitation.org/doi/10.1063/1.5094943 39
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“’Al improve Nuclear Reactor designs, performance, safety, life tiems e SHRUXHATY

Argonne National Laboratory is using Al to create fast-running models of
various nuclear thermal-hydraulic processes.

Some of our VERA components comprise
a new type of “Core Simulator” (VERA-CS)

VERA

Commercial
CFD

Structural Research CFD

Mechani
Corrosion o

P— Subchannel
CRUD Fuel Thermal-
Deposition Performance Hydraulics

.

Geometry / Mesh / Solution Transfer

The Core Simulator facet of VERA (VERA-CS) is a code system for modeling steady-state
LWR conditions and depletion, providing reactor conditions and distributions needed fo solve
our Challenge Problems. VERA-CS includes components for neutron transport, cross
sections, thermal-hydraulics, fuel temperature, & depletion.

https://www.greencarcongress.com/2020/03/20200325-vera.html a1
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Web of Science 7| &

ZEE{C]=,
- Nuclear
- Al
- Machine Learning
- Artificial Intelligence
- Deep Learning
- Neural Network

- Random forest, support vector machine....

- Regression, classification

- Nuclear science and Technology Al M

et SHRAUXTOITY




sreiaris ——— Convolutional neural netw rks Recurrent neural networks

Support vector machine

CdTe

omputatlonal fluid dynamics

Data science
Uncertainty quantlflcatlon

artificial 1ntelllgence

Particle swarm optimization ™ s

Loss of coolant accident Fuzzy neural netwo neth algorlthm (GA)

sArtificial neuralwﬁ%“W%?k

Anomaly detection Monte Carlo Artif lCla neural networks
Long Short-term Memory

Power peaklng factor N UcC l e a r powe r p ]- dl t

Deep neu ral netWOFk loss of coolant accident (LOCA) Spent nuclear fue%o
Mslgrogues Sons genetic algorithmummies:

operator support system Classification

. U[Jt imizat L NBushehr nuclear power plant UClear forensics

Machlne learning (ML) D]&OHO\ s Nuclear safety

Machlne“iearnlngmm

werr CONVOLUt1onal neural network Aw
Severe Accident sm  Pressurized water reactor Transfer learnlng

Uncertainty analysis
principal component ana1y51s Natural circulation

neural networksArtificial neural network (ANN) ..o

Nuclear core fuel reload

Gamma - rays

Fuel management

chine learn1ng algorithm

Digital twin
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Quantum computing
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Machine learning ] 63%
Artificial neural network 38%
Deep learning 58%
Nuclear power plant 48%
neural network 40%
artificial intelligence
fault diagnosis
genetic algorithm
Convolutional neural network 54%
neural networks 23%
Support vector machine 33%
Deep neural network 60%
Nuclear forensics 20%
Optimization 30%
Particle swarm optimization 44%
Anomaly detection 50%
Artificial neural network (ANN) 38%
Artificial neural networks 25%
Convolutional neural networks 50% I Before 2021
principal component analysis 38% @ Between 2021 - 2022
0 20 40 60 80 100

Total number of documents, with percentage of documents
published in the last years 2021 - 2022



China

South Korea
United States
Iran

Brazil

ltaly

France
United Kingdom
India

Turkey

Japan

Spain
Canada
Germany
Egypt

Mexico
Belgium
Sweden
Taiwan
Indonesia

pad

xae SHERIXIEIC1ITQ

54%
] 36%
50%
22%
] 18%
12%
35%
36%
] 35%
] 38%
38%
15%
50%
67%
Bl 38%
20%
] 80% Bl Before 2021
25% [ Between 2021 - 2022
20 40 60 80 100 120 140

Total number of documents, with percentage of documents
published in the last years 2021 - 2022



Harbin Engn Univ

Chosun Univ

Korea Atom Energy Res Inst
Sharif Univ Technol
Tsinghua Univ

Nucl Power Inst China

Univ Fed Rio de Janeiro
Chinese Acad Sci

Korea Adv Inst Sci & Technol
Shahid Beheshti Univ
Amirkabir Univ Technol

Shanghai Jiao Tong Univ

Dept Nucl Engn
Univ Isfahan
Islamic Azad Univ
Purdue Univ

Shiraz Univ

Idaho Natl Lab
Politecn Milan
Univ Sci & Technol China

A

< xaeni CHR XTI

55%
19%
50%
28%
44%
71%
14%
58%
42%
0%
9%
54%
0%
78%
12%
38%
0%
57%
0% I Before 2021
43% [ Between 2021 - 2022
0 5 10 15 20 25 30 35 40

