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Directional
Drilling

Optimum depth 1-2 km

Directional drilling is not
fracking.

No earthquakes; no water
pollution

Directional drilling pre-
dated fracking.
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4-minute video:www.youtube.com/watch?v=IQx5zFUUIn0&t=11s




Borehole Storage vs Borehole Disposal

0 yr Cost: Initial cost of borehole > initial cost of dry cask

12 yr Cost: Actual cost spent (guns, guards, etc) > competitive after 12 years

Recoverability can be monitored at low cost

S_tora_nﬁeé disposal: seal the access borehole (when regulations allow). Risk that
site will not pass disposal requirement is minimal

Guards and Guns; Surface storage must pay the additional cost of disposal, when
the time comes. ("Kick down the road — our grandchildren can take care of it”)

© 2019 Deep lIsolation, Inc. All Rights Reserved l‘ DEEP |SOLAT|ON
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Peer-reviewed publications

energies
energies
Article
Article Post-Closure Safety Calculations for the Disposal

Disposal of High-Level Nuclear Waste in Deep of Spent Nuclear Fuel in a Generic Horizontal
Horizontal Drillholes Drillhole Repository

Stefan Finsterle 1*{, Richard A. Muller 2, John Grimsich 2, John Apps 3 and Rod Baltzer 2

energies

Article

Article . . .
Thermal Evolution near Heat-Generating Nuclear iﬁ:g;:i%:sgeep Horizontal Borehole Repository for

Waste Canisters Disposed in Horizontal Drillholes

Richard A. Muller 1*, Stefan Finsterle 2(, John Grimsich ', Rod Baltzer ', Elizabeth A. Muller !,
James W. Rector 3, Joe Payer * and John Apps °

energies MBPY

Stefan Finsterle 1*(, Cal Cooper 2, Richard A. Muller 2, John Grimsich 2 and John Apps 3
Stefan Finsterle '*{, Richard A. Muller 2, Rod Baltzer 2, Joe Payer 3 and James W. Rector *

energies P energies
Article Article

Thermal Evolution near Heat-Generating Nuclear Post-Closure Safety Analysis of Nuclear Waste Disposal
Waste Canisters Disposed in Horizontal Drillholes in Deep Vertical Boreholes

Stefan Finsterle *(, Richard A. Muller 2, Rod Baltzer 2, Joe Payer > and James W. Rector * Stefan Finsterle '"*(, Richard A. Muller %, John Grimsich ?, Ethan A. Bates ? and John Midgley *
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Siting
requirements

o Stakeholder informed consent

o Drillable, accessible geologic formation, likely
depth 1-2 km

o Low permeability formation at or above (cap
layer) deposition depth

o Brine saturated rock
o Brine stratified
o Reducing environment

o No deep fresh-water human-exploitable aquifer
close to or below formation

o Any of the above can be ignored if the formation
passes a “strong isolation” qualifying test

By going deep, the availability of acceptable sites is vastly increased.

4 DEEPISOLATION



Large Centralized Array of boreholes

alternative to modular
. 81x2kmrepositories e
\ 32,000 PWR Assemblies | 1~

=
—~

250.00m ot : |
oy ‘ ! 123016 m
; |

Large Capacity

Centralized infrastructure
Compact Surface Footprint
Flexible — Incremental Approach
50m Offset Repositories
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Informed Consent: US Survey leads to optimism

Question National AL AR AZ CcA D L KS LA Mi MN Ms NE NM NV NY OH OR PA ™ ™ uT WA wi
Finding a permanent solution for the nuclear
waste currently stored above ground in our state 89% 85% 96% 93% 90% 89% 95% 95% 84% 91% 90% 92% 93% 92% 88% 88% 94% 90% 93% 94% 90% 88% 94% 91%
should be a priority.
TRANSPORTATION
It is a bad idea to transport nuclear waste across
the country.
Nuclear waste should be put into storage outside
of our state, even if that means transporting it 33% 38% 44% 27% 28% 38% 38% 37% 47% 44% 45% 40% 34% 29% 36% 34% 38% 32% 38% 34% 32% 32% 31% 38%
long distances.,
Our state SHOULD NOT move the waste long
distances to another temporary storage site, and

82% 81% 77% 85% 86% 74% 78% 81% 85% 77% 79% 81% 82% 56/37 8% 9% 79% 79% 78% 80% 85% 80% 74% 81%