Total number of documents, with percentage of documents
published in the last years 2021 - 2022



S5 28 2M(EA-LHEYT)

akkoyun, serkan

ayodejigabiodun
zio, enrico

peng/min-jun wang, ghichao
xiaihong
liu, yong-kuo zhang jiyu

na,mg zhu, shiaomin

alamaniotis, miltiadis
mcdonaldyluther w.
ansarifar, g. r.

tasdizen, tolga

lee, seung jun

v
boroushaki, m koo, y@ung do

seong, peong hyun

lucas, ¢ A n;rrwgyun perusquia, raul

back, @ hyun no. young gyu
| kim, jonghyun

lim, dong hyuk

cabral pinheirg, victor henriq pirouzmand, ahmad
schirru, roberto

ghofrani, mehammad b.

moshkbar-bakhshayesh, khalil

zolfaghari, a. aghaie, m.

&VOSviewer



SXs =8 2M(XX-HIENT) i SRR

zio, enrico

schirrdgroberto

xiafhong
¢ W

Moshkbar-bakfighayesh, khalil

ghofrani, m@hammad b.
kim, japghyun

seong, peeng hyun

lee, seung jun

na, magsyun

koo, young do

gfbVOSviewer



1CE-HER D)

univ strathclyde

pUI’d@UmV pacific nw natl lab
atom energy commiss

indira gandhi ctr atom res

kepco int nucl grad sch kings sivas cumhuriyet univ

univiillinois chengdu univ technol
atom energy author

univ cagliari
akdeniz univ univ belgrade

bhabha atom res ctr

X . penn state univ .
canadian nuclifety commiss ciemat

north carolina state univ univ indonesia

idaho natl lab . . . .
. univ fed rio de janeiro
china acad engn phys
. . yonsei univ
harbi univ istanbul tech univ
politeen milan
& univ libre bruxelles candia natl labs  N@njing univ aeronaut & astron
inst nacl invest nucl
amir kabi iv technol

chot niv
thomas jefferson natl accelera
ulsan natl inst sci & technol

univisfahan

univ.idaho .
uppsala univ

&VOSviewer



sharif univ technol

amirkabir‘univ technol

%

islamic azad univ

shirwniv

seoutqatl univ

cheju natl univ
P

choﬂuniv
korea adv in@cﬁéchnol

chungnam natl univ

gfb VOSviewer



HEX) i ORUXIOITH

canadian nuclisafety commiss
®

elect power res inst

univ téanessee

north carolifa state univ

zachry nugl engn inc

idahonatl lab

ohio state univ

minist educ

_ SPharbi univ , ,
nucl power inst china natl tsing hua univ

tsinghua univ

X . univ sci & technol beijing
politecn milan

univ.nantes
chinese acad sci

univ sci & technol china

&VOSviewer



R NERERY

Web of Science 7| &

7| E:
- Nuclear material OR Nuclear fuel
- Al
- Machine Learning
- Artificial Intelligence
- Deep Learning
- Neural Network
- Random forest, support vector machine....
- Regression, classification

- Nuclear science and Technology Al M



~¢

%x}g:! = & &H e SFRYXIHOITH

- Article

Proceedings Paper

- Review

17.5 -

15.0 -

12.5 -

10.0 -

7.5 1

Number of documents

5.0 A

2.5 A

- . [
0.0 - AAA A  kKkAkA

1992 1996 2000 2004 2008 2012 2016 2020 2024
Publication year



“HAE M= & Pim

United States
South Korea

China

India

Mexico

Sweden

United Kingdom
Brazil

Iran

Canada

Egypt

France

Spain

Austria

Belgium

Germany

Japan

Russian Federation
Turkey

United Arab Emirates

50% B Before 2021
50% I Between 2021 - 2022
5 10 15 20 25 30 35 40

Total number of documents, with percentage of documents
published in the last years 2021 - 2022

55



Pacific NW Natl Lab

Uppsala Univ

China Acad Engn Phys

Inst Nacl Invest Nucl

Korea Atom Energy Res Inst

Univ Utah

Bhabha Atom Res Ctr

Korea Inst Nucl Nonproliferat & Control
Univ South Carolina

Univ Tennessee

Egyptian Nucl & Radiol Regulatory Author
Elect Power Res Inst

FSUE RPA Khlopin Radium Inst

Los Alamos Natl Lab

Oak Ridge Natl Lab

Sandia Natl Labs

Sci Comp & Imaging Inst

St Petersburg State Univ

Univ Nacl Autonoma Mexico
Zhengzhou Univ

50%
100%
0%
0%
50%
0%
0%
0%

33%
33%
33%
67%

I Before 2021
[ Between 2021 - 2022

0%
0%
50%
0%
25%
0%

I ! !

0 1 2

3

! |

= 5

Total number of documents, with percentage of docun
published in the last years 2021 - 2022



SouxtE X2 & 34O 24 (=714 HES3)

gsa
sout@orea

ﬁb VOSviewer

57



scientific reports

W) Check for updates

Machine learning molecular
dynamics simulations

toward exploration

of high-temperature properties
of nuclear fuel materials: case
study of thorium dioxide

Keita Kobayashi'*‘, Masahiko Okumura®?, Hiroki Nakamura®3, Mitsuhiro Itakura®?,
Masahiko Machida’* & Michael W. D. Cooper*?

Predicting materials properties of nuclear fuel compounds is a challenging task in materials science.
Their thermodynamical behaviors around and above the operational temperature are essential for the
design of nuclear reactors. However, they are not easy to measure, because the target temperature
range is too high to perform various standard experiments safely and accurately. Moreover,
theoretical methods such as first-principles calculations also suffer from the computational limitations
in calculating thermodynamical properties due to their high calculation-costs and complicated
electronic structures stemming from f-orbital occupations of valence electrons in actinide elements.
Here, we demonstrate, for the first time, machine-learning molecular-dynamics to theoretically
explore high-temperature thermodynamical properties of a nuclear fuel material, thorium dioxide.
The target compound satisfies first-principles calculation accuracy because f-electron occupation
coincidentally diminishes and the scheme meets sampling sufficiency because it works at the
computational cost of classical molecular-dynamics levels. We prepare a set of training data using
first-principles molecular dynamics with small number of atoms, which cannot directly evaluate
thermodynamical properties but captures essential atomistic dynamics at the high temperature
range. Then, we construct a machine-learning molecular-dynamics potential and carry out large-scale
molecular-dynamics calculations. Consequently, we successfully access two kinds of thermodynamic
phase transitions, namely the melting and the anomalous 4 transition induced by large diffusions

of oxygen atoms. Furthermore, we quantitatively reproduce various experimental data in the best
agreement manner by selecting a density functional scheme known as SCAN. Our results suggest that
the present scale-up simulation-scheme using machine-learning techniques opens up a new pathway
on theoretical studies of not only nuclear fuel compounds, but also a variety of similar materials that 58
contain both heavy and light elements, like thorium dioxide.
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Input Hidden Output

Example of a standard neural network
Layer Layer Layer employed for fitting potential-energy surfaces
[5, 6]. The node in the output layer yields the
1 energy E;, which in this case depends on the
values of the two input nodes, G} and G?. In

W“|21 between the input and the output layer there is
1 a hidden layer with three nodes represented by
GI the circles. The arrows correspond to the 13

< weight parameters wfj, which connect node j

E_ in layer k£ with node ¢ in layer k — 1. The bias
| node is used to adapt the nonlinearity region of

this small network is given in Eq. (1).

i

Gz the activation functions. The functional form of
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A Machine Learning Approach to the
Nuclear Fuel Fabrication Process

ELINA CHARATSIDOU

KTH Royal Institute of Technology
School of Engineering Sciences
Department of Physics
MSc in Nuclear Energy Engineering

The nuclear fuel fabrication is a complex process which requires precise control of
many process parameters to obtain a final product conforming to stringent specifications.
Hence, the yield improvement is one of the most important topics in nuclear fuel fabrication.
The yield is driven down by demands on the final quality of the pellet: density, impurities,
surface defects, etc., forcing to recycle some of the pellets, with the associated cost.