. i 78% 73% 70% 82% 78% 71% 76% 80% 78% 76% 70% 74%  88% 76% 84% 72% 83% 78% 73% 81% 83%  83% 81% 79%
then move it again when an out-of-state
underground solution becomes available.
OUR SOLUTION
Nuctiiar Wikste Shound S pat o perivaped 79% 80% B85% 77% 75% 83% 83% 85% 81% 80% 82% 74% 84% 81% 78% 79% 83% 86% 82% 82% 79% 92% 87% 87%
disposal below ground.
QOur state should consider the new option to
safely dispose of the waste deep underground 82% 82% 79% 81% 81% 78% 85% 82% 76% 84% 74% 76% 82% 81% 93% 84% 85% 84% 83% 82% 83% 87% 87% 80%
without having to move it long distances.
DO NOTHING
Nuclear waste should be kept where itis now,  Agree/Disagree ,o/cq 31/63 30/69 36/62 24/73 32/67 32/65 22/75 29/69 35/62 32/63 27/71 24/73 30/67 30/67 28/70 25/72 31/68 28/67 29/68 27/71 23/75 34/63
above ground in temporary containers. 33/64
Our state SHOULD leave the waste above ground
at each power plant and wait for a permanent 53% 48% 44% 52% 60% 47% 50% 63% 49% 49% 47% 53% 50% 34% 53% 47% 51% 44% 50% 49% 53% 51% 43% 56%

solution to remove it.
Our state SHOULD NOT leave the waste above

ground at each power plan and wait for a 44% 47% 52%  46% 39% 50%  49% 34% 47% 49% 47% 43% 50% 63% 45% 47%  47% 52%  48% 49% 46%  48% 54%  43%
permanent solution to remove it.

82% say “bury it where it is”
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Stakeholder Engagement?

Building trust with genuine partnership
 Incorporates stakeholder input into design elements

Transparency and dialogue reduce risk of wrong steps
* Improves program success (lessens the chances of
obstruction, delay and outright program failure)
Creates a better outcome
+ Engaging with, appreciating values of, and receiving input
from the public, partners, and stakeholders allows for a
smoother implementation and project future
Created through a purposeful plan
* Requires best-in-class design and implementation

Informed Concent (Informed Enthusiasm)

Watch 7 minute video:
www.youtube.com/watch?v=3GZ4TC8ttbE&t=10s

1 2 © 2019 Deep Isolation, Inc. All Rights Reserved
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Technology derhonstratlon on 16 Jan'u}ary 2019

We emplaced and retrieved prototype disposal canister sized for cesium/strontium capsules.
Borehole total length was 823 metres — 670m vertical and 153m horizontal. Local community
participated, as well as stakeholders from government, NGOs, environmentalists, etc.

Watch 7 minute video: www.youtube.com/watch?v=3GZ4 TC8ttbE&t=10s

Proven

Technical ability, program management efficacy (on time, on budget), partnering ability, and
model for community and stakeholder engagement

© 2019 Deep lIsolation, Inc. All Rights Reserved l‘ DEEP |SOLAT|ON



Strong Isolation —

Th IS methOd IS used primarily for carbon dioxide capture and
established and accepted ****

helium-4 stable, produced from U, Th))

Determlne Stagnat|0n |n 4 neon-21 stable; produced by neutrons)
d |ffe rent Ways chlorine-36 301,000 year half-life)

iodine-129 15.7 million year half-life)

Readily accepted by public (environmental groups)
and by experts (e.g. NRC)




Strong Isolation &= Age date deep brines
e “Strong Isolation” refers to ages of
100,000 to 1,000,000 years

Expected when saline stratification

More compelling than geologic
modeling

a
<
g
£
g
=
=
[

| Measurements of natural Cl-36, I-
129, He-4, others vs depth

Analogous to radiocarbon dating

Accepted by stakeholder
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At 1.5 km depth, diffusion
and advection of long-
lived radioisotopes are the
greatest safety concern

Table 1. Initial inventory, specific activity, and dose coefficient of selected radionuclides.