Over time, the process was able to reach a significant yield thanks to the use of
traditional statistical methods on the various sub-processes. However, traditional approaches
have limits in extracting the full benefits of the data, since trends can be hard to find. Therefore,
the manufacturing data is currently poorly explored even in the most sophisticated process.

In this work, data from the nuclear fuel factory of Westinghouse Electric AB in Vésteras,
Sweden, were manually collected, organized, and structured in a way useful for data analysis
and machine learning implementations. Afterwards, machine learning algorithms, namely
neural network and gradient boosting, were applied to build models, feature weights of the
parameter process, and understand correlations: the trained models were later used to predict
output label values based on new datasets, and an evaluation of these predictions was
performed, alongside with the comparison of the performance of both neural networks and
gradient boosting for such problems. Through this method, it will be possible to model the
fabrication process and use this tool to pursue improvements based on data.

Hence, the aim of this work is to facilitate the preprocessing of the fabrication data,

creating an automated, high performance, accurate algorithm which will minimize human error
as well as improve fabrication time and lower the cost of the fabrication process.
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Abstract

The nuclear fuel fabrication is a complex process which requires precise control of
many process parameters to obtain a final product conforming to stringent specifications.
Hence, the yield improvement is one of the most important topics in nuclear fuel fabrication.
The vyield is driven down by demands on the final quality of the pellet: density, impurities,
surface defects, etc., forcing to recycle some of the pellets, with the associated cost.

Over time, the process was able to reach a significant yield thanks to the use of
traditional statistical methods on the various sub-processes. However, traditional approaches
have limits in extracting the full benefits of the data, since trends can be hard to find. Therefore,
the manufacturing data is currently poorly explored even in the most sophisticated process.

In this work, data from the nuclear fuel factory of Westinghouse Electric AB in Vasteras,
Sweden, were manually collected, organized, and structured in a way useful for data analysis
and machine learning implementations. Afterwards, machine learning algorithms, namely
neural network and gradient boosting, were applied to build models, feature weights of the
parameter process, and understand correlations: the trained models were later used to predict
output label values based on new datasets, and an evaluation of these predictions was
performed, alongside with the comparison of the performance of both neural networks and
gradient boosting for such problems. Through this method, it will be possible to model the
fabrication process and use this tool to pursue improvements based on data.

Hence, the aim of this work is to facilitate the preprocessing of the fabrication data,
creating an automated, high performance, accurate algorithm which will minimize human error
as well as improve fabrication time and lower the cost of the fabrication process.
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Using Machine Learning to Predict the
Fuel Peak Cladding Temperature for a
Large Break Loss of Coolant Accident

Wazif Sallehhudin® and Aya Diab "2*

"Nuclear Power Plant Engineering Department, KEPCO International Nuclear Graduate School (KINGS), Ulsan, South Korea,
2Mechanical Power Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt

In this paper the use of machine learning (ML) is explored as an efficient tool for uncertainty
quantification. A machine learning algorithm is developed to predict the peak cladding
temperature (PCT) under the conditions of a large break loss of coolant accident given the
various underlying uncertainties. The best estimate approach is used to simulate the
thermal-hydraulic system of APR1400 large break loss of coolant accident (LBLOCA)
scenario using the multidimensional reactor safety analysis code (MARS-KS) lumped
parameter system code developed by Korea Atomic Energy Research Institute (KAERI). To
generate the database necessary to train the ML model, a set of uncertainty parameters
derived from the phenomena identification and ranking table (PIRT) is propagated through
the thermal hydraulic model using the Dakota-MARS uncertainty quantification framework.
The developed ML model uses the database created by the uncertainty quantification
framework along with Keras library and Talos optimization to construct the artificial neural
network (ANN). After learning and validation, the ML model can predict the peak cladding
temperature (PCT) reasonably well with a mean squared error (MSE) of ~0.002 and R? of
~0.9 with 9 to 11 key uncertain parameters. As a bounding accident scenario analysis of
the LBLOCA case paves the way to using machine learning as a decision making tool for
design extension conditions as well as severe accidents.