Half-Life  Inventory! Inventory? Activity 3 Specific Dose

. B Activi Coefficient 4
(Years) (g/MTIHM)  (g/Canister) (Bqg/Canister) (Bq kggl) (SvBq-)

Isotope

1291 1.57 x 107 313. 136. 8.88 x 108 6.53 x 10° 1.10 x 1077
36C1 3.01 x 10° 0.501 0.218 2.66 x 108 1.22 x 1012 9.30 x 10710
79Se 2.95 x 10° 10.5 457 2.59 x 10° 5.68 x 1011 2.90 x 10~°
PTe 2.11 x 10° 1280. 556. 3.52 x 1011 6.33 x 1011 6.40 x 10710

1'Source: [12] (Table C-1). 2 For 0.435 metric tons of initial heavy metals (MTIHM) per pressurized water reactor (PWR)

assembly [27], (Appendix E-1). 3 Activity A (Bq) is calculated as A = AN = N;"—W»%-NA, where A = In(2)/t;/»

(s71) is the decay constant, N is the number of decaying particles, m (g) is the inventory mass, MW (g mol™') is the
molecular weight, t;, (s) is the half-life, and N4 = 6.022 x 10% (mol~1) is the Avogadro number; 1 Ci = 3.7 X 1010 Bg;
4 Source: [28, Table C5; Example Reference Biosphere 1A]; unit conversion factor: 1 rem = 0.01 Sv.

Watts / MTHM

1.0£+02 1

1.0£+01 4

el Fission
Fragments
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Products

Toal 7
Actinides

These are the
troublesome
ones!
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fter Discharge

4 DEEPISOLATION




Safety esti tion by TOUGH2
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Figure 3. Computational grid: (top) excerpt of the radial-axial grid of the near-field model, which -1550 =2 Al
follows the trajectory of the directionally drilled borehole and is embedded in the three-dimensional -100  -50 0 50 10
Voronoi grid of the geosphere model (bottom). A total of 153 waste canisters are individually repre- Distance from Borehole (m)
sente(% in the sub-hori%ontal disposal section, which is at a depth of 1.5 km. A detailed description of Figure 2. Cross sections through unstructured computational grid, showing nested mesh refinement; a two-dimensional,
the grid can be found in [46]. radial-axial subgrid representing the borehole, engineered barrier system, and near field is integrated into the three-

dimensional Cartesian mesh of the far field.
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Separated Cesium-137 & Strontium-90 Spent Nuclear Fuel

capsule spacing: 2ft

0.5 m into rock
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Power [W]
Temperature [°C]
Pressure [bar]

1.0 minto rock

10 — 10° 10°
Time [years] Time [years]

Temperature vs time: water never boils

Boiling point at 1.5 km
is>300C

sedimentary rock
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Typical
simulation
result

fresh water well 500,000 years

array of
repositories
(one shown)

129I
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spreading
radionuclide

Depth (m)




Radionuclide transport, sedimentary scenario
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Figure 6. Simulated '°I activity distribution throughout the repository
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Calculated
dose to human
using surface
well above the

repository

Nominal result
for Sedimentary
rock
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Probabilistic
Uncertainty
Analysis

400 Monte-Carlo
simulations of rock
porosity structure
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Fault vs No-Fault
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One fault pushes fluid up poorly-sealed access hole

10,000 years

100 0 100 200 300
Distance from Vertical Access Hole (m)

20,000 years

@0

180 0 100 20 30
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Distance from Vertical Access Hole (m)
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Instant waste mobilization
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Peer-reviewed publications

energies

Article
Disposal of High-Level Nuclear Waste in Deep
Horizontal Drillholes

Richard A. Muller *, Stefan Finsterle 2(, John Grimsich !, Rod Baltzer ', Elizabeth A. Muller ?,
James W. Rector 3, Joe Payer * and John Apps °

energies MbPy

Article
Thermal Evolution near Heat-Generating Nuclear
Waste Canisters Disposed in Horizontal Drillholes

Stefan Finsterle *©, Richard A. Muller 2, Rod Baltzer 2, Joe Payer > and James W. Rector *

energies M|

Article
Thermal Evolution near Heat-Generating Nuclear
Waste Canisters Disposed in Horizontal Drillholes

Stefan Finsterle *(©, Richard A. Muller 2, Rod Baltzer 2, Joe Payer > and James W. Rector *

energies

Article

Post-Closure Safety Calculations for the Disposal
of Spent Nuclear Fuel in a Generic Horizontal
Drillhole Repository