Keywords: nuclear safety, large break LOCA, artificial neural network, machine learning, uncertainty quantification,
peak cladding temperature

Uncertainty Quantification Framework

Development

The statistical tool, Dakota (Adams et al., 2020), is used in this
work to propagate the uncertainty parameters into the thermal
hydraulic model. Dakota is an open source statistical software
tool developed by Sandia National Laboratory. It can be used for
optimization, sensitivity analysis and uncertainty quantification.
The uncertainty propagation process is achieved by developing
the uncertainty quantification framework by loosely coupling the
best estimate system code, MARS-KS, and the statistical tool,
Dakota, via a python script to manage the data exchange process.
Several important files such as, the Dakota input file, the python
interface script, the MARS steady state file and the MARS
transient file are necessary for the uncertainty quantification
framework to run smoothly and propagate the uncertainty
parameters.
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TABLE 3 | Normalized uncertain parameters.

upP Parameter description Mean, u Standard deviation, ¢ Range, Lhigh-Liow
1 Core power 1.0 0.01 0.98-1.02
2 Groeneveld-CHF 1.0 0.414 0.173-1.827
3 Chen nucleate boiling HTC 1.0 0.234 0.553-1.467
4 Transition boiling HTC 1.0 0.230 0.54-1.46
5 Dittus-Boelter liquid HTC 1.0 0.196 0.607-1.393
6 Dittus-Boelter vapor HTC 1.0 0.196 0.607-1.393
7 Film boiling HTC 1.0 0.287 0.426-1.574
8 Break discharge coefficient 1.0 0.115 0.77-1.23
9 Decay heat 1.0 0.033 0.934-1.066
10 Gap conductance 1.0 0.289 0.421-1.579
11 SIT actuation pressure (MPa) 1.0 0.025 0.949-1.051
12 SIT water inventory (m®) 1.0 0.046 0.907-1.093
13 SIT loss coefficient 1.0 0.20 0.6-1.4
14 Pressurizer pressure (MPa) 1.0 0.113 0.77-1.23
15 Fuel thermal conductivity - - 0.847-1.153
16 Pump two phase head multiplier - - 0.0-1.0
17 Pump two phase head multiplier - - 0.0-1.0
18 SIT water temperature (K) - - 0.955-1.045
19 SIP (IRWST) water temperature (K) - - 0.936-1.064
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Deep learning approach to nuclear fuel transmutation in a fuel cycle )
simulator crcttr

Jin Whan Bae *, Andrei Rykhlevskii, Gwendolyn Chee, Kathryn D. Huff

Dept. of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

ARTICLE INFO ABSTRACT
Article history: We trained a neural network model to predict Pressurized Water Reactor (PWR) Used Nuclear Fuel (UNF)
Received 3 August 2019 composition given initial enrichment and burnup. This quick, flexible, medium-fidelity method to esti-

Received in revised form 18 November 2019
Accepted 19 November 2019
Available online 13 December 2019

mate depleted PWR fuel assembly compositions is used to model scenarios in which the PWR fuel burnup
and enrichment vary over time. The Used Nuclear Fuel Storage, Transportation & Disposal Analysis
Resource and Data System (UNF-ST&DARDS) Unified Database (UDB) provided a ground truth on which
the model trained. We validated the model by comparing the U.S. UNF inventory profile predicted by the
model with the UDB UNF inventory profile. The neural network yields less than 1% error for UNF inven-
tory decay heat and activity and less than 2% error for major isotopic inventory. The neural network

Keywords:
Nuclear fuel cycle
Machine learning

Artificial neural network model takes 0.27 s for 100 predictions, compared to 118 s for 100 Oak Ridge Isotope GENeration
Simulation (ORIGEN) calculations.
Spent nuclear fuel We also implemented this model into cycLus, an agent-based Nuclear Fuel Cycle (NFC) simulator, to per-

form rapid, medium-fidelity PWR depletion calculations. This model also allows discharge of batches
with assemblies of varying burnup.

Since the original private data cannot be retrieved from the model, this trained model can provide
open-source depletion capabilities to NFC simulators. We show that training an artificial neural network
with a dataset from a complex fuel depletion model can provide rapid, medium-fidelity depletion capa-
bilities to large-scale fuel cycle simulations.

Published by Elsevier Ltd.
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Machine learning of LWR spent nuclear fuel assembly decay heat )

measurements

Check for
updates

Bamidele Ebiwonjumi, Alexey Cherezov, Siarhei Dzianisau, Deokjung Lee”

Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of

Korea

ARTICLE INFO

Article history:

Received 29 September 2020
Received in revised form

10 May 2021

Accepted 28 May 2021
Available online 8 June 2021

Keywords:

Decay heat

Spent nuclear fuel
Machine learning
Light water reactor
Synthetic data
Uncertainty analysis

ABSTRACT

Measured decay heat data of light water reactor (LWR) spent nuclear fuel (SNF) assemblies are adopted
to train machine learning (ML) models. The measured data is available for fuel assemblies irradiated in
commercial reactors operated in the United States and Sweden. The data comes from calorimetric
measurements of discharged pressurized water reactor (PWR) and boiling water reactor (BWR) fuel
assemblies. 91 and 171 measurements of PWR and BWR assembly decay heat data are used, respectively.
Due to the small size of the measurement dataset, we propose: (i) to use the method of multiple runs (ii)
to generate and use synthetic data, as large dataset which has similar statistical characteristics as the
original dataset. Three ML models are developed based on Gaussian process (GP), support vector ma-
chines (SVM) and neural networks (NN), with four inputs including the fuel assembly averaged
enrichment, assembly averaged burnup, initial heavy metal mass, and cooling time after discharge. The
outcomes of this work are (i) development of ML models which predict LWR fuel assembly decay heat
from the four inputs (ii) generation and application of synthetic data which improves the performance of
the ML models (iii) uncertainty analysis of the ML models and their predictions.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

67



Table 4
Dataset input and output features.
Input features Ranges
PWR dataset BWR dataset
Decay time (days) 859-9734 857—-9750
Discharge burnup (GWd/tU) 19.699—-50.962 5.28—46.648
235U enrichment (wt.%) 2.09—4.005 1.09-3.15

Heavy metal mass (kg)
Output feature
Decay heat (W)

361.72—463.898

209.79—-1550

126.68—195.48

19.5-395.40
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Fig. 6. GPR predictions and uncertainties at 95% confidence interval (original PWR

dataset).
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Uncertainty quantification and reduction in metal additive
manufacturing

Zhuo Wang'®, Chen Jiang (3%, Pengwei Liu?, Wenhua Yang®, Ying Zhao?, Mark F. Horstemeyer>, Long-Qing Chen®, Zhen Hu
Lei Chen(®""™
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Pacific Northwest National Laboratory (PNNL) is a leader in the science and technology of strategic
material production and processing, including tritium, uranium, and plutonium. Our cutting-edge nuclear
material science capabilities are rooted in the support for Hanford’s defense mission during the Manhattan
Project and the Cold War. The resources, facilities, and collaborations across disciplines at PNNL, the
national laboratory system, academia, and industry enable us to develop and use a deep understanding of

nuclear materials to drive mission impact in stockpile stewardship, nonproliferation, and nuclear energy.

PNNL continues to invest in the expansion and enhancement of our capabilities in nuclear-material
processing. For example, we are working to accelerate modeling-based prediction of material
microstructure through targeted application of high-fidelity models for fundamental phenomena; lower-
resolution models to characterize trends across broad ranges of the process parameter space; and science-
informed machine learning to accelerate the discovery and interpretation of relationships across length
and time scales. We are also developing and applying advanced noninvasive diagnostic methods that can
provide real-time validation of product characteristics to reduce the need for sampling-based offline
characterization and to inform data-driven process control. PNNL has numerous activities in the
development and use of physics-informed data analytics methods tailored to material processing,
including the interpretation of complex patterns in the process-structure-property relationships that

govern material performance.

Nuclear material science is the foundation of
reliable tritium production

PNNL is the design authority for the tritium-producing burnable absorber rods (TPBARSs) used to produce

tritium for the nuclear weapons stockpile. PNNL is the recognized leader in the science and engineering of




Physics Informed neural network

Neural Network AD

Loss

s Lepg = f(12,0,1,0,4, ..., 2)
! Lpata = tla = Ulpata
i Lic= ﬁln.to - g'ﬂ,to
Lge = (Onillagn—0,9lan) + (o — glan)

Y waLlic+ wylpe

Note: &i = [u,v,p, @], x = [x, y], 6: weights/biases, A: unknown PDE parameters, w;,i = 1, ..., 4: weights

https://link.springer.com/article/10.1007/s104
09-021-01148-1
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Pushing the frontiers of density functionals by solving
the fractional electron problem