Stefan Finsterle "*©, Richard A. Muller 2, John Grimsich 2, John Apps ® and Rod Baltzer 2

energies

Article
Sealing of a Deep Horizontal Borehole Repository for
Nuclear Waste

Stefan Finsterle 1*(, Cal Cooper 2, Richard A. Muller 2, John Grimsich 2 and John Apps 3

energies

Article
Post-Closure Safety Analysis of Nuclear Waste Disposal
in Deep Vertical Boreholes

Stefan Finsterle 1*©, Richard A. Muller 2, John Grimsich 2 Ethan A. Bates 2 and John Midgley 2
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Siting:

stacked
boreholes
for reduced
footprint

“mined repository +”

© 2019 Deep Isolation, Inc. All Rights Reserved
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Modular disposal -
(vs centralized disposal)

If “strong isolation”
criterion satisfied

Avoids transportation
challenges

Preferred by the public!

28
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AL

Waste forms suitable for horizontal storage/disposal

Small Forms Spent Fuel (30cm x 450cm) US ultra-large vitrified waste
canisters (61cm x 450cm)

© 2019 Deep Isolation, Inc. All Rights Reserved l! DEEPISOLATION
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Deep
Isolation
INAC
PWR

anister

(3D Printer model)

ation, Inc. All Rights Reserved
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Earthquakes
in Korea

31

Legend

Magnitude
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Pohang
earthquake > L ped into the ground
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Gyeongju
earthquake

September 12, 2016

Magnitude 5.8
(strongest known in
Korea)
13 km deep
In a strong
8 injured earthquake,

hazardous waste
is safer deep
underground
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Vertical hole in crystalline basement rock (1)
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Vertical hole in crystalline basement rock (2)
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sealing

(1)

9] (pCi/L)

1000.0
100.0
10.0
1.0
0.1

Figure 6. Distribution of 12°I activity at different times for a two-fault scenario with well-sealing backfill.
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Figure 7. Distribution of 12I activity at different times for two-fault scenario with poorly-sealing backfill.
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sealing

(2)

%

from aquifer to drinking water well
from access hole to aquifer
from curved to vertical access hole

C

two faults,
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Figure 11. 1291 activity flow rates along vertical access hole with sealing and poorly-sealing backfill for (a) reference and

two-fault scenario, and (b) one-fault scenario.
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Figure 12. Annual exposure dose with well-sealing and poorly-sealing backfill for (a) reference and two-fault scenarios, and

(b) one fault scenario.
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Figure 12. Annual exposure dose with well-sealing and poorly-sealing backfill for (a) reference and two-fault scenarios, and

(b) one fault scenario.
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Multiple borehole spacing & temperature

Early temperature peak
determined by heat release curve
ar][d cylindrical heat dissipation
rate

Not affected by borehole spacing
s except if sis'small (e.g., 25 m)

Second peak determined by
proximity to symmetry boundary

Long-term temperature _
determined by rock volume in
symmetry cell available to absorb
total amount of heat released

Consistent with Bates (2015)
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Borehole Storage vs Borehole Disposal

0 yr Cost: Initial cost of borehole > initial cost of dry cask

12 yr Cost: Actual cost spent (guns, guards, etc) > competitive after 12 years

Recoverability can be monitored at low cost

S_tora_nﬁeé disposal: seal the access borehole (when regulations allow). Risk that
site will not pass disposal requirement is minimal

Guards and Guns; Surface storage must pay the additional cost of disposal, when
the time comes. ("Kick down the road — our grandchildren can take care of it”)
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Spent nuclear fuel and
other wastes are
routinely handled,
packaged, transported
and stored

A" aspeCts - Wells are routinely
have been

drilled horizontally

« Costs are a fraction of
traditional mined
demonstrated it i

Deep Isolation is using
a proven approach to
stakeholder and
community outreach

Waiting only for
regulations to catch up




Why is the cost so much lower?

no humans underground

much less rock removed

drilling technology well established
modular

faster time scale than mined repositories

can be used in mined+ combination
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Discussion

Richard Muller
CTO Deep Isolation Inc.

(m) +1 510 735 6877
rich@deepisolation.com

https://deepisolation.com D E E P

4-minute tech video:

www.youtube.com/watch?v=1Qx5zFUUIN0&t=11s ISO LATION

7 minute demo/stakeholder engagement video:www.youtube.com/watch?v=3GZ4TC8ttbE&t=10s
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