A network architecture
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Artificial intelligence “sees” split electrons S .
BY JOHN P. PERDEW (3]
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tional electron problem” 4 x(rg) X e®
BY JAMES KIRKPATRICK, BRENDAN MCMORROW, DAVID H. P. TURBAN, ET AL .
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Improving DFT with deep learning — + +6© w4 5
s X
S CCSD(T)
In the past 30 years, density functional theory (DFT) has emerged as the most § -
widely used electronic structure method to predict the properties of various sys- T IS
tems in chemistry, biology, and materials science. Despite a long history of suc- o — Y Y% 3,
. I : . 2 + /2 exact X
cesses, state-of-the-art DFT functionals have crucial limitations. In particular, sig- ,
nificant systematic errors are observed for charge densities involving mobile C
; , : : —
charges and spins. Kirkpatrick et al. developed a framework to train a deep neural occupied Virtual SE 8
network F)n accurate chemical dat§ and fracponal electron constra}l?ts (see the‘ 8 cos(8) + sin(8) ( ) =0 X
Perspective by Perdew). The resulting functional outperforms traditional function- 5p N
als on thorough benchmarks for main-group atoms and molecules. The present "
= group P D evaluation

work offers a solution to a long-standing critical problem in DFT and demonstrates
the success of combining DFT with the modern machine-learning methodology. — ? %w: ‘66@
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The intersection of quantum computation and chemistry

Many problems in chemistry have to do with quantum nature of electrons. Many of the physiochemical properties
of compounds can be derived from quantum mechanics descriptions of the electronic structure of a molecule.
Complexity observed in biological systems has its origin in quantum mechanics. It is then inevitable to think that
the underlying physical device to perform computation on nature must be quantum itself.

In the field of computational chemistry, classical computing has set the bar very high. Overtime physicists and
chemists have come with clever simplifications to solve the Schrédinger equation of chemical systems, sacrificing
accuracy while remaining efficient. Ab initio quantum chemical calculations must compete with a wide list of
competitive alternatives with different levels of accuracy (FF, DFT, Hartree-Fock, coupled-cluster theory) and years
of extensive development on CPU and GPU chips.

'y O(n)
O(n**) o
O(n™) 9] FCI

J Cccsom (Exact)

Accuracy DFT & HF

Semi-empirical

v Force-fields

Computational Resources

Example QQ/&’

Problem Size U r

https://pharmacelera.com/blog/science/quantum-computing/ 79
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NEW LABORATORY TO EXPLORE THE QUANTUM MYSTERIES
OF NUCLEAR MATERIALS

Replete with tunneling particles, electron wells, charmed quarks and zombie cats, quantum mechanics takes everything Sir
Isaac Newton taught about physics and throws it out the window.

Every day, researchers discover new details about the laws that govern the tiniest building blocks of the universe. These
details not only increase scientific understanding of quantum physics, but they also hold the potential to unlock a host of
technologies, from quantum computers to lasers to next-generation solar cells.

But there’s one area that remains a mystery even in this most mysterious of sciences: the quantum mechanics of nuclear
fuels.

EXPLORING THE FRONTIERS OF QUANTUM MECHANICS

Until now, most fundamental scientific research of quantum mechanics has focused on elements such as silicon because
these materials are relatively inexpensive, easy to obtain and easy to work with.

Now, Idaho National Laboratory researchers are planning to explore the frontiers of quantum mechanics with a new synthesis
laboratory that can work with radioactive elements such as uranium and thorium.

An announcement about the new laboratory appears online in the journal Nature Communications.

Uranium and thorium, which are part of a larger group of elements called actinides, are used as fuels in nuclear power
reactors because they can undergo nuclear fission under certain conditions.
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Open-Source Quantum
Development

Run a quantum program

Qiskit [kiss-kit] is an open-source SDK for
working with quantum computers at the level of
pulses, circuits, and application modules.

[python3] $ pip install qiskit

from giskit import QuantumProgram
QuantumProgram( )
qp.create_quantum_register('qr',2)
qp.create_classical_register('cr', 2)
qc qp.create_circuit('Bell’', [qgr], [cr])
qc.h(qr[e])

gc.cx(qr[e], qr[1])

qc.measure(qr[e], cr[e])
qgc.measure(qr[1], cr[1])

result = gp.execute('Bell’)
print(result.get_counts('Bell'))

Get started 4 ap
qr
cr

h
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